イベント / EVENT
Ling Liu教授(ジョージア工科大学)
イベントのお知らせ
国立情報学研究所 講演会
「Robustness of Deep Learning Systems Against Deception」
Ling Liu教授(ジョージア工科大学)
ジョージア工科大学コンピュータサイエンス学部の教授であるLing Liu氏の講演会「Robustness of Deep Learning Systems Against Deception 」を開催いたします。
Ling Liu教授は、同大学分散データ集中システム研究所で研究プログラムを指揮しており、300以上の国際的なジャーナルと会議の記事を発表するとともに、ICDCS 2003、WWW 2004、2005 Pat Goldberg Memorial Best Paper Award、IEEE Cloud 2012、IEEE ICWS 2013、IEEE / ACM CCGrid 2015、IEEE Edge 2017など、多くのトップカンファレンスにて最優秀論文賞を受賞されています。
Ling Liu教授のご講演を聴く貴重な機会ですので、是非ご参加ください。
なお、講演はすべて英語で行われます(通訳はありません)。参加費は無料ですが、お席に限りがありますので、下記フォームからお申し込みください。
日時
2019年7月18日(木)17:00-18:00
会場
国立情報学研究所 12階1208会議室(東京都千代田区一ツ橋2-1-2)
https://www.nii.ac.jp/about/access/
講師
Ling Liu
ジョージア工科大学コンピュータサイエンス学部 教授
Prof. Dr. Ling Liu is a Professor in the School of Computer Science at Georgia Institute of Technology. She directs the research programs in Distributed Data Intensive Systems Lab (DiSL), examining various aspects of large-scale data intensive systems. Prof. Liu is an internationally recognized expert in the areas of Big Data Systems and Analytics, Distributed Systems, Database and Storage Systems, Internet Computing, Privacy, Security and Trust. Prof. Liu has published over 300 international journal and conference articles, and is a recipient of the best paper award from a number of top venues, including ICDCS 2003, WWW 2004, 2005 Pat Goldberg Memorial Best Paper Award, IEEE CLOUD 2012, IEEE ICWS 2013, ACM/IEEE CCGrid 2015, IEEE Edge 2017. Prof. Liu is an elected IEEE Fellow and a recipient of IEEE Computer Society Technical Achievement Award. Prof. Liu has served as general chair and PC chairs of numerous IEEE and ACM conferences in the fields of big data, cloud computing, data engineering, distributed computing, very large databases, World Wide Web, and served as the editor in chief of IEEE Transactions on Services Computing from 2013-2016. Currently Prof. Liu is co-PC chair of The Web 2019 (WWW 2019) and the Editor in Chief of ACM Transactions on Internet Technology (TOIT). Prof. Liu's research is primarily sponsored by NSF, IBM and Intel.
プログラム
- Opening Remark
Masaru Kitsuregawa
Director General, National Institute of Informatics - Robustness of Deep Learning Systems Against Deception
Ling Liu
Professor in the School of Computer Science at Georgia Institute of Technology
We are entering an exciting era where human intelligence is being enhanced by big data fueled artificial intelligence (AI) and machine learning (ML). However, recent work shows that DNN models trained privately are vulnerable to adversarial inputs. Such adversarial inputs inject small amount of perturbations to the input data to fool machine learning models to misbehave, turning a deep neural network against itself. As new defense methods are proposed, more sophisticated attack algorithms are surfaced. This arms race has been ongoing since the rise of adversarial machine learning. This talk provides a comprehensive analysis and characterization of the state of art attacks and defenses. As more mission critical systems are incorporating machine learning and AI as an essential component in our social, cyber, and physical systems, such as Internet of things, self-driving cars, smart planets, smart manufacturing, understanding and ensuring the verifiable robustness of deep learning becomes a pressing challenge. This includes (1) the development of formal metrics to quantitatively evaluate and measure the robustness of a DNN prediction with respect of intentional and unintentional artifacts and deceptions, (2) the comprehensive understanding of the blind spots and the invariants in the DNN trained models and the DNN training process, and (3) the statistical measurement of trust and distrust that we can place on a deep learning algorithm to perform reliably and truthfully. In this talk, I will use our cross-layer strategic teaming defense framework and techniques to illustrate the feasibility of ensuring robust deep learning through scenario-based empirical analysis.
対象
大学・研究機関等、学術関係
定員
100名(先着順、下記参加登録フォームからお申し込みください)
参加費
無料
参加申込み
以下のフォームよりお申込み下さい。※フォームは外部サイトにリンクしています。
登録受付完了メールを、入力されたメールアドレスに自動送信します。登録受付完了メールが参加証になりますので、メールを印刷し、当日ご持参いただき受付にご提出ください(参加登録フォームから登録ができない場合は、下記お問い合わせ先までメールでお申し込みください)
お問い合わせ
国立情報学研究所 総務部企画課 企画チーム nii-lec [at] nii.ac.jp
「情報学最前線」 平成28年度 特別会 Q&A 平成28年度 第6回 Q&A 平成28年度 第5回 Q&A 平成28年度 第4回 Q&A 平成28年度 第3回 Q&A 平成28年度 第2回 Q&A 平成28年度 第1回 Q&A 平成27年度
「情報学最前線」 平成27年度 第6回 Q&A 平成27年度 第4回 Q&A 平成27年度 第3回 Q&A 平成27年度 第2回 Q&A 平成27年度 第1回 Q&A 平成26年度
「未来を紡ぐ情報学」 平成26年度 第8回 Q&A 平成26年度 第7回 Q&A 平成26年度 第6回 Q&A 平成26年度 第5回 Q&A 平成26年度 第4回 Q&A 平成26年度 第2回 Q&A 平成26年度 第1回 Q&A 平成25年度
「未来を紡ぐ情報学」 平成25年度 第8回 Q&A 平成25年度 第7回 Q&A 平成25年度 第6回 Q&A 平成25年度 第5回 Q&A 平成25年度 第4回 Q&A 平成25年度 第3回 Q&A 平成25年度 第2回 Q&A 平成25年度 第1回 Q&A 平成24年度
「人と社会をつなぐ情報学」 平成24年度 第8回 Q&A 平成24年度 第7回 Q&A 平成24年度 第3回 Q&A 平成24年度 第1回 Q&A 平成23年度 平成23年度 第8回 Q&A 平成23年度 第7回 Q&A 平成23年度 第6回 Q&A 平成23年度 第5回 Q&A 平成23年度 第4回 Q&A 平成23年度 第3回 Q&A 平成23年度 第2回 Q&A 平成23年度 第1回 Q&A 平成22年度 平成22年度 第8回 Q&A 平成22年度 第7回 Q&A 平成22年度 第6回 Q&A 平成22年度 第5回 Q&A 平成22年度 第4回 Q&A 平成22年度 第3回 Q&A 平成22年度 第2回 Q&A 平成22年度 第1回 Q&A 平成21年度 平成21年度 第8回 Q&A 平成21年度 第7回 Q&A 平成21年度 第6回 Q&A 平成21年度 第5回 Q&A 平成21年度 第4回 Q&A 平成21年度 第3回 Q&A 平成21年度 第2回 Q&A 平成21年度 第1回 Q&A 平成20年度 平成20年度 第8回 Q&A 平成20年度 第7回 Q&A 平成20年度 第6回 Q&A 平成20年度 第5回 Q&A 平成20年度 第4回 Q&A 平成20年度 第3回 Q&A 平成20年度 第2回 Q&A 平成20年度 第1回 Q&A 平成19年度 平成19年度 第8回 Q&A 平成19年度 第7回 Q&A 平成19年度 第5回 Q&A 平成19年度 第2回 Q&A 平成19年度 第1回 Q&A 平成18年度 平成18年度 第8回 Q&A 平成18年度 第7回 Q&A 平成18年度 第5回 Q&A 平成18年度 第3回 Q&A 平成17年度 平成16年度 平成15年度 市民講座アーカイブ
注目コンテンツ / SPECIAL
2024年度 要覧 SINETStream 事例紹介:トレーラー型動物施設 [徳島大学 バイオイノベーション研究所] ウェブサイト「軽井沢土曜懇話会アーカイブス」を公開 情報研シリーズ これからの「ソフトウェアづくり」との向き合い方 学術研究プラットフォーム紹介動画 教育機関DXシンポ 高等教育機関におけるセキュリティポリシー 情報・システム研究機構におけるLGBTQを尊重する基本理念 オープンサイエンスのためのデータ管理基盤ハンドブック 教育機関DXシンポ
アーカイブス コンピュータサイエンスパーク