Market-based Resource Allocation for Distributed Computing

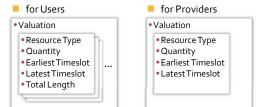
Ikki FUJIWARA⁺, Kento AIDA⁺⁺ and Isao ONO[§]

† The Graduate University for Advanced Studies (SOKENDAI)
 ‡ National Institute of Informatics
 § Tokyo Institute of Technology

Abstract

Market-based resource allocation is expected to be an effective mechanism to allocate resources in a cloud computing environment, where the resources are virtualized and delivered to users as services. In this paper we propose a market mechanism to efficiently allocate multiple computation/storage services among multiple participants. The proposed mechanism enables the users to (1) order a combination of arbitrary services with a co-allocation or a workflow manner, and (2) receive future/current services at the forward/spot market.

Overview


The Market Model

Assumptions

- The amount of a service can be measured in throughput
- (e.g. MIPS for a computation service or GB/h for a data processing service)
- A provider's resource can be divided into arbitrary fraction
- A task can be divided into sub-tasks and executed on multiple resources
 A task can be suspended, resumed and/or migrated during the runtime
- A task can be suspended, resumed and/or migrated du

Forward Market

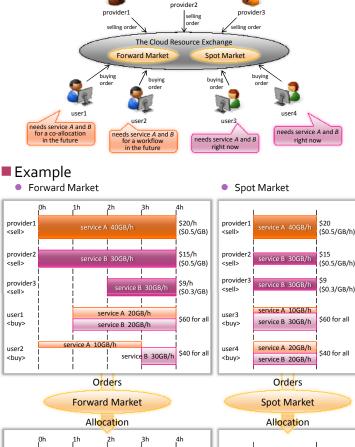
- ✓ Deals with advance reservations per pre-defined timeslots
 - Makes contracts periodically (clearinghouse auctions)
- Bidding Language
 - ✓ Allows users to combine arbitrary resources (allocated all or nothing)

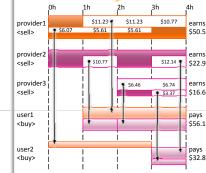
Allocation Scheme

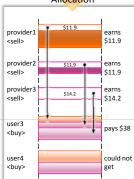
Maximizes total welfare = Σ(buyer's valuation – seller's valuation)
 Formulated as a mixed integer program

maximize			
$w = \sum_{j=1}^{ N } v_j u_j - \sum_{i=1}^{ N } \sum_{j=1}^{ M } \sum_{k=1}^{ G } \sum_{t=1}^{T} v_i y_{i,j,k,t}$		(1)	where
s.t.			$M = \{m_1, \dots, m_{ M }\}, m_i = \{v_i, S_i\}$: selling orders
$\sum_{k=1}^{ G } x_{j,k} - G u_j = 0$	$1 \le j \le N $	(2)	$N = \{n_1, \dots, n_{ N }\}, n_i = \{v_i, S_i\} : \text{buying orders}$
$\sum_{t=1}^{T} z_{j,k,t} - l_{j,k} x_{j,k} = 0$	$1 \le j \le N , 1 \le k \le G $	(3)	$G = \{g_1,, g_{ G }\}$: services
$\sum_{i=1}^{ N } y_{i,i,k,t} \le 1$	$1\leq i\leq M , 1\leq k\leq G , 1\leq t\leq T$	(4)	$1 \le t \le T$: timeslots
$q_{i,k} z_{i,k,t} - \sum_{i=1}^{ M } q_{i,k} y_{i,i,k,t}$	$t = 0$ $1 \le j \le N , 1 \le k \le G , 1 \le t \le T$	(5)	v_i and v_i : valuation
$(a_{j,k} - t)z_{j,k,t} \le 0$	$1\leq j\leq N , 1\leq k\leq G , 1\leq t\leq T$	(6)	u_i : the number of services with $q_{i,k} > 0$
$(t - d_{j,k})z_{j,k,t} \le 0$	$1\leq j\leq N , 1\leq k\leq G , 1\leq t\leq T$	(7)	$q_{i,k}$: quantity of service g_k
$(a_{i,k} - t) \sum_{j=1}^{ N } y_{i,j,k,t} \le$	$1 \le i \le M , 1 \le k \le G , 1 \le t \le T$	(8)	a _{j,k} : arrival time
$(t - d_{i,k}) \sum_{j=1}^{ N } y_{i,j,k,t} \le$	$1 \le i \le M , 1 \le k \le G , 1 \le t \le T$	(9)	$d_{j,k}$: deadline for buying order
$u_i \in \{0,1\}$	$1 \le j \le N $	(10)	$l_{j,k}$: total length
$x_{j,k} \in \{0,1\}$	$1 \le j \le N , 1 \le k \le G $	(11)	$e_{j,k}$: timeslot for selling order
$z_{j,k,t} \in \{0,1\}$	$1 \le j \le N , 1 \le k \le G , 1 \le t \le T$	(13)	$S_j = \{(g_k, q_{j,k}, a_{j,k}, d_{j,k}, l_{j,k}) 1 \le k \le G \}$: a buying order
$0 \le v_{i+1} \le 1$	$1 \le i \le M , 1 \le i \le N , 1 \le k \le G , 1 \le t \le T$	(14)	$S_i = (a_k, a_{i,k}, e_{i,k})$; $1 \le k \le G $; a selling order

Pricing Scheme


- ✓ Calculates the price which the participants actually pays/earns
- K-Pricing: Price = (buyer's valuation + seller's valuation) / 2


Spot Market


- Deals with immediate reservation up to the next timeslot begins
- Makes contracts continuously (continuous auction)
- Bidding language, allocation scheme and pricing scheme are similar to the forward market except that they have only one timeslot

Simulator

- ✓ Consists of a centralized exchange and autonomous agents
- Markets
 - Constructed based on MACE [1]
 - Uses CPLEX or lp_solve as backend solver
- Agents
 - Developed to be compatible with U-Mart [2]
 - Can be either software or real human

Conclusions & Future Work

- We proposed a market mechanism to allocate resources in a cloud computing environment
- Experiment shows that the market mechanism works properly
- We anticipate that the forward price will serve as a forecast of the spot price; intelligent agents will autonomously avoid the high-priced period which means a tight supply-demand situation
- ✓ We are going to investigate the market behavior and evaluate the performance of the proposed mechanism

References

[2] B. Schnizler, D. Neumann, D. Veit and C. Weinhardt, "Trading grid services – a multi-attribute combinatorial approach," European Journal of Operational Research, Volume 187, Issue 3, pp. 943-961, 2008.
 [2] H. Sato, Y. Koyama, K. Kurumatani, Y. Shiozawa and H. Deguchi, "U-Mart: A Test Bed for Interdisciplinary Research in Agent Based Artificial Market," in Evolutionary Controversies in Economics, pp. 179-190, 2001