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Non-intrusive respiratory and heart rates
estimation using Microsoft Kinect™

Motivation: Non—intrusive bio—signal estimation via RGB
cameras
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Example application of respiratory
rate estimation: Sleep monitoring

Solution: Record depth video
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detect obstructive / central
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ample % = (3 minutes out of 8-hour sleeping data)
" 4~class classification: central apnea; obstructive/mixed
apnea; normal breathing.

Sleep monitoring with Kinect™ Audio

d When the captured depth video is obstructed, one
could still use the audio signal to detect sleep events.

d Audio features can be extracted using, e.g., non-
negative matrix factorization.
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