Challenges for Constraint Optimization in Al Dealing with Dynamical Changes and Multiple Objectives Maxime Clement, Emir Demirović, Théo Le Calvar, Tenda Okimoto, Katsumi Inoue

What is Optimization ?

Optimization is the search for the *best* solution of a problem.

- ► In Mathematics, find the parameters that maximize/minimize a function.
- In games (checkers, chess, go, ...), find a strategy to maximize winning chances.
 In logistics, find the fastest way to deliver products to clients.

Constraint Optimization

- Represent problems with variables and constraints.
- The goal is to find an assignment of values to the variables that optimizes the constraints.
- Can model many Artificial Intelligence problems.

• • • •

- Simple graph representation.
- Easy to distribute between agents or processors.

Sensors (variables) can track different targets (values). Different configurations offer different quality of observation (rewards).

Information about rewards are represented using constraints:

S1	S2	S3	Reward	S2	S3	Reward	
T1	T1	T1	17	T1	T1	0	
T1	T1	T2	15	T1	T2	10	
T1	T2	T1	15	T2	T1	10	
T1	T 2	T2	10	T 2	T 2	15	
Outine ly way way of							

Optimal reward = 25

Dynamic Problems

Multi-Objective Optimization

Ideal case, perfect knowledge of the future.

Worst case, no knowledge of the future.

Two complementary approaches to dynamic problems: • Reactive: adapt once the changes happened.

Proactive: prepare before the changes happen.

Team Formation

- Creating a team of people with complementary skills.
- Rescue teams in case of earthquake.
- Experts to build a big building.

Optimize several objectives instead

Sensor Network

of one.

- Solutions can be incomparable.
- ► $(5,7) \succ (2,4)$ ► $(5,7) \not\succ (6,6)$ ► $(5,7) \not\prec (6,6)$
- Incomparable solutions make the Pareto Front.

Trade-off selection

- ► How to choose a solution ?
- Multiple methods :
 - ► Utilitarian : focus on the total sum.
 - ► Egalitarian : fair repartition
- Weighted-sum : degree of preference per objective
- Examples :
 - (10, 1, 1) maximize the sum
- ► (4, 3, 4) focus on a fair distribution

- Robust: team is still good if someone leaves.
 - Important for sensitive applications.
 - Higher initial investment.
- ▶ Recoverable: team can be easily fixed if someone leaves.
- ► Flexible to changes.
- Depend on the evolution of the cost of the agents.

Team that can speak English and Japanese

Timetabling and Scheduling

- Many fields require complex schedules or timetables.
- Schools (University, High-School),
- Transportation (Bus, Airplanes), Delivery (Trucks, Drones), ...
- Complex problems with many constraints and objectives.

06:50 Cape Town	BA058	Delayed
07:20 Johannesburg	BA054	Delayed
07:20 Buenos Aires	BA246	Delayed
07:20 via: Sao Paulo		
07:30 Mumbai	BA138	Delayed
12:15 Manchester	BA1391	Cancelled
12:35 Paris CdG	BA309	Cancelled