Challenges for Constraint Optimization in AI
Dealing with Dynamical Changes and Multiple Objectives
Maxime Clement, Emir Demirović, Théo Le Calvar, Tenda Okimoto, Katsumi Inoue

What is Optimization?
Optimization is the search for the best solution of a problem.
- In Mathematics, find the parameters that maximize/minimize a function.
- In games (checkers, chess, go, …), find a strategy to maximize winning chances.
- In logistics, find the fastest way to deliver products to clients.
- …
Helps us get the most out of some limited resources (time, money, energy, …).

Constraint Optimization
- Represent problems with variables and constraints.
- The goal is to find an assignment of values to the variables that optimizes the constraints.
- Can model many Artificial Intelligence problems.
- Simple graph representation.
- Easy to distribute between agents or processors.

Dynamic Problems
Ideal case, perfect knowledge of the future.
- Reactive: adapt once the changes happened.
- Proactive: prepare before the changes happen.
Worst case, no knowledge of the future.

Multi-Objective Optimization
- Optimize several objectives instead of one.
- Solutions can be incomparable.
- Solutions cannot be compared.
- Solutions (5, 7) ≻ (2, 4)
- Solutions (5, 7) ≻ (6, 6)
- Solutions (5, 7) ≻ (6, 6)
- Incomparable solutions make the Pareto Front.

Trade-off selection
- How to choose a solution?
- Multiple methods:
 - Utilitarian: focus on the total sum.
 - Egalitarian: fair repartition
 - Weighted-sum: degree of preference per objective
- Examples:
 - (10, 1, 1) maximize the sum
 - (4, 3, 4) focus on a fair distribution

Team Formation
- Creating a team of people with complementary skills.
- Rescue teams in case of earthquake.
- Experts to build a big building.
- Robust: team is still good if someone leaves.
- Important for sensitive applications.
- Higher initial investment.
- Recoverable: team can be easily fixed if someone leaves.
- Flexible to changes.
- Depend on the evolution of the cost of the agents.

Team that can speak English and Japanese

Optimal reward = 25

Sensor Network
Sensors (variables) can track different targets (values).
Different configurations offer different quality of observation (rewards).
Information about rewards are represented using constraints:

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Reward</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>17</td>
</tr>
<tr>
<td>S2</td>
<td>15</td>
</tr>
<tr>
<td>S3</td>
<td>15</td>
</tr>
</tbody>
</table>

Optimal reward = 25

Timetabling and Scheduling
- Many fields require complex schedules or timetables.
- Schools (University, High School), Transportation (Bus, Airplanes), Delivery (Trucks, Drones), …
- Complex problems with many constraints and objectives.