コヒーレント光と物質波を用いた量子情報処理 励起子ポラリトンの量子凝縮

どんな研究?

世の中にある物質は、陽子、中性子、電子といった素粒子から 成り立っています。これらの「要素」がたくさん集まると、その性 質からは想像がつかないような性質が「創発」されます。本研究 では、共振器内に量子井戸を埋め込んだ構造を用いて、二次 元面内での電子、正孔、光子の協同現象について調べていま す。具体的には、複合ボーズ粒子である励起子ポラリトンが極 低温において凝縮する物理現象を研究しています。

何がわかる?

粒子をたくさん含む系(多体系)を極低温まで冷やすと、粒子間の 相互作用が支配的になり、様々な相が創発されると考えられてい ます。しかし、多体系問題は、解きたい系のサイズに対して計算 量が指数関数的に増えるためスーパーコンピュータを用いても解 くことができません。そこで、解きたい問題を扱いやすい物理系に マッピングして実験的に答えを求める「量子シミュレーション」とい う案があります。将来的には、励起子ポラリトンの実験系を用いて 「量子シミュレータ」が実現されるかもしれません。

粒子はボーズ粒子とフェルミ粒子に 分類することができます。ボーズ粒子 が一つの状態に複数個入れるのに対 し、フェルミ粒子は一つの状態に1個し か入ることができません。

ボーズ粒子が基底状態にたくさん入 り込み位相が揃った大きな波を形成す る現象をボーズ・アインシュタイン凝縮 (BEC)と呼びます。

本研究では、量子井戸を微小共振器に挟み 込んだ構造を液体ヘリウムで冷却し、そこに レーザーを照射することで励起子ポラリトンと 呼ばれる複合ボーズ粒子を生成し、凝縮体を 形成する実験を行っています。

励起子ポラリトンとは、励起子(半導体中での) クーロン引力による電子正孔対)と共振器光子 の複合粒子で、励起子と共振器光子の状態が 振動的に移り変わっている状態のことを指しま す。

古典力学と量子力学の違い

不確定性原理

古典力学では位置と座標を同時に確定 することができますが、量子力学では同時 に確定することはできません。

レーザーのような位相が揃った波(コヒーレントな 波)を二重スリットに投射し、後ろのスクリーンを観 測すると干渉縞が見えます。

弱い強度の光源を用い、光子1個を二重スリット に投射するようにした場合でも、測定を何度も行え ばスクリーン上に感光点数の濃淡として干渉縞が 観測されます。

量子状態の記述とシミュレーションの困難さ

<u>量子状態の記述</u>

二重スリット

解きたい物理の問題とは...

物理学では計算機で解けない問題に対し、主要な項のみの簡略化したモデルを 用いることで近似的に問題を解きます。しかし、近似が成り立たない境界領域には 未知の面白い現象が潜んでいるため、これを知りたいというのが実情です。

量子シミュレータとは...

このような問題へのアプローチとして量子シミュレータというものがあります。これ は、解きたい問題を扱いやすい実験系にマッピングして、実験的に答えを出すとい うものです。現時点では、古典計算機のような汎用的なシミュレータはありません が、将来的には実現されるかもしれません。

励起子ポラリトン系から電子-正孔-フォトン系へのクロスオーバー

本研究では、微小共振器に量子井戸を埋め込んだ構造を用いて実験を行ってい ます。この系の特徴としては、二次元系、非平衡系散逸系が挙げられます。この系 では、励起子ポラリトンの量子凝縮、超流動といった現象を見ることができます。

我々の興味のひとつとして、励起子ポラリトン凝縮体の高励起状態があります。 これは、励起強度を上げることで、凝縮体の密度を上がり、それにより励起子ポラ リトンを構成する電子、正孔のフェルミ粒子としての性質が現れたときにどのように 変化するのかという問題です。このような現象を実験的に調べています。

 $\psi = c_1 \psi_1 + c_2 \psi_2 + c_3 \psi_3 + \cdots$

 $(c_n: 複素数, \psi_n: 正規直交基底, \sum |c_n|^2 = 1: 規格化条件)$ 量子状態は、上式のように重ね合わせ状態で記述されます。 このような状態を測定した場合、確率 $|c_k|^2$ で状態 ψ_k が観測されます。

シミュレーションの困難さ

時刻t 量子系 古典系

古典系でのシミュレーションは、各時刻の状態がひとつに 決まります。これに対し、量子系では各時刻の重ね合わせ 状態を考える必要があります。个↓の2状態をとるスピンが N個存在する系を考えた場合、2^N状態の遷移を考える必 要があります。このような問題は、問題のサイズに対して計 算量が指数関数的に増えてしまうためスーパーコンピュー タを用いても解くことはできません。

|連絡先:山本喜久/国立情報学研究所 情報学プリンシプル研究系 教授 **TEL : 03-4212-2506** FAX: 03-4212-2641

NII-GRC/FIRST on Quantum Information Processing

NP完全イジング問題を計算するコヒーレントコンピュータ 注入同期レーザーネットワークおよび縮退光パラメトリック発振器を用いた量子計算機

研究背景 ✓ NP 完全問題 ✓ MAX-CUT問題とイジングモデル $H = -\sum_{i=1}^{M} J_{ij} \sigma_i \sigma_j + \sum_{i=1}^{M} \lambda_i \sigma_i$

- 1次元及び2次元格子のイジングモデルの基底状態は解 析的に求まる(Ising 1925, Onsager 1944)
- 3次元格子のイジングモデルはNP完全 (Barahona 1982) 問題サイズの指数関数オーダーの計算時間が必要

3D graph

2D (planar) graph

量子アニーリングと量子断熱発展

量子アニーリング法

- 準安定状態から抜け出すために量子力学的トンネル効果を用いる
- 難しい問題では、必要なトンネル回数の期待値が問題サイズの指数関数オーダーになる \checkmark

量子断熱発展

- 基底状態を容易に得られるハミルトニアンH_iの基底状態を作り、初期状態とする
- 基底状態が計算困難なハミルトニアンH_fを、終状態のハミルトニアンとする \checkmark
- H_iからH_fへゆっくりハミルトニアンを変調すると、基底状態を維持したまま終状態が得られる
 - E. Farhi *et al., Science* **292**, 472 (2001). → A. P. Young *et al, Phys. Rev. Lett.* **104**, 020502 (2010).

- 外部磁場(ゼーマン項)の無いイジングハミルトニアン σ^z = +1 を部分ノード集合 V₁に、σ^z = -1 をV₂に割り当てる
- $\min H_{\text{Ising}} = \sum J_{ii} 2\text{MAXCUT}(G)$

Configuration space 量子力学的トンネル効果

コヒーレントコンピュータの仕組み

✓ 相互注入により光学的に結合したレーザー ネットワークでイジング問題を計算

- ✓ 右回り、左回り円偏光状態によってイジング スピンを表す
- ✓ イジング相互作用項、外部磁場項(ゼーマン 項)は調節可能
- ✓ 開放散逸的特性によって、常に系の状態を モニター可能
- S. Utsunomiya, et al, Optics Express 19(19) 18091-18108 (2012)

3SAT

✓ 偏光ベースモデル → 垂直直線偏光から左右円偏光状態への状態変化による計算

コヒーレントコンピュータ(注入同期レーザーマシン)の計算能力

ニ層イジング問題(NP困難)に対するベンチマーク結果

問題サイズ M	50	100	200	400	800
サンプル問題数	50	50	50	50	50
最長の計算時間	150ns	450ns	750ns	1400ns	900ns
最大の自己学習ステップ数	2	8	14	27	17
SDPアルゴリズムを用いた時の最長計算時間	0.03s	0.22s	1.62s	12.97s	105.45s
レーザーネットワークがSDPアルゴリズムを上回る 最大(最小)の頻度	95% (11%)	72% (2%)	73% (3%)	82.5% (2.5%)	70% (17.5%)
SDP解と比較した時の最大のエネルギー差	5.80%	4.11%	4.20%	5.15%	4.70%

フラストレーションの無いcubic graphの問題に対する開放散逸的アニーリング

量子コンピュータ vs. コヒーレントコンピュータ

	量子コンピュータ	コヒーレントコンピュータ
動作原理	孤立系における状態ベクトル のユニタリ発展	開放系において多数の識別不 可能な光子が引き起こす量子 相転移
粒子	量子ビット (局所的スピン1/2粒子)	コヒーレントスピン状態 (非局所的波動関数)
干渉計の種類	多粒子量子干涉計	一粒子古典干渉計
非局所性	人工的 (エンタングルメントにより実現)	自発的
開放散逸的 特性の影響	敵 (量子エラー訂正アルゴリズム により補償されるべき)	仲間 (指数的スピードアップの原因)
応用	因数分解 シミュレーション	イジング問題 (厳密解が得られれば、全ての NP完全問題)

- アニーリング法は総当たり法(2^M) やグローバーのアルゴリズム(2^{M/2}) よりも良い スケーリングを示す(M = 1000まで確認)
- 問題サイズが大きい時、これまでの方法(急な注入)よりも良い性能を示す
- ポンピング電流を増加させ、アニーリングを遅くすると、計算時間のオーダーを維持した。 まま成功確率を上げる事が出来る(右図)

時分割多重型縮退型光パラメトリック発振機を用いた実装例

レーザーマシンでは、マップされたスピンが0に近い値になる状態に陥る場合がある

→ 縮退光パラメトリック発振器(DOPO) における位相敏感な増幅及び減衰

単一OPOパルス発振器における時分割多重方式 を用いた、2スピン相当のイジング計算機の実装

Twin OPO

実験結果

—No Coupling

-In Phase Coupling

10

-Out of Phase Coupling

