Multi-Step k-Nearest Neighbor Search Using Intrinsic Dimension

Michael E. HOULE¹

¹ National Institute of Informatics, Japan

Xiguo MA²

Michael NETT^{1,3}

Vincent ORIA²

² New Jersey Institute of Technology, USA

³ The University of Tokyo, Japan

ΜοτινατιοΝ

Most existing solutions for similarity search fail in handling queries with respect to highdimensional or adaptable distance functions. For such situations, researchers have proposed multi-step search approaches consisting of two stages: filtering and refinement. The filtering stage of the state-of-the-art multi-step search algorithm of Seidl and Kriegel is known to examine the minimum number of candidates necessary to guarantee a correct query result; however, the number of examined candidates may be unacceptably large for some applications. We propose a multi-step search heuristic (MAET) that utilizes a measure of intrinsic dimension, the generalized expansion dimension, as the basis of an early termination condition.

GENERALIZED EXPANSION DIMENSION

• Let $B(q, r_1)$ and $B(q, r_2)$ be two co-centric balls with radii $0 < r_1 < r_2$, each containing $0 < k_1 < k_2$ points from *S*. The *generalized expansion dimension* with respect to those balls is defined as

 $\mathsf{GED}(B(q, r_1), B(q, r_2)) = \frac{\log k_2 - \log k_1}{\log r_2 - \log r_1}.$

• We define the *inner ball set* relative to a point $q \in S$ and a neighborhood size $k \ge 2$ as

ALGORITHM MAET+

- Compared to MAET, the only change made in MAET+ is that observed distance values are used to dynamically estimate the lower-bounding ratio λ.
- After each candidate v is retrieved, the ratio of d(q, v) over d'(q, v) is computed, and the smallest ratio encountered so far is used as the estimate of λ.

Seidl and Kriegel's Algorithm

Find *k*-NN of query *q* with respect to a target distance function *d*, given a lower-bounding distance function d':

- Sequentially scan the neighborhoods of *q* with respect to *d'* to retrieve the candidates.
- From the candidate set, the *k*-NN of *q* with respect to *d* are stored as tentative query result, and the *k*-th smallest target distance (d_{max}) is maintained. If the size of the candidate set is smaller than *k*, keep the value of d_{max} being infinity.
- The algorithm terminates when the value of d_{\max} is no greater than the largest lower-bounding distance value encountered so far.

 $\mathcal{B}(q,k) = \{B(q,\delta_j) \mid j \leq k-1, \delta_j > 0\} \setminus \{B(q,\delta_k)\}.$

Here δ_k denotes the distance from q to its k-nearest neighbor.

 The maximum generalized expansion dimension relative to a point *q* and a neighborhood size
 k ≥ 2 is defined as follows:

 $\mathsf{MGED}(q,k) = \max\{\mathsf{GED}(B,B(q,\delta_k)) \mid B \in \mathcal{B}(q,k)\}.$

- Allows for the estimation of intrinsic dimension in the vicinity of q.
- Can be utilized to dynamically guide decisions made in search algorithms.

ALGORITHM MAET

- Sequentially scan the neighborhoods of q with respect to d' to retrieve the candidates.
- From the candidate set, the k-NN of q with respect to d are stored in P as tentative query result, and the largest lower-bounding distance is maintained as β'.
- From the set P, find the number of points (k_1) that

Experiments

- Three real data sets are used for the experiments: Forest Cover Type (FCT), Amsterdam Library of Object Images (ALOI) and MNIST.
- Lower-bounding distance functions are generated by projecting the original feature space of a data set to new feature spaces with reduced dimensions using the Karhunen-Loève Transform.
- MAET+ is consistently competitive with MAET.
 For the FCT data set, the performances of MAET+ and SK are similar. However, for the other two data sets, MAET+ shows much improvement over SK while sacrificing little in accuracy (less than 5%).
- The performance variance over three data sets can be explained through the differences in their MGED values.

 At termination, the value of d_{max} will have been decreased to the exact k-th smallest distance from q to all the objects in S, ensuring the optimality of the algorithm.

JUSTIFICATION OF HEURISTIC APPROACH

Although Seidl and Kriegel's Algorithm (SK) examines the minimal number of candidates required in order to guarantee a correct query result, the total number of examined objects can be unacceptably large. The following figure shows distance values encountered while processing a typical 10-NN query on a real data set. In this example, the SK algorithm examines 64 candidates, although the correct neighbor set is available once the 17th candidate has been examined.

連絡先:

- have target distances to *q* less than $\lambda\beta'$, where $\lambda \ge 1$ is the lower-bounding ratio.
- From the set *P*, compute $r = \delta_k$ and $r_1 = \delta_{k_1}$.
- The algorithm terminates when $k_1 = k$ or $k_1(r/r_1)^t < k+1$, where *t* is a termination parameter controlling the performance trade-off between accuracy and computational cost.

For a particular query q, the correctness of the algorithm can be guaranteed whenever
 t ≥ MGED(q, k + 1).

 Termination parameter t can be chosen through sampling of potential queries for Algorithm MAET, in order to correctly answer a desired proportion of potential queries with high probability.

⁽c) MNIST

