Motivation

Most existing solutions for similarity search fail in handling queries with respect to high-dimensional or adaptable distance functions. For such situations, researchers have proposed multi-step search approaches consisting of two stages: filtering and refinement. The filtering stage of the state-of-the-art multi-step search algorithm of Seidl and Kriegel is known to examine the minimum number of candidates necessary to guarantee a correct query result; however, the number of examined candidates may be unacceptably large for some applications. We propose a multi-step search heuristic (MAET) that utilizes a measure of intrinsic dimension, the generalized expansion dimension, as the basis of an early termination condition.

Seidl and Kriegel’s Algorithm

Find k-NN of query \(q \) with respect to a target distance function \(d \), given a lower-bounding distance function \(d' \):

- Sequentially scan the neighborhoods of \(q \) with respect to \(d' \) to retrieve the candidates.
- From the candidate set, the k-NN of \(q \) with respect to \(d \) are stored as tentative query result, and the k-th smallest target distance \(d_{\text{max}} \) is maintained. If the size of the candidate set is smaller than \(k \), keep the value of \(d_{\text{max}} \) being infinity.
- The algorithm terminates when the value of \(d_{\text{max}} \) is no greater than the largest lower-bounding distance value encountered so far.
- At termination, the value of \(d_{\text{max}} \) will have been decreased to the exact k-th smallest distance from \(q \) to all the objects in \(S \), ensuring the optimality of the algorithm.

Justification of Heuristic Approach

Although Seidl and Kriegel’s Algorithm (SK) examines the minimal number of candidates required in order to guarantee a correct query result, the total number of examined objects can be unacceptably large. The following figure shows distance values encountered while processing a typical k-NN query on a real data set. In this example, the SK algorithm examines 64 candidates, although the correct neighbor set is available once the 17th candidate has been examined.

Generalized Expansion Dimension

- Let \(B(q, r_1) \) and \(B(q, r_2) \) be two co-centric balls with radii \(0 < r_1 < r_2 \), each containing \(0 < k_1 < k_2 \) points from \(S \). The generalized expansion dimension with respect to those balls is defined as:

\[
\text{GED}(B(q, r_1), B(q, r_2)) = \frac{\log k_2 - \log k_1}{\log r_2 - \log r_1}.
\]

We define the inner ball set relative to a point \(q \in S \) and a neighborhood size \(k \geq 2 \) as:

\[
B(q, k) = \{ B(q, \delta_j) | j \leq k-1, \delta_j > 0 \} \setminus B(q, \delta_k).
\]

Here \(\delta_k \) denotes the distance from \(q \) to its \(k \)-nearest neighbor.

- The maximum generalized expansion dimension relative to a point \(q \) and a neighborhood size \(k \geq 2 \) is defined as follows:

\[
\text{MGED}(q, k) = \max\{ \text{GED}(B(q, \delta_k)) | B \in B(q, k) \}.
\]

- Allows for the estimation of intrinsic dimension in the vicinity of \(q \).
- Can be utilized to dynamically guide decisions made in search algorithms.

Algorithm MAET

- Sequentially scan the neighborhoods of \(q \) with respect to \(d' \) to retrieve the candidates.
- From the candidate set, the k-NN of \(q \) with respect to \(d \) are stored in \(P \) as tentative query result, and the largest lower-bounding distance is maintained as \(\beta' \).
- From the set \(P \), find the number of points \((k_1) \) that have target distances to \(q \) less than \(\lambda \beta' \), where \(\lambda > 1 \) is the lower-bounding ratio.
- From the set \(P \), compute \(r = \delta_1 \) and \(r_1 = \delta_1 \).
- The algorithm terminates when \(k_1 = k \) or \(p_{(r/r')} > E + 1 \), where \(t \) is a termination parameter controlling the performance trade-off between accuracy and computational cost.

For a particular query \(q \), the correctness of the algorithm can be guaranteed whenever \(t \geq \text{MGED}(q, k+1) \).

- Termination parameter \(t \) can be chosen through sampling of potential queries for Algorithm MAET, in order to correctly answer a desired proportion of potential queries with high probability.