Automatic Parallelization of Graph Queries
with MapReduce

Tao Zan' YuLiu' Zhenjiang Hu’
'The Graduate University for Advanced Studies “National Institute of Informatics

¢ Graphs in real world can be quite huge with
millions Of nodes and edges. Twitter Social Network, 20K nodes 250K edges

We aim at a new way of processing graph
queries with MapReduce by translating UnQL
query to structural recursion, then parallelizing
structural recursion. When achieving this goal,
thus can we use UnQL for large scale data

@)cessing by MapReduce. /

¢ How to parallelize graph
queries efficiently isan
important issue.

K Image Copyright UMBC eBiquity Research Group /

’ UnQL is a language that was designed for querying ‘ MapReduce was introduced for p]f'OCESSil'lg huge
unstructured data. ey datasets on clusters of computers.
Ca> e
An example: ,—{ e
Q1 = select t @D O, SE e

N
4

where *.a.tin $db °/

¢ @
¢ Methods L
e Properties for Parallelization e Parallel Computation with MapReduce
All join-free queries can be highly parallelized in MapReduce C Graph Data)
based on three decomposable properties for structural recursion.
Preprocessing:
rec(e)({$l : $g}) = e @ rec(e)($g) Bulk computing
rec(e)($g1 @ $g2) = rec(e)($g1) @ rec(e)($g2) Local e-edge elimination
rec(e)(cycle($g)) = cycle(rec(e)($g)) ,
A graph can be expressed as: Cteratlve-Map: : -
=& @cycle(g] ® g2 ® ... ®) Edge reversing j Iterate over
g X . ycle(g 4 - ©8gn _ ¥ the results
By induction: lterative-Reduce: W
rec(e)(g) 1. Eliminate g-edges
= rec(e) (&x) @ rec(e)(cycle(gl ® g2 ® ... ® gn)) 2. Remove unreachable paﬂ/
= rec(e)(&x) @ cycle(rec(e)(gl1 ® g2 ® ... ® gn)) Y
= rec(e)(8&x) @ cycle(rec(e)(gl) ® rec(e)(g2) ® ... ® rec(e)(gn)) (Result Graph)
¢ Results Graph Queries on Hadoop
We evaluated in Hadoop cluster constructed with 8 virtual machines
(VM). Each VM has 3 GB memory and one single-core 2.8 GHz CPU. Queries | 143 million 10+30 million 20+60 million
Q1 = select {a : t} where *.a.t in $db Qu igg sec ;‘éi E““C iggé S‘*c
Q2 = select {a : {select b where *.b.t2 in $t1 }} where *.a.t1 in $db gj 2:.)1 :::E m’_‘,.i; 1683 :z
Q3 = select {a : {select {b : {select c where c.t3 in $t2 }} where b.t2 in : : :
$t1)} where *.a.t1 in $db (x+y)million : a graph with x million vertexes

and y million edges

¢ Future work

e Parallelization of graph query on cyclic graphs.
e A combinational approach for parallelizing graph query UnQL.

N" &S #AIRSI (Zhenjiang HU) / BN EBEHAER P—F 7/ FvRIEHRR Hig

TEL : 03-4212-2530 FAX : 03-4212-2533 Email : hu@nii.ac.jp

	Slide 1

