Vortices in quantum fluids Berezinskii-KCosterlitz--Thouless (BKT) superfluid

Classical vortices Quantum vortices
(e.g. whirlpool, tornado) (e.g. Bose-Einstein condensates)

Pairs of oppositely circulating vortices with energy proportional

to separation
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Lower energy than interacting single vortices

Usually form in 2D systems by thermal fluctuations

P . . Represent microscopic nature of the BKT phase transition -
When the liquid rotates, Large vortices are energetically Pr |Croscop! . P L

one giant vortex forms unstable - many small vortices form
The form a triangular lattice or crystal

phase distortions confined to vortex pairs

Vortex velocity profile:
vortex-antivortex pair less destructive than co-rotating vortices
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Therefore in a quantum liquid:

These many small vortices interact and act like particles
. . . . . m/ps m/ps m/ps
-= Vortex States Of matter - nOt pOSSIbIe In CIaSSICal IIqUIdS single vortex ' % 2x co-rotating vortices Hi{. vortex-antivortex pair Mi{.

[U—

Our work concerns the theory and experiments of creating ;
ensembles of quantized vortices in polariton condensates

towards new states of quantum vortex matter.

Superfluid density n./n

N W ke Ot N 0 ©
=N W ke Ot O NN 00 ©

—20 =10 0 10 20 -20 -10 0 10 20
(em) (km)

Ensembles can most successfully be created by rotation or spontaneous excitation

Polariton condensate is strongly dissipative Observation of spontaneous vortex pairs

Single vortex-antivortex pair in an exciton-polariton condensate
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@ Resulting lower polaritons can g | o anti-vortex ‘ vortex 27
be generally treated as a dilute '
gas of very light repulsively I :> ~m— -
interacting bosons. olde

@ Low mass — high transition
temperature 0

o In-plane momentum is Rotation of the phase by 2 7 around a vortex, and by -2 7 around an anti-vortex
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@ Condensate forms by
stimulated scattering of
polaritons from a thermal

Phase distribution (Experiment) Interference pattern (Experiment)
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reservolr - reservoir plays a
strong role in condensate
dynamics
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Fractional Quantum 7H.all states

Under very rapid rotation the vortex number
becomes comparable to the polariton number

-> polaritons and vortices combine to form =3 -
a new composite fermion quasi-particle

-> a new state emerges with similar physicsto o ¢ o o gg88
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Anyonic statistics
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produces a trivial phase factor
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Q: How do {ou rotate a liquid at a \ and Yoshihi
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Rotating a polariton condensate

rate of 1011 times a second?
A: Stir the liguid with an optical vortex

Because light has no interactions, we can make any size
or number of vortices
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Experimental optical vortices - Laguerre-Gauss modes

Physically rotating laser beam at ~10!'Hz
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Simulation of resulting condensate vortex formation
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Intensity

@ Only Bose and Fermi statistics
permitted

e In 2D 6 is arbitrary - left and right
trajectories are not equivalent.
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Vortices in a polariton condensate YWhat does a polariton condensate contribute
Multiguantized vortices can be uniquely observed in polariton condensates to new states Of quantum vortex matter?

with a structure stabilized by the dissipative nature Vortices are unique in the polariton condensate than in other quantum liquids
* Multiquantized vortices can be stable

¥ * Abrikosov lattices can be formed - density and size easily controlled
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E, ~ /27mch_ In b Creating quatum vortex states of matter with polariton condensates:
m £ BKT superfluid phase:
- First experimental observation of vortex-antivortex pairs

- Possible to study of the onset of BKT phase as vortex number is increased

non-singular

Wiy il (a) Polariton condensates can

be very dissipative and form Fractional quantum Hall phase:

|T*--> | | | | | stable multiquantized vortices - Strong potential to observe and manipulate anyonic particles
- Adjustable mass and density parameters -> easier to observe
- Current experiments: rotation with an optical vortex
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