# 仮説を立てて考えてみよう

# Let's Hypothesize and Reason!

井上 克巳 Katsumi Inoue 宋 剛秀 Takehide Soh

山本 泰生

Yoshitaka Yamamoto ゴヴァン ブルニュ Gauvain Bourgne

# 何がわかる?

- Intelligent machines:
  - Thinking like human being.
- Automated discovery of scientific knowledge, in particular biological knowledge.

## どんな研究?

- Automated hypothesis-finding through deductively complete methods.
- Induction of causal laws in action theories, and applications to systems biology.
- Web-based ILP system.

### **Background**

# How Human Beings Think?



**Abduction** Hypothesizing and Hypothesis Reasoning Generation Deduction

The genius people are able to mix these three fundamental modes of reasoning.

# How Intelligent Machines Think?



Induction Abduction Deduction

Diagnosis , Design Characterization Discovery Verification

Combination of induction and abduction

One of the most powerful theoretical answers for the next generation of Intelligent Machine (Inoue 2001,2004)

### **Logic and Computation**

#### Abduction and Induction: Logic

#### Input:

**B**: background theory E: examples / observations

#### **Output:**

SOLAR

**H**: hypothesis satisfying that

- 1.  $B \land H \models E$
- **2.**  $B \wedge H$  is consistent

(Nabeshima, Iwanuma and Inoue 2003)

(Nabeshima, Iwanuma, Inoue and Ray 2010)

 ${\it B}$ : full clausal theory,  ${\it E}$ : conjunction of literals

#### **Example:** graph completion problem - pathway finding Find an arc which enables a path from a to d.

#### Axioms:

node(X), node(Y),  $arc(X, Y) \rightarrow path(X, Y)$ .

 $node(X),\ node(Y),\ node(Z),\ arc(X,\ Y),\ path(Y,\ Z) \rightarrow path(X,\ Z).$ 

node(a). node(b). node(c). node(d). arc(a, b). arc(c, d).

Observation: path(a, d). Abducibles: arc(\_, \_).

SOLAR outputs four hypotheses.

arc(a, d), arc(a, c), arc(b, d), arc(b, c).

#### **Distributed Abduction**

#### Learner-Critic Protocol

(Bourgne, Maudet and Inoue 2010)

N agents  $a_0, ..., a_n$  each having his own knowledge  $(B_i, E_i)$ 

 $B = \bigcup_i B_i$ : full clausal theory,  $E = \bigcup_i E_i$ : conjunction of literals

**H**: conjunction of literals

#### Learner:

- 1. Compute local hypothesis (and context)
- 2. Interact with critics (propose)

#### **Critic:**

- 1. Consistency check (context computation)
- Explainabilty check (uncovered examples)
- 3. Admissibility check

# **IE for Induction**

**IE for Abduction** 

#### CF-induction

(Inoue 2004: Yamamoto, Ray and Inoue 2007)  $\boldsymbol{B}$ : full clausal theory,  $\boldsymbol{E}$ : full clausal theory

H: full clausal theory

 $oldsymbol{H}$ : conjunction of literals

# 推論による仮説発見とシステム生物学への応用 Inference-based Hypothesis-Finding for Systems Biology

Katsumi Inoue Takehide Soh Andrei Doncescu (LAAS-CNRS)

Gauvain Bourgne Yoshitaka Yamamoto Taisuke Sato (Tokyo Inst. Tech)

# 何がわかる?

- Discover hidden rules in systems biology.
- Explain the relationships between causes and effects from genotype to phenotype.
- Build generic models in biology, Saccharomyces Cerevisiae and E. coli.

# どんな研究?

- Development of a framework for knowledge discovery from biological databases using logicbased AI.
- Clarification of the principles of hypothesis formation and hypothesis evaluation and their efficient implementation.
- Bridge between biologists and computer scientists

# Closed-loop Architecture for Biological Inference

#### Research Goals

Modeling, explaining and predicting metabolic pathways

#### Target Problems

- 1. Predicting the inhibitory effect of toxins including hydrazine with qualitative modeling
- 2. Explaining dynamic behavior of E. coli pathways with kinetic modelina

#### <u>Approaches</u>

- Hypothesis generation by SOLAR
- Hypothesis evaluation by an EM algorithm on BDDs
- Modeling with discretization and the Michaelis-Menten equation





## Identifying Necessary Reactions in Large Metabolic Pathways

#### Target Problem

· Identifying necessary reactions in metabolic pathways.

#### **Approaches**

- Translating reaction laws to propositional formulas.
- Computing minimal models of the translated formulas.

#### Example.

Source condition  $m_{x1,0}$ ,  $\neg m_{x2,0}$ Target condition m<sub>x2.2</sub>





Reaction Database (EcoCyc)



Source and Target Metabolites

(Propositional Formulas)



**Necessary** Reactions

Pathway: A whole metabolic pathway of E. coli consisting of 1777 reactions and 1073 metabolites (from EcoCyc version 13.6) Initials: PROTON, WATER, ATP, ADP, |pi| and NAD. Source: GLC-6-P. Target: PYRUVATE.