
Optimal Social Laws Mechanism Design References

Social Laws for Multi-Agent Systems: Logic and Games

Lecture 5: Social laws design as an
optimisation problem, and as amechanism

design problem

Thomas Ågotnes1

1Department of Information Science and Media Studies
University of Bergen, Norway

NII Tokyo 17 January 2012

Optimal Social Laws Mechanism Design References

Contents

1 Optimal Social Laws

2 Mechanism Design

3 References



Optimal Social Laws

• Let us consider the following natural aspects of social laws:

1. social laws have implementation costs 

2. the designer might have several objectives, with different priorities

• Finding a social law then becomes an optimisation problem 

• Issues: representation; computational complexity; practical solving

Monday, January 16, 12

Adding costs

• S is a finite, non-empty set of states;

• s0 ⇧ S is the initial state;

• R ⇤ S � S is a (total) transition relation;

• A = {1, . . . , n} is a set of agents;

• � : R ⌅ A labels each transition in R with an agent;

• c : R ⌅ R+ is a cost function; and

• ⇥ : S ⌅ 2� is a valuation function.

K = �S, s0, R, A,�, c,⇥⇥
s t

u

2

0

70

38

0

4

0

ready
sent

rec

Idea: the cost of removing the transition

Monday, January 16, 12



The value of social laws

• Assumption: the designer has a valuation function

v : K̂ � R+

K̂ = {K † � : � is a social law over K}

Monday, January 16, 12

The value of social laws

• Assumption: the designer has a valuation function

• The utility of implementing a social law:

u(�, K, v) = v(K † �)⌅ ⇤⇥ ⇧
benefit

�
�

(s,s�)⇥�

c(s, s�)

⌅ ⇤⇥ ⇧
cost

.

v : K̂ � R+

K̂ = {K † � : � is a social law over K}

Monday, January 16, 12



The optimal social law problem

u(�, K, v) = v(K † �)⌅ ⇤⇥ ⇧
benefit

�
�

(s,s�)⇥�

c(s, s�)

⌅ ⇤⇥ ⇧
cost

.

Monday, January 16, 12

The optimal social law problem

• The optimal social law problem: find:

��(K, v) = arg max
�⇥N(R)

u(�, K, v).

u(�, K, v) = v(K † �)⌅ ⇤⇥ ⇧
benefit

�
�

(s,s�)⇥�

c(s, s�)

⌅ ⇤⇥ ⇧
cost

.

Monday, January 16, 12



Compact representation of the valuation 
function

v : K̂ � R+

Monday, January 16, 12

Compact representation of the valuation 
function

• Explicit representation: typically exponential in the number of states

• Unrealistic; a more compact representations are needed

• We use weighted formulae, in the style of (e.g.) marginal contribution nets

v : K̂ � R+

Monday, January 16, 12



Compact representation of the valuation 
function

• Explicit representation: typically exponential in the number of states

• Unrealistic; a more compact representations are needed

• We use weighted formulae, in the style of (e.g.) marginal contribution nets

• A feature set is a set of CTL formula/value pairs

v : K̂ � R+

Monday, January 16, 12

Compact representation of the valuation 
function

• Explicit representation: typically exponential in the number of states

• Unrealistic; a more compact representations are needed

• We use weighted formulae, in the style of (e.g.) marginal contribution nets

• A feature set is a set of CTL formula/value pairs

v : K̂ � R+

F = {(�1, x1), . . . , (�k, xk)}

Monday, January 16, 12



Compact representation of the valuation 
function

• Explicit representation: typically exponential in the number of states

• Unrealistic; a more compact representations are needed

• We use weighted formulae, in the style of (e.g.) marginal contribution nets

• A feature set is a set of CTL formula/value pairs

v : K̂ � R+

F = {(�1, x1), . . . , (�k, xk)}

vF (K �) =
�

(�i,xi)⇥F,K�|=�i

xi

• Represents:

Monday, January 16, 12

Example

Property Benefit

�1 = E⇤(rec ⇥ E⇤ready) 110
�2 = A (rec� A⇤ready) 15
�3 = A A⇤ready 15
�4 = A A⇤sent 18
�5 = A (sent� A⇤rec) 10
�6 = A (ready � A⇤(sent ⇥ A⇤ready)) 23
�7 = A (A⇤(rec ⇥ A⇤ready)) 25

s t

u

2

0

70

38

0

4

0

ready
sent

rec

Monday, January 16, 12



Example

Property Benefit

�1 = E⇤(rec ⇥ E⇤ready) 110
�2 = A (rec� A⇤ready) 15
�3 = A A⇤ready 15
�4 = A A⇤sent 18
�5 = A (sent� A⇤rec) 10
�6 = A (ready � A⇤(sent ⇥ A⇤ready)) 23
�7 = A (A⇤(rec ⇥ A⇤ready)) 25

s t

u

2

0

70

38

0

4

0

ready
sent

rec

Monday, January 16, 12

Example

Property Benefit

�1 = E⇤(rec ⇥ E⇤ready) 110
�2 = A (rec� A⇤ready) 15
�3 = A A⇤ready 15
�4 = A A⇤sent 18
�5 = A (sent� A⇤rec) 10
�6 = A (ready � A⇤(sent ⇥ A⇤ready)) 23
�7 = A (A⇤(rec ⇥ A⇤ready)) 25

� = {(t, t), (t, s)}

s t

u

2

0

70

38

0

4

0

ready
sent

rec

Monday, January 16, 12



Example

Property Benefit

�1 = E⇤(rec ⇥ E⇤ready) 110
�2 = A (rec� A⇤ready) 15
�3 = A A⇤ready 15
�4 = A A⇤sent 18
�5 = A (sent� A⇤rec) 10
�6 = A (ready � A⇤(sent ⇥ A⇤ready)) 23
�7 = A (A⇤(rec ⇥ A⇤ready)) 25

� = {(t, t), (t, s)}

s t

u

2

0

70

38

0

4

0

ready
sent

rec

s t

u

2

0

70

38

0

4

0

ready
sent

rec

Monday, January 16, 12

Example

Property Benefit

�1 = E⇤(rec ⇥ E⇤ready) 110
�2 = A (rec� A⇤ready) 15
�3 = A A⇤ready 15
�4 = A A⇤sent 18
�5 = A (sent� A⇤rec) 10
�6 = A (ready � A⇤(sent ⇥ A⇤ready)) 23
�7 = A (A⇤(rec ⇥ A⇤ready)) 25

� = {(t, t), (t, s)}

Cost: 108

s t

u

2

0

70

38

0

4

0

ready
sent

rec

s t

u

2

0

70

38

0

4

0

ready
sent

rec

Monday, January 16, 12



Example

Property Benefit

�1 = E⇤(rec ⇥ E⇤ready) 110
�2 = A (rec� A⇤ready) 15
�3 = A A⇤ready 15
�4 = A A⇤sent 18
�5 = A (sent� A⇤rec) 10
�6 = A (ready � A⇤(sent ⇥ A⇤ready)) 23
�7 = A (A⇤(rec ⇥ A⇤ready)) 25

� = {(t, t), (t, s)}

Cost: 108

s t

u

2

0

70

38

0

4

0

ready
sent

rec

s t

u

2

0

70

38

0

4

0

ready
sent

rec

K † � |= ⇥1

K † � |= ⇥5

Benefit: 120

Monday, January 16, 12

Example

Property Benefit

�1 = E⇤(rec ⇥ E⇤ready) 110
�2 = A (rec� A⇤ready) 15
�3 = A A⇤ready 15
�4 = A A⇤sent 18
�5 = A (sent� A⇤rec) 10
�6 = A (ready � A⇤(sent ⇥ A⇤ready)) 23
�7 = A (A⇤(rec ⇥ A⇤ready)) 25

� = {(t, t), (t, s)}

Cost: 108Utility: 12

s t

u

2

0

70

38

0

4

0

ready
sent

rec

s t

u

2

0

70

38

0

4

0

ready
sent

rec

K † � |= ⇥1

K † � |= ⇥5

Benefit: 120

Monday, January 16, 12



Example

s, s t, t t, s u, u ⇥1 ⇥2 ⇥3 ⇥4 ⇥5 ⇥6 ⇥7 Cost Benefit Utility

�0 - - - - + - - - - - - 0 110 110
�1 - - - + + + - - - - - 4 125 121
�2 - - + - + - - - - - - 70 110 40
�3 - - + + + + - - - - - 74 125 51
�4 - + - - + - - - - - - 38 110 72
�5 - + - + + + + - - - - 42 140 98
�6 - + + - + - - - + - - 108 120 12
�7 - + + + + + + - + - - 112 150 38
�8 + - - - + - - - - - - 2 110 108
�9 + - - + + + - + - - - 6 143 137
�10 + - + - + - - - - - - 72 110 38
�11 + - + + + + - + - - - 76 143 67
�12 + + - - + - - - - - - 40 110 70
�13 + + - + + + + + - + - 44 181 137
�14 + + + - + - - - + - - 110 120 10
�15 + + + + + + + + + + + 114 216 102

Monday, January 16, 12

Example

s, s t, t t, s u, u ⇥1 ⇥2 ⇥3 ⇥4 ⇥5 ⇥6 ⇥7 Cost Benefit Utility

�0 - - - - + - - - - - - 0 110 110
�1 - - - + + + - - - - - 4 125 121
�2 - - + - + - - - - - - 70 110 40
�3 - - + + + + - - - - - 74 125 51
�4 - + - - + - - - - - - 38 110 72
�5 - + - + + + + - - - - 42 140 98
�6 - + + - + - - - + - - 108 120 12
�7 - + + + + + + - + - - 112 150 38
�8 + - - - + - - - - - - 2 110 108
�9 + - - + + + - + - - - 6 143 137
�10 + - + - + - - - - - - 72 110 38
�11 + - + + + + - + - - - 76 143 67
�12 + + - - + - - - - - - 40 110 70
�13 + + - + + + + + - + - 44 181 137
�14 + + + - + - - - + - - 110 120 10
�15 + + + + + + + + + + + 114 216 102

s t

u

2

0

70

38

0

4

0

ready
sent

rec

Monday, January 16, 12



Example

s, s t, t t, s u, u ⇥1 ⇥2 ⇥3 ⇥4 ⇥5 ⇥6 ⇥7 Cost Benefit Utility

�0 - - - - + - - - - - - 0 110 110
�1 - - - + + + - - - - - 4 125 121
�2 - - + - + - - - - - - 70 110 40
�3 - - + + + + - - - - - 74 125 51
�4 - + - - + - - - - - - 38 110 72
�5 - + - + + + + - - - - 42 140 98
�6 - + + - + - - - + - - 108 120 12
�7 - + + + + + + - + - - 112 150 38
�8 + - - - + - - - - - - 2 110 108
�9 + - - + + + - + - - - 6 143 137
�10 + - + - + - - - - - - 72 110 38
�11 + - + + + + - + - - - 76 143 67
�12 + + - - + - - - - - - 40 110 70
�13 + + - + + + + + - + - 44 181 137
�14 + + + - + - - - + - - 110 120 10
�15 + + + + + + + + + + + 114 216 102

s t

u

2

0

70

38

0

4

0

ready
sent

rec

Monday, January 16, 12

Example

s, s t, t t, s u, u ⇥1 ⇥2 ⇥3 ⇥4 ⇥5 ⇥6 ⇥7 Cost Benefit Utility

�0 - - - - + - - - - - - 0 110 110
�1 - - - + + + - - - - - 4 125 121
�2 - - + - + - - - - - - 70 110 40
�3 - - + + + + - - - - - 74 125 51
�4 - + - - + - - - - - - 38 110 72
�5 - + - + + + + - - - - 42 140 98
�6 - + + - + - - - + - - 108 120 12
�7 - + + + + + + - + - - 112 150 38
�8 + - - - + - - - - - - 2 110 108
�9 + - - + + + - + - - - 6 143 137
�10 + - + - + - - - - - - 72 110 38
�11 + - + + + + - + - - - 76 143 67
�12 + + - - + - - - - - - 40 110 70
�13 + + - + + + + + - + - 44 181 137
�14 + + + - + - - - + - - 110 120 10
�15 + + + + + + + + + + + 114 216 102

s t

u

2

0

70

38

0

4

0

ready
sent

rec

s t

u

2

0

70

38

0

4

0

ready
sent

rec

Monday, January 16, 12



The complexity of finding optimal social laws

Theorem The Optimal Social Law
problem for the feature set representation of
valuation functions is fpnp-complete.

Monday, January 16, 12

Simple instances

• A simple instance:

• all values in the feature set are the same

• the cost of every transition is 0

Monday, January 16, 12



Simple instances

• A simple instance:

• all values in the feature set are the same

• the cost of every transition is 0

Theorem The Optimal Social Law
problem for simple instances is fpnp[log2 |F|]-
complete.

Monday, January 16, 12

Homogeneous instances

• A homogenous instance:

• all values in the feature set are the same

• the cost of every transition is the same

Theorem The Optimal Social Law
problem for homogenous instances is in
fpnp[|R| log2 |F|].

Monday, January 16, 12



Dichotomous valuations

• Assume that 

• the designer is able to partition the state space into bad states B and 
good states S\B

• and that she gets some positive value a from a social law preventing the 
system from going into bad states, while not excluding any good states 

• Such dichotomus valuations can be represented by (B,a)

v(K �) =
�

a rch(s0) = S \ B
0 otherwise

Monday, January 16, 12

Dichotomous valuations

• Assume that 

• the designer is able to partition the state space into bad states B and 
good states S\B

• and that she gets some positive value a from a social law preventing the 
system from going into bad states, while not excluding any good states 

• Such dichotomus valuations can be represented by (B,a)

v(K �) =
�

a rch(s0) = S \ B
0 otherwise

Theorem The Optimal Social Law prob-
lem for dichotomous valuations can be decided
in polynomial time.

Monday, January 16, 12



Integer linear programming

• Integer programming is one of the most successful and widely used 
approaches to solving computationally hard optimisation problems

• We show how the optimal social law problem can be formulated as an integer 
linear program (ILP) 

• The ILP correctly synthesises optimal social laws

Monday, January 16, 12

maximize:⇥
(�i,xi)⇥F ⇤(⌅i, s0) · xi �

⇥
(s,s�)⇥R �(s, s�) · c(s, s�)

subject to constraints:

⇤(⌃, s) ⇧ {0, 1}
⌃⌃ ⇧ cl(F), s ⇧ S

�(s, s�) ⇧ {0, 1}
⌃(s, s�) ⇧ R

⇥
s�⇥next(s) (1� �(s, s�)) ⌅ 1

⌃s ⇧ S

⇤(p, s) =
�

1 if p ⇧ ⇥(s)
0 otherwise

⌃p ⇧ �  cl(F), s ⇧ S

⇤(¬⌃, s) = 1� ⇤(⌃, s)
⌃¬⌃ ⇧ cl(F), s ⇧ S

⇤(⌃ ⌦ ⇧, s) ⇤ ⇤(⌃, s) + ⇤(⇧, s)
⌃⌃ ⌦ ⇧ ⇧ cl(F), s ⇧ S

⇤(⌃ ⌦ ⇧, s) ⌅ ⇤(⌃, s)
⌃⌃ ⌦ ⇧ ⇧ cl(F), s ⇧ S

⇤(⌃ ⌦ ⇧, s) ⌅ ⇤(⇧, s)
⌃⌃ ⌦ ⇧ ⇧ cl(F), s ⇧ S

ILP

Monday, January 16, 12



maximize:⇥
(�i,xi)⇥F ⇤(⌅i, s0) · xi �

⇥
(s,s�)⇥R �(s, s�) · c(s, s�)

subject to constraints:

⇤(⌃, s) ⇧ {0, 1}
⌃⌃ ⇧ cl(F), s ⇧ S

�(s, s�) ⇧ {0, 1}
⌃(s, s�) ⇧ R

⇥
s�⇥next(s) (1� �(s, s�)) ⌅ 1

⌃s ⇧ S

⇤(p, s) =
�

1 if p ⇧ ⇥(s)
0 otherwise

⌃p ⇧ �  cl(F), s ⇧ S

⇤(¬⌃, s) = 1� ⇤(⌃, s)
⌃¬⌃ ⇧ cl(F), s ⇧ S

⇤(⌃ ⌦ ⇧, s) ⇤ ⇤(⌃, s) + ⇤(⇧, s)
⌃⌃ ⌦ ⇧ ⇧ cl(F), s ⇧ S

⇤(⌃ ⌦ ⇧, s) ⌅ ⇤(⌃, s)
⌃⌃ ⌦ ⇧ ⇧ cl(F), s ⇧ S

⇤(⌃ ⌦ ⇧, s) ⌅ ⇤(⇧, s)
⌃⌃ ⌦ ⇧ ⇧ cl(F), s ⇧ S

g(⇤, s) ⌅ {0, 1} ⇧E ⇤ ⌅ cl(F), s ⌅ S

h(⇤, s, s�) ⌅ {0, 1}
⇧E ⇤ ⌅ cl(F), s ⌅ S, s� ⌅ next(s)

⇥(E ⇤, s) ⇥ ⇥(⇤, s)
⇧E ⇤ ⌅ cl(F), s ⌅ S

⇥(E ⇤, s) ⇥ g(⇤, s)
⇧E ⇤ ⌅ cl(F), s ⌅ S

⇥(E ⇤, s) ⇤ 1� ((1� ⇥(⇤, s)) + (1� g(⇤, s)))
⇧E ⇤ ⌅ cl(F), s ⌅ S

h(⇤, s, s�) ⇥ 1� �(s, s�)
⇧E ⇤ ⌅ cl(F), s ⌅ S, s� ⌅ next(s)

h(⇤, s, s�) ⇥ ⇥(E ⇤, s�)
⇧E ⇤ ⌅ cl(F), s ⌅ S, s� ⌅ next(s)

h(⇤, s, s�) ⇥ 1� (�(s, s�) + (1� ⇥(E ⇤, s�)))
⇧E ⇤ ⌅ cl(F), s ⌅ S, s� ⌅ next(s)

g(⇤, s) ⇥
�

s�⇥next(s) h(⇤, s, s�)
⇧E ⇤ ⌅ cl(F), s ⌅ S

g(⇤, s) ⇤ h(⇤, s, s�)
⇧E ⇤ ⌅ cl(F), s ⌅ S, s� ⌅ next(s)

ILP

Monday, January 16, 12

Conclusions

• Trade-offs between costs and benefits of implementing social laws -> 
optimisation problem

• With feature set representation: computationally hard

• We show how to solve it using ILP

• Identified some less complex instances

• Future work: classes of Kripke structures/feature sets vs. classes of ILPs 
known to be efficiently solvable

Monday, January 16, 12



Optimal Social Laws Mechanism Design References

Contents

1 Optimal Social Laws

2 Mechanism Design
Introduction
The value of social laws
Social Choice Rules
Mechanisms

3 References

Optimal Social Laws Mechanism Design References

Introduction

Mechanism Design

Up to now we have assumed that some social law is
designed or synthesised by a designer
We now look at how we can let the agents come up with a

social law

Key question: given their individual preferences/goals, how
can they decide on a social law that (in some sense)
makes them collectively better off compared to the status
quo?
To answer this question, we turn to social choice theory,
which have studied the design of mechanisms for collective
desicion making
Key propery of such mechanisms: incentive compatibility



Optimal Social Laws Mechanism Design References

The value of social laws

Goal Model

We use a more sophisticated goal model here
Each agent has a set of goals in the form of weighted
formulas

� = {('1, x1), . . . , ('k

, x
k

)}

where each x

i

is a real number
No consistency requirements

Optimal Social Laws Mechanism Design References

The value of social laws

The value of social laws

A goal set:
� = {('1, x1), . . . , ('k

, x
k

)}

Let:

v�(K ) =
P

x : (', x) 2 �&K |= ' the value of K according to �

v�(K , ⌘) = v�(K † ⌘)� v�(K )
the increase of value an
agent with � as goals would
get if ⌘ was implemented



Optimal Social Laws Mechanism Design References

The value of social laws

Example

�1 = {(A iA}p1, 4), (E p1, 2)}
�2 = {(¬A iA}p1, 3), (A (p1 ! E}p2), 1)}

2
p

t
p

2

2

1

s

1

1

⌘
i

(s, s) (s, t) (t , s) (t , t) v1(K0, ⌘i

) v2(K0, ⌘i

)
1 0 0 0 0 0 0
2 0 0 0 1 4 �3
3 0 0 1 0 0 0
4 0 1 0 0 4 �4
5 0 1 0 1 4 �4
6 0 1 1 0 4 �4
7 1 0 0 0 �2 0
8 1 0 0 1 2 �3
9 1 0 1 0 �2 0

Optimal Social Laws Mechanism Design References

Social Choice Rules

Social choice rules

A social choice rule for social laws is a function f mapping a
model K and one goal set �

i

for each agent i to a social law

f (K , �1, . . . , �n

)



Optimal Social Laws Mechanism Design References

Social Choice Rules

Maximising Social Welfare

One possible social choice rule is maximising social welfare:

f

sw

(K , �1, . . . , �n

) = arg max⌘
P

n

i=1 v

i

(K † ⌘)

Optimal Social Laws Mechanism Design References

Social Choice Rules

Example cont.

�1 = {(A iA}p1, 4), (E p1, 2)}
�2 = {(¬A iA}p1, 3), (A (p1 ! E}p2), 1)}

f

sw

(K , �1, �2) = ⌘2

⌘
i

(s, s) (s, t) (t , s) (t , t) v1(K0, ⌘i

) v2(K0, ⌘i

)
1 0 0 0 0 0 0
2 0 0 0 1 4 �3
3 0 0 1 0 0 0
4 0 1 0 0 4 �4
5 0 1 0 1 4 �4
6 0 1 1 0 4 �4
7 1 0 0 0 �2 0
8 1 0 0 1 2 �3
9 1 0 1 0 �2 0



Optimal Social Laws Mechanism Design References

Social Choice Rules

Computing max social welfare

How hard is it to compute f

sw

?

Theorem
The following decision problem: given a system hK , �1, . . . , �n

i
and a bound k 2 R, decide whether

9⌘ 2 N(R) :
nX

i=1

v

i

(K , ⌘) � k

This problem is NP-complete, even for a single agent with a

single goal valued at 1, with k = 1.

Optimal Social Laws Mechanism Design References

Social Choice Rules

Computing max social welfare

Theorem
Computing f

sw

is FPNP
-complete.



Optimal Social Laws Mechanism Design References

Social Choice Rules

Other Social Choice Rules

f

nash

: maximising the Nash product, i.e., select the
product-maximising social law
f

nash

is equally hard to compute as f

sw

Both f

sw

and f

nash

are Pareto-optimal (there is no social law
that is better for all agents compared to the social law
selected by the rule)

Optimal Social Laws Mechanism Design References

Mechanisms

Naive Mechanisms

Direct implementation of, e.g., X = sw :
1 Every agent i 2 A declares to the mechanisms a set of

goals �̂
i

.
2 The mechanism computes ⌘⇤ = f

X

(K , �̂1, . . . , �̂n

).
3 The social ⌘⇤ is chosen, and every agent i 2 A pays

v

i

(K † ⌘⇤) to the mechanism (if v

i

(K † ⌘⇤) < 0, then the
payment is from the mechanism to the agent).



Optimal Social Laws Mechanism Design References

Mechanisms

Naive Mechanisms

It is easy to see that a direct implementation of (e.g.) f

sw

is
manipulable, in the sense that an agent can gain from
misrepresenting her true goals
Examples:

hiding goals
misrepresenting goal weight
phantom goals

Optimal Social Laws Mechanism Design References

Mechanisms

Incentive Compatible Mechanisms

Variant of the Vickrey-Clarke-Groves (VCG) mechanism:
1 Every agent i 2 A declares a set of goals �̂

i

.
2 Compute ⌘⇤ = f

sw

(K , �̂1, . . . , �̂i

, . . . , �̂
n

)
3 Social law ⌘⇤ is chosen, and every agent i 2 A pays p

i

computed as follows. First, let ⌘0 denote the social law that
would have been chosen had agent i declared goals �̂

i

= ;
and every other agent had made the same declaration:

⌘0 = f

sw

(K , �̂1, . . . , ;, . . . , �̂n

)

p

i

= sw�i

(K † ⌘0, �̂1, . . . , ;, . . . �̂n

)� sw�i

(K † ⌘⇤, �̂1, . . . , �̂i

, . . . , �̂
n

)

sw�i

(K , �1, . . . , �n

) =
X

j2A(j 6=i)

v

j

(K )



Optimal Social Laws Mechanism Design References

Mechanisms

Incentive Compatible Mechanisms

Variant of the Vickrey-Clarke-Groves (VCG) mechanism:
1 Every agent i 2 A declares a set of goals �̂

i

.
2 Compute ⌘⇤ = f

sw

(K , �̂1, . . . , �̂i

, . . . , �̂
n

)
3 Social law ⌘⇤ is chosen, and every agent i 2 A pays p

i

computed as follows. First, let ⌘0 denote the social law that
would have been chosen had agent i declared goals �̂

i

= ;
and every other agent had made the same declaration:

⌘0 = f

sw

(K , �̂1, . . . , ;, . . . , �̂n

)

p

i

= sw�i

(K † ⌘0, �̂1, . . . , ;, . . . �̂n

)� sw�i

(K † ⌘⇤, �̂1, . . . , �̂i

, . . . , �̂
n

)

Theorem
The above mechanism is incentive compatible. That is, using

this mechanism, an agent i 2 A can do no better than declaring

�̂
i

= �
i

.

Optimal Social Laws Mechanism Design References

Contents

1 Optimal Social Laws

2 Mechanism Design

3 References



Optimal Social Laws Mechanism Design References

Some references I

T. Ågotnes and M. Wooldridge.
Optimal social laws.
In Proceedings of the Ninth International Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2010), Toronto, Canada, May 2010.

Thomas Ågotnes, Wiebe van der Hoek, and Michael Wooldridge.
Normative system design as social choice.
Unpublished manuscript, 2009.


