Social Laws for Multi-Agent Systems: Logic and Games

Lecture 5: Social laws design as an

 optimisation problem, and as amechanism design problem
Thomas Ågotnes ${ }^{1}$

${ }^{1}$ Department of Information Science and Media Studies University of Bergen, Norway

NII Tokyo 17 January 2012

Abstract

\section*{Contents}

Optimal Social Laws

Mechanism Design

References

Optimal Social Laws

- Let us consider the following natural aspects of social laws:

1. social laws have implementation costs
2. the designer might have several objectives, with different priorities

- Finding a social law then becomes an optimisation problem
- Issues: representation; computational complexity; practical solving

Adding costs

$$
K=\left\langle S, s_{0}, R, A, \alpha, c, \pi\right\rangle
$$

- S is a finite, non-empty set of states;
- $s_{0} \in S$ is the initial state;
- $R \subseteq S \times S$ is a (total) transition relation;
- $A=\{1, \ldots, n\}$ is a set of agents;
- $\alpha: R \rightarrow A$ labels each transition in R with an agent;

- $c: R \rightarrow \mathbb{R}_{+}$is a cost function; and
- $\pi: S \rightarrow 2^{\Phi}$ is a valuation function.

Idea: the cost of removing the transition

The value of social laws

- Assumption: the designer has a valuation function

$$
v: \hat{K} \rightarrow \mathbb{R}_{+}
$$

$\hat{K}=\{K \dagger \eta: \eta$ is a social law over $K\}$

The value of social laws

- Assumption: the designer has a valuation function

$$
v: \hat{K} \rightarrow \mathbb{R}_{+}
$$

- The utility of implementing a social law:

$$
u(\eta, K, v)=\underbrace{v(K \dagger \eta)}_{\text {benefit }}-\underbrace{\sum_{\left(s, s^{\prime}\right) \in \eta} c\left(s, s^{\prime}\right)}_{\text {cost }} .
$$

$$
\hat{K}=\{K \dagger \eta: \eta \text { is a social law over } K\}
$$

The optimal social law problem

$$
u(\eta, K, v)=\underbrace{v(K \dagger \eta)}_{\text {benefit }}-\underbrace{\sum_{\left(s, s^{\prime}\right) \in \eta} c\left(s, s^{\prime}\right)}_{\mathrm{cost}}
$$

The optimal social law problem

$$
u(\eta, K, v)=\underbrace{v(K \dagger \eta)}_{\text {benefit }}-\underbrace{\sum_{\left(s, s^{\prime}\right) \in \eta} c\left(s, s^{\prime}\right)}_{\text {cost }} .
$$

- The optimal social law problem: find:

$$
\eta^{*}(K, v)=\arg \max _{\eta \in N(R)} u(\eta, K, v)
$$

Compact representation of the valuation

 function$$
v: \hat{K} \rightarrow \mathbb{R}_{+}
$$

Compact representation of the valuation function

$$
v: \hat{K} \rightarrow \mathbb{R}_{+}
$$

- Explicit representation: typically exponential in the number of states
- Unrealistic; a more compact representations are needed
- We use weighted formulae, in the style of (e.g.) marginal contribution nets

Compact representation of the valuation

 function$$
v: \hat{K} \rightarrow \mathbb{R}_{+}
$$

- Explicit representation: typically exponential in the number of states
- Unrealistic; a more compact representations are needed
- We use weighted formulae, in the style of (e.g.) marginal contribution nets
- A feature set is a set of CTL formula/value pairs

Compact representation of the valuation function

$$
v: \hat{K} \rightarrow \mathbb{R}_{+}
$$

- Explicit representation: typically exponential in the number of states
- Unrealistic; a more compact representations are needed
- We use weighted formulae, in the style of (e.g.) marginal contribution nets
- A feature set is a set of CTL formula/value pairs

$$
\mathcal{F}=\left\{\left(\phi_{1}, x_{1}\right), \ldots,\left(\phi_{k}, x_{k}\right)\right\}
$$

Compact representation of the valuation

function

$$
v: \hat{K} \rightarrow \mathbb{R}_{+}
$$

- Explicit representation: typically exponential in the number of states
- Unrealistic; a more compact representations are needed
- We use weighted formulae, in the style of (e.g.) marginal contribution nets
- A feature set is a set of CTL formula/value pairs

$$
\mathcal{F}=\left\{\left(\phi_{1}, x_{1}\right), \ldots,\left(\phi_{k}, x_{k}\right)\right\}
$$

- Represents:

$$
v_{\mathcal{F}}\left(K^{\prime}\right)=\sum_{\left(\phi_{i}, x_{i}\right) \in \mathcal{F}, K^{\prime} \models \phi_{i}} x_{i}
$$

Example

Example

Property	Benefit
$\phi_{1}=\mathrm{E} \diamond(r e c \wedge \mathrm{E} \diamond$ ready $)$	110
$\phi_{2}=\mathrm{A} \square(r e c \rightarrow \mathrm{~A} \diamond$ ready $)$	15
$\phi_{3}=\mathrm{A} \square \mathrm{A} \diamond$ ready	15
$\phi_{4}=\mathrm{A} \square \mathrm{A} \diamond$ sent	18
$\phi_{5}=\mathrm{A} \square($ sent $\rightarrow \mathrm{A} \diamond r e c)$	10
$\phi_{6}=\mathrm{A} \square(r e a d y \rightarrow \mathrm{~A} \diamond($ sent $\wedge \mathrm{A} \diamond$ ready $))$	23
$\phi_{7}=\mathrm{A} \square(\mathrm{A} \diamond(r e c \wedge \mathrm{~A} \diamond$ ready $))$	25

Example

Property	Benefit
$\phi_{1}=\mathrm{E} \diamond(r e c \wedge \mathrm{E} \diamond$ ready $)$	110
$\phi_{2}=\mathrm{A} \square($ rec $\rightarrow \mathrm{A} \diamond$ ready $)$	15
$\phi_{3}=\mathrm{A} \square \mathrm{A} \diamond$ ready	15
$\phi_{4}=\mathrm{A} \square \mathrm{A} \diamond$ sent	18
$\phi_{5}=\mathrm{A} \square($ sent $\rightarrow \mathrm{A} \diamond$ rec $)$	10
$\phi_{6}=\mathrm{A} \square(r e a d y \rightarrow \mathrm{~A} \diamond($ sent $\wedge \mathrm{A} \diamond$ ready $))$	23
$\phi_{7}=\mathrm{A} \square(\mathrm{A} \diamond($ rec $\wedge \mathrm{A} \diamond$ ready $))$	25

$$
\eta=\{(t, t),(t, s)\}
$$

Example

Property	Benefit
$\phi_{1}=\mathrm{E} \diamond($ rec $\wedge \mathrm{E} \diamond$ ready $)$	110
$\phi_{2}=\mathrm{A} \square($ rec $\rightarrow \mathrm{A} \diamond$ ready $)$	15
$\phi_{3}=\mathrm{A} \square \mathrm{A} \diamond$ ready	15
$\phi_{4}=\mathrm{A} \square \mathrm{A} \diamond$ sent	18
$\phi_{5}=\mathrm{A} \square($ sent $\rightarrow \mathrm{A} \diamond$ rec $)$	10
$\phi_{6}=\mathrm{A} \square(r e a d y \rightarrow \mathrm{~A} \diamond($ sent $\wedge \mathrm{A} \diamond$ ready $))$	23
$\phi_{7}=\mathrm{A} \square(\mathrm{A} \diamond(r e c \wedge \mathrm{~A} \diamond$ ready $))$	25

$$
\eta=\{(t, t),(t, s)\}
$$

Example

Property	Benefit
$\phi_{1}=\mathrm{E} \diamond(r e c \wedge \mathrm{E} \diamond$ ready $)$	110
$\phi_{2}=\mathrm{A} \square(r e c \rightarrow \mathrm{~A} \diamond$ ready $)$	15
$\phi_{3}=\mathrm{A} \square \mathrm{A} \diamond$ ready	15
$\phi_{4}=\mathrm{A} \square \mathrm{A} \diamond$ sent	18
$\phi_{5}=\mathrm{A} \square($ sent $\rightarrow \mathrm{A} \diamond r e c)$	10
$\phi_{6}=\mathrm{A} \square(r e a d y \rightarrow \mathrm{~A} \diamond($ sent $\wedge \mathrm{A} \diamond$ ready $))$	23
$\phi_{7}=\mathrm{A} \square(\mathrm{A} \diamond($ rec $\wedge \mathrm{A} \diamond$ ready $))$	25

$$
\eta=\{(t, t),(t, s)\}
$$

Cost: 108

Example

Property	Benefit
$\phi_{1}=\mathrm{E} \oslash(r e c \wedge \mathrm{E} \oslash$ ready $)$	110
$\phi_{2}=\mathrm{A} \square(r e c \rightarrow \mathrm{~A} \diamond$ ready $)$	15
$\phi_{3}=\mathrm{A} \square \mathrm{A} \diamond$ ready	15
$\phi_{4}=\mathrm{A} \square \mathrm{A} \diamond$ sent	18
$\phi_{5}=\mathrm{A} \square($ sent $\rightarrow \mathrm{A} \diamond$ rec $)$	10
$\phi_{6}=\mathrm{A} \square($ ready $\rightarrow \mathrm{A} \diamond($ sent $\wedge \mathrm{A} \diamond r e a d y))$	23
$\phi_{7}=\mathrm{A} \square(\mathrm{A} \diamond($ rec $\wedge \mathrm{A} \diamond$ ready $))$	25

Benefit: 120

$$
\begin{aligned}
& K \dagger \eta \models \phi_{1} \\
& K \dagger \eta \models \phi_{5}
\end{aligned}
$$

$$
\eta=\{(t, t),(t, s)\}
$$

Cost: 108

Example

Property	Benefit
$\phi_{1}=\mathrm{E} \diamond($ rec $\wedge \mathrm{E} \diamond$ ready $)$	110
$\phi_{2}=\mathrm{A} \square($ rec $\rightarrow \mathrm{A} \diamond$ ready $)$	15
$\phi_{3}=\mathrm{A} \square \mathrm{A} \diamond$ ready	15
$\phi_{4}=\mathrm{A} \square \mathrm{A} \diamond$ sent	18
$\phi_{5}=\mathrm{A} \square($ sent $\rightarrow \mathrm{A} \diamond$ rec $)$	10
$\phi_{6}=\mathrm{A} \square(r e a d y \rightarrow \mathrm{~A} \diamond($ sent $\wedge \mathrm{A} \diamond r e a d y))$	23
$\phi_{7}=\mathrm{A} \square(\mathrm{A} \diamond($ rec $\wedge \mathrm{A} \diamond$ ready $))$	25

$K \dagger \eta \models \phi_{1}$
$K \dagger \eta \models \phi_{5}$
Benefit: 120
Utility: 12

Example

	s, s	t, t	t, s	u, u	$\mid \phi_{1}$	ϕ_{2}	ϕ_{3}	ϕ_{4}	ϕ_{5}	ϕ_{6}	ϕ_{7}	Cost	Benefit	Utility
η_{0}	-	-	-	-	$+$	-	-	-	-	-	-	0	110	110
η_{1}	-	-	-	$+$	+	+	-	-	-	-	-	4	125	121
η_{2}	-	-	+	-	+	-	-	-	-	-	-	70	110	40
η_{3}	-	-	+	+	$+$	$+$	-	-	-	-	-	74	125	51
η_{4}	-	$+$	-	-	+	-	-	-	-	-	-	38	110	72
η_{5}	-	+	-	+	+	+	$+$	-	-	-	-	42	140	98
η_{6}	-	$+$	$+$	-	+	-	-	-	$+$	-	-	108	120	12
η_{7}	-	$+$	$+$	+	$+$	$+$	$+$	-	$+$	-	-	112	150	38
η_{8}	$+$	-	-	-	+	-	-	-	-	-	-	2	110	108
η_{9}	$+$	-	-	$+$	$+$	+	-	$+$	-	-	-	6	143	137
η_{10}	$+$	-	$+$	-	+	-	-	-	-	-	-	72	110	38
η_{11}	$+$	-	$+$	$+$	+	$+$	-	$+$	-	-	-	76	143	67
η_{12}	+	$+$	-	-	+	-	-	-	-	-	-	40	110	70
η_{13}	+	$+$	-	$+$	$+$	$+$	$+$	+	-	$+$	-	44	181	137
η_{14}	+	$+$	$+$	-	+	-	-	-	$+$	-	-	110	120	10
η_{15}	+	$+$	$+$	$+$	+	+	$+$	$+$	$+$	$+$	$+$	114	216	102

Example

Example

Monday, January 16, 12

Example

The complexity of finding optimal social laws

Theorem The Optimal Social Law problem for the feature set representation of valuation functions is $\mathrm{FP}^{\mathrm{NP}}$-complete.

Simple instances

- A simple instance:
- all values in the feature set are the same
- the cost of every transition is 0

Simple instances

- A simple instance:
- all values in the feature set are the same
- the cost of every transition is 0

Theorem The Optimal Social Law problem for simple instances is $\mathrm{FP}^{\mathrm{NP}\left[\log _{2}|\mathcal{F}|\right]}$ complete.

Homogeneous instances

- A homogenous instance:
- all values in the feature set are the same
- the cost of every transition is the same

Theorem The Optimal Social Law problem for homogenous instances is in $\mathrm{FP}^{\mathrm{NP}\left[|R| \log _{2}|\mathcal{F}|\right]}$.

Dichotomous valuations

- Assume that
- the designer is able to partition the state space into bad states \mathbf{B} and good states S\B
- and that she gets some positive value a from a social law preventing the system from going into bad states, while not excluding any good states

$$
v\left(K^{\prime}\right)= \begin{cases}a & r \operatorname{ch}\left(s_{0}\right)=S \backslash B \\ 0 & \text { otherwise }\end{cases}
$$

- Such dichotomus valuations can be represented by (B,a)

Dichotomous valuations

- Assume that
- the designer is able to partition the state space into bad states \mathbf{B} and good states S\B
- and that she gets some positive value a from a social law preventing the system from going into bad states, while not excluding any good states

$$
v\left(K^{\prime}\right)= \begin{cases}a & r \operatorname{ch}\left(s_{0}\right)=S \backslash B \\ 0 & \text { otherwise }\end{cases}
$$

- Such dichotomus valuations can be represented by (B, a)

Theorem The Optimal Social Law problem for dichotomous valuations can be decided in polynomial time.

Integer linear programming

- Integer programming is one of the most successful and widely used approaches to solving computationally hard optimisation problems
- We show how the optimal social law problem can be formulated as an integer linear program (ILP)
- The ILP correctly synthesises optimal social laws

ILP

maximize:
$\sum_{\left(\phi_{i}, x_{i}\right) \in \mathcal{F}} \tau\left(\phi_{i}, s_{0}\right) \cdot x_{i}-\sum_{\left(s, s^{\prime}\right) \in R} \eta\left(s, s^{\prime}\right) \cdot c\left(s, s^{\prime}\right)$
subject to constraints:

$$
\begin{aligned}
& \tau(\psi, s) \quad \in\{0,1\} \\
& \forall \psi \in c l(\mathcal{F}), s \in S \\
& \eta\left(s, s^{\prime}\right) \\
& \in\{0,1\} \\
& \forall\left(s, s^{\prime}\right) \in R \\
& \sum_{s^{\prime} \in \operatorname{next}(s)}\left(1-\eta\left(s, s^{\prime}\right)\right) \geq 1 \\
& \forall s \in S \\
& \tau(p, s) \quad= \begin{cases}1 & \text { if } p \in \pi(s) \\
0 & \text { otherwise } \\
\forall p \in \Phi \cap \operatorname{cl}(\mathcal{F}), s \in S\end{cases} \\
& \tau(\neg \psi, s) \quad=1-\tau(\psi, s) \\
& \forall \neg \psi \in \operatorname{cl}(\mathcal{F}), s \in S \\
& \tau(\psi \vee \chi, s) \quad \leq \tau(\psi, s)+\tau(\chi, s) \\
& \forall \psi \vee \chi \in \operatorname{cl}(\mathcal{F}), s \in S \\
& \tau(\psi \vee \chi, s) \quad \geq \tau(\psi, s) \\
& \forall \psi \vee \chi \in \operatorname{cl}(\mathcal{F}), s \in S \\
& \tau(\psi \vee \chi, s) \quad \geq \tau(\chi, s) \\
& \forall \psi \vee \chi \in \operatorname{cl}(\mathcal{F}), s \in S
\end{aligned}
$$

ILP

maximize:

Monday, January 16, 12

Conclusions

- Trade-offs between costs and benefits of implementing social laws -> optimisation problem
- With feature set representation: computationally hard
- We show how to solve it using ILP
- Identified some less complex instances
- Future work: classes of Kripke structures/feature sets vs. classes of ILPs known to be efficiently solvable

Contents

Optimal Social Laws

(2) Mechanism Design

- Introduction
- The value of social laws
- Social Choice Rules
- Mechanisms

References

Mechanism Design

- Up to now we have assumed that some social law is designed or synthesised by a designer
- We now look at how we can let the agents come up with a social law
- Key question: given their individual preferences/goals, how can they decide on a social law that (in some sense) makes them collectively better off compared to the status quo?
- To answer this question, we turn to social choice theory, which have studied the design of mechanisms for collective desicion making
- Key propery of such mechanisms: incentive compatibility

Goal Model

- We use a more sophisticated goal model here
- Each agent has a set of goals in the form of weighted formulas

$$
\gamma=\left\{\left(\varphi_{1}, x_{1}\right), \ldots,\left(\varphi_{k}, x_{k}\right)\right\}
$$

where each x_{i} is a real number

- No consistency requirements

The value of social laws

A goal set:

$$
\gamma=\left\{\left(\varphi_{1}, x_{1}\right), \ldots,\left(\varphi_{k}, x_{k}\right)\right\}
$$

Let:

$$
\begin{array}{ll}
v_{\gamma}(K)=\sum x:(\varphi, x) \in \gamma \& K \models \varphi & \begin{array}{l}
\text { the value of } K \text { according to } \gamma \\
\text { the increase of value an } \\
v_{\gamma}(K, \eta)=v_{\gamma}(K \dagger \eta)-v_{\gamma}(K)
\end{array} \\
\begin{array}{l}
\text { agent with } \gamma \text { as goals would } \\
\text { get if } \eta \text { was implemented }
\end{array}
\end{array}
$$

Example

$$
\begin{aligned}
& \gamma_{1}=\left\{\left(\mathrm{A} \bigcirc \mathrm{~A} \diamond p_{1}, 4\right),\left(\mathrm{E} \square p_{1}, 2\right)\right\} \\
& \gamma_{2}=\left\{\left(\neg \mathrm{A} \bigcirc \mathrm{~A} \diamond p_{1}, 3\right),\left(\mathrm{A} \square\left(p_{1} \rightarrow \mathrm{E} \diamond p_{2}\right), 1\right)\right\}
\end{aligned}
$$

η_{i}	(s, s)	(s, t)	(t, s)	(t, t)	$v_{1}\left(K_{0}, \eta_{i}\right)$	$v_{2}\left(K_{0}, \eta_{i}\right)$
1	0	0	0	0	0	0
2	0	0	0	1	4	-3
3	0	0	1	0	0	0
4	0	1	0	0	4	-4
5	0	1	0	1	4	-4
6	0	1	1	0	4	-4
7	1	0	0	0	-2	0
8	1	0	0	1	2	-3
9	1	0	1	0	-2	0

Social Choice Rules

Social choice rules

A social choice rule for social laws is a function f mapping a model K and one goal set γ_{i} for each agent i to a social law

$$
f\left(K, \gamma_{1}, \ldots, \gamma_{n}\right)
$$

Maximising Social Welfare

One possible social choice rule is maximising social welfare:

$$
f_{s w}\left(K, \gamma_{1}, \ldots, \gamma_{n}\right)=\arg \max _{\eta} \sum_{i=1}^{n} v_{i}(K \dagger \eta)
$$

Example cont.

$$
\begin{aligned}
& \gamma_{1}=\left\{\left(\mathrm{A} \bigcirc \mathrm{~A} \diamond p_{1}, 4\right),\left(\mathrm{E} \square p_{1}, 2\right)\right\} \\
& \gamma_{2}=\left\{\left(\neg \mathrm{A} \bigcirc \mathrm{~A} \diamond p_{1}, 3\right),\left(\mathrm{A} \square\left(p_{1} \rightarrow \mathrm{E} \diamond \mathrm{p}_{2}\right), 1\right)\right\}
\end{aligned} \quad f_{s w}\left(K, \gamma_{1}, \gamma_{2}\right)=\eta_{2}
$$

η_{i}	(s, s)	(s, t)	(t, s)	(t, t)	$v_{1}\left(K_{0}, \eta_{i}\right)$	$v_{2}\left(K_{0}, \eta_{i}\right)$
1	0	0	0	0	0	0
2	0	0	0	1	4	-3
3	0	0	1	0	0	0
4	0	1	0	0	4	-4
5	0	1	0	1	4	-4
6	0	1	1	0	4	-4
7	1	0	0	0	-2	0
8	1	0	0	1	2	-3
9	1	0	1	0	-2	0

Computing max social welfare

How hard is it to compute $f_{s w}$?

Theorem

The following decision problem: given a system $\left\langle K, \gamma_{1}, \ldots, \gamma_{n}\right\rangle$ and a bound $k \in \mathbb{R}$, decide whether

$$
\exists \eta \in N(R): \sum_{i=1}^{n} v_{i}(K, \eta) \geq k
$$

This problem is NP-complete, even for a single agent with a single goal valued at 1 , with $k=1$.

Computing max social welfare

Theorem

Computing $f_{s w}$ is $\mathrm{FP}^{\mathrm{NP}}$-complete.

Other Social Choice Rules

- $f_{\text {nash }}$: maximising the Nash product, i.e., select the product-maximising social law
- $f_{\text {nash }}$ is equally hard to compute as $f_{s w}$
- Both $f_{s w}$ and $f_{\text {nash }}$ are Pareto-optimal (there is no social law that is better for all agents compared to the social law selected by the rule)

Naive Mechanisms

Direct implementation of, e.g., $X=s w$:
(1) Every agent $i \in A$ declares to the mechanisms a set of goals $\hat{\gamma}$.
(2) The mechanism computes $\eta^{*}=f_{X}\left(K, \hat{\gamma_{1}}, \ldots, \hat{\gamma_{n}}\right)$.
(3) The social η^{*} is chosen, and every agent $i \in A$ pays $v_{i}\left(K \dagger \eta^{*}\right)$ to the mechanism (if $v_{i}\left(K \dagger \eta^{*}\right)<0$, then the payment is from the mechanism to the agent).

Mechanisms

Naive Mechanisms

- It is easy to see that a direct implementation of (e.g.) $f_{s w}$ is manipulable, in the sense that an agent can gain from misrepresenting her true goals
- Examples:
- hiding goals
- misrepresenting goal weight
- phantom goals

Incentive Compatible Mechanisms

Variant of the Vickrey-Clarke-Groves (VCG) mechanism:
(1) Every agent $i \in A$ declares a set of goals $\hat{\gamma_{i}}$.
(2) Compute $\eta^{*}=f_{s w}\left(K, \hat{\gamma}_{1}, \ldots, \hat{\gamma}_{i}, \ldots, \hat{\gamma_{n}}\right)$
(3) Social law η^{*} is chosen, and every agent $i \in A$ pays p_{i} computed as follows. First, let η^{\prime} denote the social law that would have been chosen had agent i declared goals $\hat{\gamma}_{i}=\emptyset$ and every other agent had made the same declaration:

$$
\begin{gathered}
\eta^{\prime}=f_{s w}\left(K, \hat{\gamma}_{1}, \ldots, \emptyset, \ldots, \hat{\gamma_{n}}\right) \\
p_{i}=s w_{-i}\left(K \dagger \eta^{\prime}, \hat{\gamma_{1}}, \ldots, \emptyset, \ldots \hat{\gamma_{n}}\right)-s w_{-i}\left(K \dagger \eta^{*}, \hat{\gamma}_{1}, \ldots, \hat{\gamma}_{i}, \ldots, \hat{\gamma_{n}}\right) \\
s w_{-i}\left(K, \gamma_{1}, \ldots, \gamma_{n}\right)=\sum_{j \in A(j \neq i)} v_{j}(K)
\end{gathered}
$$

Mechanisms

Incentive Compatible Mechanisms

Variant of the Vickrey-Clarke-Groves (VCG) mechanism:
(1) Every agent $i \in A$ declares a set of goals $\hat{\gamma_{i}}$.
(2) Compute $\eta^{*}=f_{s w}\left(K, \hat{\gamma_{1}}, \ldots, \hat{\gamma}_{i}, \ldots, \hat{\gamma_{n}}\right)$
(3) Social law η^{*} is chosen, and every agent $i \in A$ pays p_{i} computed as follows. First, let η^{\prime} denote the social law that would have been chosen had agent i declared goals $\hat{\gamma}_{i}=\emptyset$ and every other agent had made the same declaration:

$$
\begin{gathered}
\eta^{\prime}=f_{s w}\left(K, \hat{\gamma_{1}}, \ldots, \emptyset, \ldots, \hat{\gamma_{n}}\right) \\
p_{i}=s w_{-i}\left(K \dagger \eta^{\prime}, \hat{\gamma_{1}}, \ldots, \emptyset, \ldots \hat{\gamma_{n}}\right)-s w_{-i}\left(K \dagger \eta^{*}, \hat{\gamma_{1}}, \ldots, \hat{\gamma_{i}}, \ldots, \hat{\gamma_{n}}\right)
\end{gathered}
$$

Theorem

The above mechanism is incentive compatible. That is, using this mechanism, an agent $i \in A$ can do no better than declaring $\hat{\gamma}_{i}=\gamma_{i}$.

Contents

 Optimal Social Laws
 Mechanism Design

Some references I

T. Ågotnes and M. Wooldridge.

Optimal social laws.
In Proceedings of the Ninth International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010), Toronto, Canada, May 2010.

Thomas Ågotnes, Wiebe van der Hoek, and Michael Wooldridge.
Normative system design as social choice.
Unpublished manuscript, 2009.

