Mechanism Design

References

Social Laws for Multi-Agent Systems: Logic and Games

Lecture 5: Social laws design as an optimisation problem, and as amechanism design problem

Thomas Ågotnes¹

¹Department of Information Science and Media Studies University of Bergen, Norway

NII Tokyo 17 January 2012

Optimal Social Laws

• Let us consider the following natural aspects of social laws:

- 1. social laws have implementation costs
- 2. the designer might have several objectives, with different priorities
- Finding a social law then becomes an optimisation problem
- Issues: representation; computational complexity; practical solving

The value of social laws

• Assumption: the designer has a valuation function

$$v:\hat{K}\to\mathbb{R}_+$$

$$\hat{K} = \{K \dagger \eta : \eta \text{ is a social law over } K\}$$

Monday, January 16, 12

The value of social laws

• Assumption: the designer has a valuation function

$$v: \hat{K} \to \mathbb{R}_+$$

• The utility of implementing a social law:

$$u(\eta, K, v) = \underbrace{v(K \dagger \eta)}_{\text{benefit}} - \underbrace{\sum_{(s,s') \in \eta} c(s, s')}_{\text{cost}}.$$

 $\hat{K} = \{K \dagger \eta : \eta \text{ is a social law over } K\}$

Compact representation of the valuation function

 $v: \hat{K} \to \mathbb{R}_+$

Monday, January 16, 12

Compact representation of the valuation function

$$v:\hat{K}\to\mathbb{R}_+$$

• Explicit representation: typically exponential in the number of states

• Unrealistic; a more compact representations are needed

• We use weighted formulae, in the style of (e.g.) marginal contribution nets

Compact representation of the valuation function

Monday, January 16, 12

Compact representation of the valuation function

$$v:\hat{K}\to\mathbb{R}_+$$

• Explicit representation: typically exponential in the number of states

• Unrealistic; a more compact representations are needed

• We use weighted formulae, in the style of (e.g.) marginal contribution nets

• A feature set is a set of CTL formula/value pairs

$$\mathcal{F} = \{(\phi_1, x_1), \dots, (\phi_k, x_k)\}$$

Compact representation of the valuation function

$$v: \hat{K} \to \mathbb{R}_+$$
• Explicit representation: typically *exponential* in the number of states
• Unrealistic; a more compact representations are needed
• We use weighted formulae, in the style of (e.g.) marginal contribution nets
• A feature set is a set of CTL formula/value pairs
$$\mathcal{F} = \{(\phi_1, x_1), \dots, (\phi_k, x_k)\}$$
• Represents:
$$v_{\mathcal{F}}(K') = \sum_{(\phi_i, x_i) \in \mathcal{F}, K' \models \phi_i} x_i$$

		0
Property	Benefit	2 3 1 3
$\phi_1 = E \diamondsuit (rec \land E \diamondsuit ready)$	110	70 Isent
$\phi_2 = A \square (rec \to A \diamondsuit ready)$	15	ready
$\phi_3 = A \Box A \diamondsuit ready$	15	
$\phi_4 = A \Box A \diamondsuit sent$	18	0
$\phi_5 = A \square (sent \to A \diamondsuit rec)$	10	\searrow
$\phi_6 = A \square (ready \to A \diamondsuit (sent \land A \diamondsuit ready))$	23	
$\phi_7 = A \square (A \diamondsuit (rec \land A \diamondsuit ready))$	25	4
		rec

Monday, January 16, 12

Example

Property	Benefit
$\phi_1 = E \diamondsuit (rec \land E \diamondsuit ready)$	110
$\phi_2 = A \square (rec \to A \diamondsuit ready)$	15
$\phi_3 = A \Box A \diamondsuit ready$	15
$\phi_4 = A \Box A \diamondsuit sent$	18
$\phi_5 = A \square (sent \to A \diamondsuit rec)$	10
$\phi_6 = A \square (ready \to A \diamondsuit (sent \land A \diamondsuit ready))$	23
$\phi_7 = A \square (A \diamondsuit (rec \land A \diamondsuit ready))$	25

 $\eta = \{(t,t),(t,s)\}$

Property	Benefit
$\phi_1 = E \diamondsuit (rec \land E \diamondsuit ready)$	110
$\phi_2 = A \square (rec \to A \diamondsuit ready)$	15
$\phi_3 = A \Box A \diamondsuit ready$	15
$\phi_4 = A \square A \diamondsuit sent$	18
$\phi_5 = A \square (sent \to A \diamondsuit rec)$	10
$\phi_6 = A \square (ready \to A \diamondsuit (sent \land A \diamondsuit ready))$	23
$\phi_7 = A \square (A \diamondsuit (rec \land A \diamondsuit ready))$	25

Property	Benefit		0
$\frac{\Gamma \left(\sum_{i=1}^{n} \left(\sum_{j=1}^{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \left(\sum_{j=1}^{n} $	110	2	
$= \mathbf{E} \langle (rec \land \mathbf{E} \lor ready) \rangle$	110	ready	 70 se
$b_2 = A \Box (rec \rightarrow A \sqrt{ready})$	10 15	ready	
$b_{A} = A \Box A \diamondsuit sent$	15		٥ ا
$b_{5} = A \Box (sent \rightarrow A \Diamond rec)$	10		
$b_{6} = A \Box (ready \rightarrow A \diamondsuit (sent \land A \diamondsuit ready))$	23		
$\phi_7 = A \prod (A \diamondsuit (rec \land A \diamondsuit ready))$	25		U
			IEC
		η =	$= \{(t, t), (t, s)\}$
		,	
			$O \rightarrow 100$

	s,s	t, t	t,s	u, u	$ \phi_1 $	ϕ_2	ϕ_3	ϕ_4	ϕ_5	ϕ_6	ϕ_7	Cost	Benefit	Utility
η_0	-	-	-	-	+	-	-	-	-	-	-	0	110	110
η_1	-	-	-	+	+	+	-	-	-	-	-	4	125	121
η_2	-	-	+	-	+	-	-	-	-	-	-	70	110	40
η_3	-	-	+	+	+	+	-	-	-	-	-	74	125	51
η_4	-	+	-	-	+	-	-	-	-	-	-	38	110	72
η_5	-	+	-	+	+	+	+	-	-	-	-	42	140	98
η_6	-	+	+	-	+	-	-	-	+	-	-	108	120	12
η_7	-	+	+	+	+	+	+	-	+	-	-	112	150	38
η_8	+	-	-	-	+	-	-	-	-	-	-	2	110	108
η_9	+	-	-	+	+	+	-	+	-	-	-	6	143	137
η_{10}	+	-	+	-	+	-	-	-	-	-	-	72	110	38
η_{11}	+	-	+	+	+	+	-	+	-	-	-	76	143	67
η_{12}	+	+	-	-	+	-	-	-	-	-	-	40	110	70
η_{13}	+	+	-	+	+	+	+	+	-	+	-	44	181	137
η_{14}	+	+	+	-	+	-	-	-	+	-	-	110	120	10
η_{15}	+	+	+	+	+	+	+	+	+	+	+	114	216	102

F,			-											
E> 			<u> </u>									Cost	Danaet	T14:1:4
	s, s	ι, ι	ι, s	u, u	$ \varphi_1 $	φ_2	φ_3	ϕ_4	φ_5	φ_6	ϕ_7	Cost	Denent	Othity
η_0	-	-	-	-	+	-	-	-	-	-			0	
η_1	-	-	-	+	+	+	-	-	-	-	2(J S		
η_2	-	-	+	-	+	-	-	-	-	-		ready		0 sent
η_3	-	-	+	+	+	+	-	-	-	-		ready		0
η_4	-	+	-	-	+	-	-	-	-	-			0	Ŭ
η_5	-	+	-	+	+	+	+	-	-	-				$\setminus \downarrow$
η_6	-	+	+	-	+	-	-	-	+	-				
η_7	-	+	+	+	+	+	+	-	+	-				4
η_8	+	-	-	-	+	-	-	-	-	-				rec
η_9	+	-	-	+	+	+	-	+	-	-	-	6	143	137
η_{10}	+	-	+	-	+	-	-	-	-	-	-	72	110	38
η_{11}	+	-	+	+	+	+	-	+	-	-	-	76	143	67
η_{12}	+	+	-	-	+	-	-	-	-	-	-	40	110	70
η_{13}	+	+	-	+	+	+	+	+	-	+	-	44	181	137
η_{14}	+	+	+	-	+	-	-	-	+	-	-	110	120	10
η_{15}	+	+	+	+	+	+	+	+	+	+	+	114	216	102

	s, s	t, t	t,s	u, u	ϕ_1	ϕ_2	ϕ_3	ϕ_4	ϕ_5	ϕ_6	ϕ_7	Cost	Benefit	Utility
η_0	-	-	-	-	+	-	_	-	-	-			0	
η_1	-	-	-	+	+	+	-	-	-	-	2(S		
η_2	-	-	+	-	+	-	-	-	-	-		readv		0 sent
η_3	-	-	+	+	+	+	-	-	-	-		ready	\backslash	0
η_4	-	+	-	-	+	-	-	-	-	-			0	Ŭ
η_5	-	+	-	+	+	+	+	-	-	-				$\setminus \downarrow$
η_6	-	+	+	-	+	-	-	-	+	-				
η_7	-	+	+	+	+	+	+	-	+	-				4
η_8	+	-	-	-	+	-	-	-	-	-	\square	-		rec
η_9	+	-	-	+	+	+	-	+	-	-	-	6	143	137
η_{10}	+	-	+	-	+	-	-	-	-	-	-	72	110	38
η_{11}	+	-	+	+	+	+	-	+	-	-	-	76	143	67
η_{12}	+	+	-	-	+	-	-	-	-	-	-	40	110	70
η_{13}	+	+	-	+	+	+	+	+	-	+	-	44	181	137
η_{14}	+	+	+	-	+	-	-	-	+	-	-	110	120	10
η_{15}	+	+	+	+	+	+	+	+	+	+	+	114	216	102

Monday, January 16, 12

		باصد	`												
L) 			J 			4		4		4		Cest	Domofit	T14:1:4	_
	s, s	ι, ι	ι, s	u, u	$ \varphi_1 $	φ_2	φ_3	φ_4	φ_5	φ_6	ϕ_7	Cost	Denent	Othity	_
η_0	-	-	-	-	+	-	-	-	-	-			0		_
η_1	-	-	-	+	+	+	-	-	-	-	2	S			38
η_2	-	-	+	-	+	-	-	-	-	-		ready		0 sent	
η_3	-	-	+	+	+	+	-	-	-	-		reauy	\mathbf{i}		
η_4	-	+	-	-	+	-	-	-	-	-			δ	U	
η_5	-	+	-	+	+	+	+	-	-	-					
η_6	-	+	+	-	+	-	-	-	+	-					
η_7	-	+	+	+	+	+	+	-	+	-				u .	4
η_8	+	-	-	-	+	-	-	-	_	-	l			rec	
η_9	+	-	-	+	+	+	-	+	_	-	_	6	143	137	
η_{10}	+	-	+	-	+	-	-	-	-	-	-	72	110	38	
$\dot{\eta}_{11}$	+	-	+	+	+	+	-	+	-	-	-	76	143	67	
$\dot{\eta}_{12}$	+	+	-	-	+	-	-	-	-	-	-	40	110	70	
η_{13}	+	+	-	+	+	+	+	+	-	+	-	44	181	137	
η_{14}	+	+	+	-	+	_	-	_	+	-	-	110	120	10	
η_{15}	+	+	+	+	+	+	+	+	+	+	+	114	216	102	

The complexity of finding optimal social laws

Theorem The OPTIMAL SOCIAL LAW problem for the feature set representation of valuation functions is FP^{NP} -complete.

Monday, January 16, 12

Simple instances

- A simple instance:
 - all values in the feature set are the same
 - the cost of every transition is 0

Simple instances

- A simple instance:
 - all values in the feature set are the same
 - the cost of every transition is 0

Theorem The OPTIMAL SOCIAL LAW problem for simple instances is $\operatorname{FP}^{\operatorname{NP}[\log_2 |\mathcal{F}|]}$ -complete.

Monday, January 16, 12

Homogeneous instances

- A homogenous instance:
 - all values in the feature set are the same
 - the cost of every transition is the same

Theorem The OPTIMAL SOCIAL LAW problem for homogenous instances is in $\operatorname{FP}^{\operatorname{NP}[|R|\log_2|\mathcal{F}|]}$.

Dichotomous valuations

Assume that

- the designer is able to partition the state space into bad states B and good states S\B
- and that she gets some positive value **a** from a social law preventing the system from going into bad states, while not excluding any good states

$$v(K') = \begin{cases} a & rch(s_0) = S \setminus B \\ 0 & \text{otherwise} \end{cases}$$

• Such dichotomus valuations can be represented by (B,a)

Monday, January 16, 12

Dichotomous valuations

- Assume that
 - the designer is able to partition the state space into bad states B and good states S\B
 - and that she gets some positive value **a** from a social law preventing the system from going into bad states, while not excluding any good states

$$v(K') = \begin{cases} a & rch(s_0) = S \setminus B \\ 0 & \text{otherwise} \end{cases}$$

• Such dichotomus valuations can be represented by (B,a)

Theorem The OPTIMAL SOCIAL LAW problem for dichotomous valuations can be decided in polynomial time.

 Integer approace 	programming is one of the most successful and widely used the solving computationally hard optimisation problems
• We sho linear p	w how the optimal social law problem can be <mark>formulated as an integ</mark> r <mark>ogram (ILP)</mark>
• The ILP	correctly synthesises optimal social laws

	ILP			
r S	maximize: $\sum_{(\phi_i, x_i) \in \mathcal{F}} \tau(\phi_i, s_0) \cdot x_i - \sum_{i=1}^{n} \tau(\phi_i, s_i) \cdot x_i - \sum_{i=1}$	(s,s')	$\eta_{0\in R} \eta(s,s') \cdot c(s,s')$	
s	ubject to constraints:			
	$ au(\psi,s)$	∈	$ \begin{cases} 0,1 \\ \forall \psi \in cl(\mathcal{F}), s \in S \end{cases} $	
	$\eta(s,s')$	\in	$ \begin{array}{l} \{0,1\} \\ \forall (s,s') \in R \end{array} $	
	$\sum_{s' \in next(s)} (1 - \eta(s, s'))$	\geq	$1 \\ \forall s \in S$	
	au(p,s)	=	$\begin{cases} 1 & \text{if } p \in \pi(s) \\ 0 & \text{otherwise} \\ \forall p \in \Phi \cap cl(\mathcal{F}), s \in S \end{cases}$	
	$ au(eg \psi,s)$	=	$\begin{array}{l} 1-\tau(\psi,s) \\ \forall \neg \psi \in cl(\mathcal{F}), s \in S \end{array}$	
	$ au(\psi ee \chi,s)$	\leq	$ \begin{aligned} \tau(\psi,s) + \tau(\chi,s) \\ \forall \psi \lor \chi \in cl(\mathcal{F}), s \in S \end{aligned} $	
	$ au(\psi ee \chi,s)$	\geq	$\begin{aligned} \tau(\psi, s) \\ \forall \psi \lor \chi \in cl(\mathcal{F}), s \in S \end{aligned}$	
	$ au(\psi ee \chi,s)$	\geq	$ \begin{aligned} \tau(\chi,s) \\ \forall \psi \lor \chi \in cl(\mathcal{F}), s \in S \end{aligned} $	

ILP

maximize:	`	· · · · ·			
$\sum_{(\phi_i, x_i) \in \mathcal{F}} \tau(\phi_i, s_0) \cdot x_i - \sum_{i=1}^{n} \tau(\phi_i, x_i) \cdot x_i - \sum_{i=1}^{n} \tau(\phi_i,$	(s,s')	$)\in R^{\eta(s, \epsilon')}$	$g(\psi,s)$	E	$\{0,1\} \forall E \square \psi \in cl(\mathcal{F}), s \in S$
subject to constraints:			$h(\psi,s,s')$	\in	$ \{0,1\} \\ \forall E \square \psi \in cl(\mathcal{F}), s \in S, s' \in next(s) $
$ au(\psi,s)$	E	$\begin{cases} 0,1 \\ \forall \psi \in \epsilon \end{cases}$	$\tau(E \Box \psi, s)$	\leq	$\tau(\psi, s) \\ \forall E \ \Box \ \psi \in cl(\mathcal{F}), \ s \in S$
$\eta(s,s')$	E	$ \begin{array}{c} \{0,1\} \\ \forall (s,s') \\ 1 \end{array} $	$\tau(E \Box \psi, s)$	\leq	$g(\psi, s)$ $\forall E \ \exists \psi \in cl(\mathcal{F}) \ s \in S$
$\sum_{s' \in next(s)} (1 - \eta(s, s'))$	2	$\forall s \in S$	$\tau(E \Box \psi, s)$	\geq	$1 - \left(\left(1 - \tau(\psi, s) \right) + \left(1 - g(\psi, s) \right) \right)$
au(p,s)	=	$\begin{cases} 1 & 1 \\ 0 & c \\ \forall p \in \Phi \end{cases}$	$h(\psi,s,s')$	\leq	$\forall E \square \psi \in cl(\mathcal{F}), s \in S$ $1 - \eta(s, s')$ $\forall E \square \psi \in cl(\mathcal{F}), s \in S, s' \in next(s)$
$ au(eg \psi,s)$	=	$\begin{array}{l} 1-\tau(\psi\\ \forall \neg\psi \in \end{array}$	$h(\psi,s,s')$	\leq	$\tau(E \Box \psi, s')$ $\forall E \Box \psi \in cl(\mathcal{F}), s \in S, s' \in next(s)$
$ au(\psi ee \chi,s)$	\leq	$ \begin{array}{c} \tau(\psi,s) \\ \forall \psi \lor \chi \end{array} $	$h(\psi,s,s')$	\leq	$1 - (\eta(s,s') + (1 - \tau(E \Box \psi, s')))$ $\forall E \Box \psi \in cl(\mathcal{E}) s \in S s' \in next(s)$
$ au(\psi \lor \chi,s)$	\geq	$ \begin{array}{c} \tau(\psi,s) \\ \forall \psi \lor \chi \end{array} $	$g(\psi,s)$	\leq	$\sum_{s' \in next(s)} h(\psi, s, s')$
$ au(\psi ee \chi,s)$	2	$\begin{array}{c} \tau(\chi,s) \\ \forall \psi \lor \chi \end{array}$	$g(\psi,s)$	\geq	$orall \mathbf{E} oxdot \psi \in cl(\mathcal{F}), s \in S$ $h(\psi, s, s')$
					$\forall E \ \Box \ \psi \in cl(\mathcal{F}), \ s \in S, \ s' \in next(s)$

Monday, January 16, 12

Conclusions

- Trade-offs between costs and benefits of implementing social laws -> optimisation problem
- With feature set representation: computationally hard
 - We show how to solve it using ILP
 - Identified some less complex instances
- Future work: classes of Kripke structures/feature sets vs. classes of ILPs known to be efficiently solvable

Mechanism Design

Contents

Optimal Social Laws
 Mechanism Design

 Introduction
 The value of social laws
 Social Choice Rules
 Mechanisms

 References

Optimal Social Laws	Mechanism Design ●○○○○○○○○○○	References
Introduction		
Mechanism Design		

- Up to now we have assumed that some social law is designed or synthesised by a designer
- We now look at how we can let *the agents come up with a social law*
- Key question: given their individual preferences/goals, how can they decide on a social law that (in some sense) makes them collectively better off compared to the status quo?
- To answer this question, we turn to social choice theory, which have studied the design of mechanisms for collective desicion making
- Key properly of such mechanisms: incentive compatibility

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

3

- We use a more sophisticated goal model here
- Each agent has a set of goals in the form of weighted formulas

 $\gamma = \{(\varphi_1, x_1), \ldots, (\varphi_k, x_k)\}$

where each x_i is a real number

No consistency requirements

Optimal Social Laws	Mechanism Design ⊙ooooooooooo	References o
The value of social laws		
The value of social laws		

A goal set:

$$\gamma = \{(\varphi_1, \mathbf{x}_1), \ldots, (\varphi_k, \mathbf{x}_k)\}$$

Let:

$$egin{aligned} & m{v}_\gamma(m{K}) = \sum m{x}: (arphi, m{x}) \in \gamma\&m{K} \models arphi \ & m{v}_\gamma(m{K}, \eta) = m{v}_\gamma(m{K} \dagger \eta) - m{v}_\gamma(m{K}) \end{aligned}$$

the value of *K* according to γ the increase of value an agent with γ as goals would get if η was implemented

Optimal Social Laws	Mechanism Design ○○○○●○○○○○○○○	References o
Social Choice Rules		
Social choice rules		

A social choice rule for social laws is a function f mapping a model K and one goal set γ_i for each agent i to a social law

$$f(K, \gamma_1, \ldots, \gamma_n)$$

One possible social choice rule is maximising social welfare:

 $f_{sw}(K, \gamma_1, \ldots, \gamma_n) = \arg \max_{\eta} \sum_{i=1}^n v_i(K \dagger \eta)$

Optimal Social Laws	Mechanism Design	References o
Social Choice Rules		
Example cont.		
$\gamma_{1} = \{ (A \bigcirc A \diamondsuit p_{1}, 4), (E [\gamma_{2} = \{ (\neg A \bigcirc A \diamondsuit p_{1}, 3), (A \bigcirc A \bowtie p_{1}, 3) \} \}$	$[p_1,2)\}$ $[p_1 \rightarrow E \Diamond p_2),1)\}$	$f_{sw}(K,\gamma_1,\gamma_2)=\eta_2$

η_i	(s,s)	(s, t)	(<i>t</i> , <i>s</i>)	(t,t)	$v_1(K_0,\eta_i)$	$v_2(K_0, \eta_i)$
1	0	0	0	0	0	0
2	0	0	0	1	4	-3
3	0	0	1	0	0	0
4	0	1	0	0	4	-4
5	0	1	0	1	4	-4
6	0	1	1	0	4	-4
7	1	0	0	0	-2	0
8	1	0	0	1	2	-3
9	1	0	1	0	-2	0

References

Social Choice Rules

Computing max social welfare

How hard is it to compute f_{sw} ?

Optimal Social Laws	Mechanism Design	References o
Social Choice Rules		
Computing max social w	velfare	

Theorem

Computing f_{sw} is FP^{NP}-complete.

- *f_{nash}*: maximising the Nash product, i.e., select the product-maximising social law
- f_{nash} is equally hard to compute as f_{sw}
- Both f_{sw} and f_{nash} are Pareto-optimal (there is no social law that is better for all agents compared to the social law selected by the rule)

Direct implementation of, e.g., X = sw:

- Severy agent *i* ∈ A declares to the mechanisms a set of goals *γ̂_i*.
- 2 The mechanism computes $\eta^* = f_X(K, \hat{\gamma}_1, \dots, \hat{\gamma}_n)$.
- The social η* is chosen, and every agent i ∈ A pays v_i(K † η*) to the mechanism (if v_i(K † η*) < 0, then the payment is from the mechanism to the agent).

- hiding goals
- misrepresenting goal weight
- o phantom goals

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへの

Optimal Social Laws	Mechanism Design ○○○○○○○○○○●○	References o
Mechanisms		
Incentive Compatibl	e Mechanisms	

Variant of the Vickrey-Clarke-Groves (VCG) mechanism:

- Every agent $i \in A$ declares a set of goals $\hat{\gamma}_i$.
- 2 Compute $\eta^* = f_{sw}(K, \hat{\gamma}_1, \dots, \hat{\gamma}_i, \dots, \hat{\gamma}_n)$
- Social law η* is chosen, and every agent i ∈ A pays p_i computed as follows. First, let η' denote the social law that would have been chosen had agent i declared goals γ_i = Ø and every other agent had made the same declaration:

$$\eta' = f_{sw}(K, \hat{\gamma_1}, \ldots, \emptyset, \ldots, \hat{\gamma_n})$$

 $\boldsymbol{p}_i = \boldsymbol{s} \boldsymbol{w}_{-i}(\boldsymbol{K} \dagger \eta', \hat{\gamma_1}, \dots, \emptyset, \dots, \hat{\gamma_n}) - \boldsymbol{s} \boldsymbol{w}_{-i}(\boldsymbol{K} \dagger \eta^*, \hat{\gamma_1}, \dots, \hat{\gamma_i}, \dots, \hat{\gamma_n})$

$$sw_{-i}(K, \gamma_1, \ldots, \gamma_n) = \sum_{j \in A(j \neq i)} v_j(K)$$

Mechanism Design

References

Mechanisms

Incentive Compatible Mechanisms

Variant of the Vickrey-Clarke-Groves (VCG) mechanism:

- Every agent $i \in A$ declares a set of goals $\hat{\gamma}_i$.
- 2 Compute $\eta^* = f_{sw}(K, \hat{\gamma_1}, \dots, \hat{\gamma_i}, \dots, \hat{\gamma_n})$
- Social law η* is chosen, and every agent i ∈ A pays p_i computed as follows. First, let η' denote the social law that would have been chosen had agent i declared goals γ_i = Ø and every other agent had made the same declaration:

$$\eta' = f_{sw}(K, \hat{\gamma_1}, \ldots, \emptyset, \ldots, \hat{\gamma_n})$$

 $\boldsymbol{p}_i = \boldsymbol{s} \boldsymbol{w}_{-i}(\boldsymbol{K} \dagger \eta', \hat{\gamma_1}, \dots, \emptyset, \dots, \hat{\gamma_n}) - \boldsymbol{s} \boldsymbol{w}_{-i}(\boldsymbol{K} \dagger \eta^*, \hat{\gamma_1}, \dots, \hat{\gamma_i}, \dots, \hat{\gamma_n})$

Theorem

The above mechanism is incentive compatible. That is, using this mechanism, an agent $i \in A$ can do no better than declaring $\hat{\gamma}_i = \gamma_i$.

Optimal Social Laws	Mechanism Design	References ○
Contents		

Oplimal Social	La

Optimal Obtial Law

References

Mechanism Design

Some references I

T. Ågotnes and M. Wooldridge.

Optimal social laws. In Proceedings of the Ninth International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010), Toronto, Canada, May 2010.

Thomas Ågotnes, Wiebe van der Hoek, and Michael Wooldridge. Normative system design as social choice. Unpublished manuscript, 2009.

