Social Laws for Multi-Agent Systems: Logic and Games

Lecture 4: Coordinating Self-Interested Agents

Thomas Ågotnes¹

¹Department of Information Science and Media Studies University of Bergen, Norway

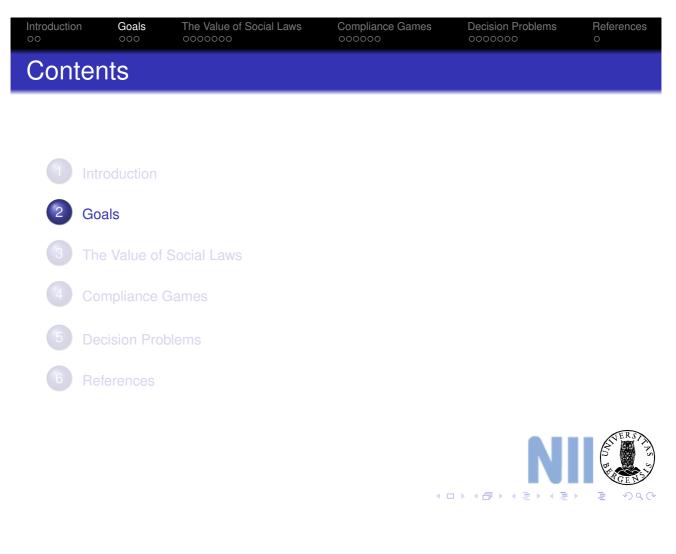
NII Tokyo 10 January 2012

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

æ

Sac

Introduction	Goals	The Value of Social Laws	Compliance Games	Decision Problems	References o
Conte	nts				
1 In	troduction				
2 G	oals				
3 т	ne Value of	Social Laws			
4 C	ompliance	Games			
5 D	ecision Pro	blems			
6 R	eferences				
					AVERJ AS


- Key idea: design the social law so that *compliance* is in everybody's interests
- For this, we need a model of everybody's preferences
- Here we model preferences as a a *prioritised list* of goal formulae.

Introduction ○●	Goals	The Value of Social Laws	Compliance Games	Decision Problems	References o
Motivat	tion				

- A new norm is suggested
- Each agent can deside whether or not to commit to it, i.e., to always comply with it in the future
- Decision (commit/not commit): made design time, before the system "starts"
- Each agent has its own goals about the future of the system
- Is it rational to commit? Depends on what the other agents will do.
- \Rightarrow Game theoretic setting

Introduction	Goals ●○○	The Value of Social Laws	Compliance Games	Decision Problems	References o
Goals					

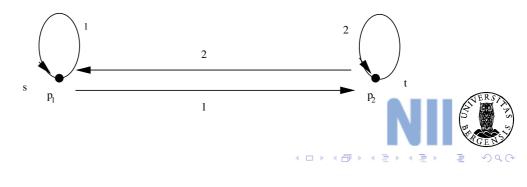
• We model agent's goals as a *prioritised list* of CTL formulae

$$\gamma = \langle \varphi_0, \dots, \varphi_k \rangle$$

- Goals further up (higher index) are more desired
- Kripke structure K satisfies a goal x in goal hierarchy γ iff

$$\mathbf{K} \models \gamma[\mathbf{X}]$$

 Assume: if a goal is satisfied, unconcerned about goals further down

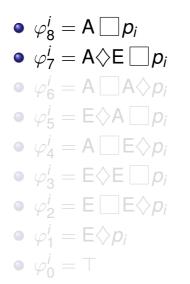


An Example	Introduction	Goals ○●○	The Value of Social Laws	Compliance Games	Decision Problems	References o
	An Exa	ample				

- A system with a single non-sharable resource, which is desired by two agents.
- We have two states, *s* and *t*, and two corresponding Boolean variables *p*₁ and *p*₂, which are mutually exclusive.

p_i means "agent i has control"

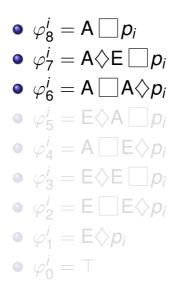
• Each agent has two possible actions, when in possession of the resource: either give it away, or keep it.


$$\gamma_i = \langle \varphi_0^i, \dots, \varphi_8^i \rangle$$

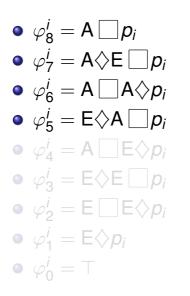
•
$$\varphi_8^i = A \square p_i$$

• $\varphi_7^i = A \diamondsuit E \square p_i$
• $\varphi_6^i = A \square A \diamondsuit p_i$
• $\varphi_5^i = E \diamondsuit A \square p_i$
• $\varphi_4^i = A \square E \diamondsuit p_i$
• $\varphi_3^i = E \diamondsuit E \square p_i$
• $\varphi_2^i = E \square E \diamondsuit p_i$
• $\varphi_1^i = E \diamondsuit p_i$
• $\varphi_1^i = E \diamondsuit p_i$

Introduction	Goals ○○●	The Value of Social Laws	Compliance Games	Decision Problems	References ○
Fxamr					


$$\gamma_i = \langle \varphi_0^i, \dots, \varphi_8^i \rangle$$

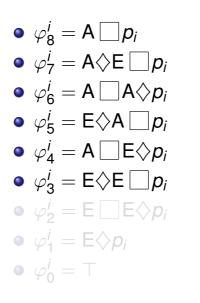
Introduction	Goals ○○●	The Value of Social Laws	Compliance Games	Decision Problems	References o
Examp	ole				


$$\gamma_i = \langle \varphi_0^i, \ldots, \varphi_8^i \rangle$$

Introduction	Goals ○○●	The Value of Social Laws	Compliance Games	Decision Problems	References o
Fxamr					

$$\gamma_i = \langle \varphi_0^i, \dots, \varphi_8^i \rangle$$

Introduction	Goals ○○●	The Value of Social Laws	Compliance Games	Decision Problems	References o
Examp	ole				


$$\gamma_i = \langle \varphi_0^i, \ldots, \varphi_8^i \rangle$$

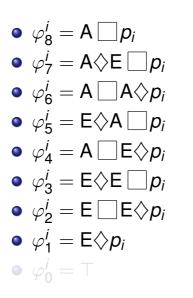
•
$$\varphi_8^i = A \square p_i$$

• $\varphi_7^i = A \diamondsuit E \square p_i$
• $\varphi_6^i = A \square A \diamondsuit p_i$
• $\varphi_5^i = E \diamondsuit A \square p_i$
• $\varphi_4^i = A \square E \diamondsuit p_i$
• $\varphi_3^i = E \oslash E \square p_i$
• $\varphi_2^i = E \square E \diamondsuit p_i$
• $\varphi_1^i = E \diamondsuit p_i$
• $\varphi_0^i = T$

Introduction	Goals ○○●	The Value of Social Laws	Compliance Games	Decision Problems	References o
Fxamr	hle				

$$\gamma_i = \langle \varphi_0^i, \ldots, \varphi_8^i \rangle$$

Introduction 00	Goals ○○●	The Value of Social Laws	Compliance Games	Decision Problems	References o
Examp	le				

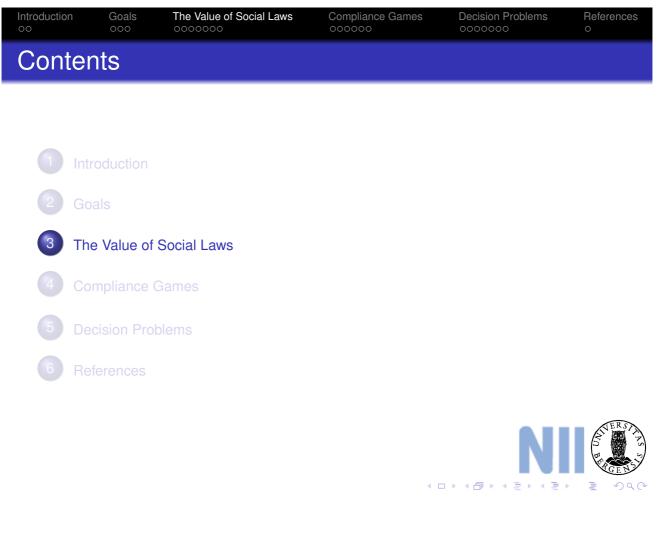

$$\gamma_i = \langle \varphi_0^i, \dots, \varphi_8^i \rangle$$

•
$$\varphi_8^i = A \square p_i$$

• $\varphi_7^i = A \diamondsuit E \square p_i$
• $\varphi_6^i = A \square A \diamondsuit p_i$
• $\varphi_5^i = E \diamondsuit A \square p_i$
• $\varphi_4^i = A \square E \diamondsuit p_i$
• $\varphi_3^i = E \diamondsuit E \square p_i$
• $\varphi_2^i = E \square E \diamondsuit p_i$
• $\varphi_1^i = E \diamondsuit p_i$
• $\varphi_1^i = E \diamondsuit p_i$

Introduction	Goals ○○●	The Value of Social Laws	Compliance Games	Decision Problems	References o
Fxamr					

$$\gamma_i = \langle \varphi_0^i, \dots, \varphi_8^i \rangle$$



Introduction	Goals ○○●	The Value of Social Laws	Compliance Games	Decision Problems	References o
Examp	ole				

$$\gamma_i = \langle \varphi_0^i, \dots, \varphi_8^i \rangle$$

•
$$\varphi_8^i = A \square p_i$$

• $\varphi_7^i = A \diamondsuit E \square p_i$
• $\varphi_6^i = A \square A \diamondsuit p_i$
• $\varphi_5^i = E \diamondsuit A \square p_i$
• $\varphi_4^i = A \square E \diamondsuit p_i$
• $\varphi_3^i = E \diamondsuit E \square p_i$
• $\varphi_2^i = E \square E \diamondsuit p_i$
• $\varphi_1^i = E \diamondsuit p_i$
• $\varphi_1^i = E \diamondsuit p_i$

Introduction	Goals	The Value of Social Laws ●ooooooo	Compliance Games	Decision Problems	References o
Ordina	l Utilit	ies			

• The *utility of a Kripke structure* for *i* is the highest index of any goal that is guaranteed for *i* in the Kripke structure.

$u_i(K) = \max\{j : 0 \le j \le |\gamma_i| \& K \models \gamma_i[j]\}$

• These are ordinal values: you can't compare utility between agents.

• The *utility of a Kripke structure* for *i* is the highest index of any goal that is guaranteed for *i* in the Kripke structure.

 $u_i(K) = \max\{j : 0 \le j \le |\gamma_i| \& K \models \gamma_i[j]\}$

• These are ordinal values: you can't compare utility between agents.

Introduction	Goals 000	The Value of Social Laws o●ooooo	Compliance Games	Decision Problems	References o
Examp	ole				
		$arphi_2^i = E \square E$ $arphi_4^i = A \square E$ $arphi_6^i = A \square A$ $arphi_8^i = A \square arphi$	$\varphi_{1}^{i} = E \langle \varphi_{1}^{i} = E \langle \varphi_{1}^{i} = E \langle \varphi_{1}^{i} = E \langle \varphi_{1}^{i} = E \rangle$ $\varphi_{1}^{i} = E \langle \varphi_{1}^{i} = E \langle \varphi_{2}^{i} \rangle$ $\varphi_{2}^{i} = E \langle \varphi_{2}^{i} \rangle$	$\begin{array}{c} & & \\$	ATVER STATES
			∢ ⊏	□▶ ∢∄▶ ∢≧▶ ∢≧	目 りへで

- We can now ask *how good* a social law is for an agent
- The value

 $u_i(K \dagger \eta)$

gives us agent i's utility of implementing the social law

Introduction	Goals 000	The Value of Social Laws ০০০●০০০	Compliance Games	Decision Problems	References o
Examp	ole				

 $\begin{array}{ll} \eta_0 = \emptyset & \eta_1 = \{(\boldsymbol{s}, \boldsymbol{s})\} & \eta_2 = \{(t, t)\} \\ \eta_3 = \{(\boldsymbol{s}, \boldsymbol{s}), (\boldsymbol{s}, t)\} & \eta_4 = \{(\boldsymbol{s}, t)\} & \eta_5 = \{(t, \boldsymbol{s})\} \\ \eta_6 = \{(\boldsymbol{s}, \boldsymbol{s}), (t, \boldsymbol{s})\} & \eta_7 = \{(t, t), (\boldsymbol{s}, t)\} & \eta_8 = \{(\boldsymbol{s}, t), (t, \boldsymbol{s})\} \end{array}$

			η_2						
$u_1(K \dagger \eta)$	4	4	7	6	5	0	0	7	0
$\begin{array}{c} u_1(K \dagger \eta) \\ u_2(K \dagger \eta) \end{array}$	4	7	4	6	0	5	7	0	0

・ロト ・日 ・ ・ ヨ ・

• Given *K*, *K*', *i*, measure the the *difference* in utility when moving from *K* to *K*':

$$\delta_i(K,K') = u_i(K') - u_i(K)$$

• The benefit for agent *i* of implementing η in *K* is then

 $\delta_i(K, K \dagger \eta)$

Introduction	Goals 000	The Value of Social Laws ○○○○●○○	Compliance Games	Decision Problems	References o
The Be	enefit	of a Social La	W		

• Given *K*, *K*', *i*, measure the the *difference* in utility when moving from *K* to *K*':

$$\delta_i(K,K') = u_i(K') - u_i(K)$$

• The benefit for agent *i* of implementing η in *K* is then

$$\delta_i(K, K \dagger \eta)$$

Introduction	Goals 000	The Value of Social Laws	Compliance Games	Decision Problems	References o
Examp	le				

	η_0	η_1	η_2	η_3	η_4	η_5	η_6	η_7	η_8
$u_1(K \dagger \eta)$	4	4	7	6	5	0	0	7	0
$\begin{array}{c} u_1(K \dagger \eta) \\ u_2(K \dagger \eta) \end{array}$	4	7	4	6	0	5	7	0	0

η	$\delta_1(\boldsymbol{K},\boldsymbol{K}\dagger\eta)$	$\delta_2(K, K \dagger \eta)$
η_{\emptyset}	0	0
η_1	0	3
η_2	3	0
η_3	2	2

Introduction	Goals 000	The Value of Social Laws ০০০০০●০	Compliance Games	Decision Problems	References o
Examp	ole				

	η_0	η_1	η_2	η_3	η_4	η_5	η_6	η_7	η_8
$u_1(K \dagger \eta)$	4	4	7	6	5	0	0	7	0
$\begin{array}{c} u_1(K \dagger \eta) \\ u_2(K \dagger \eta) \end{array}$	4	7	4	6	0	5	7	0	0

η	$\delta_1(K,K\dagger\eta)$	$\delta_2(K,K\dagger\eta)$
η_{\emptyset}	0	0
η_1	0	3
η_2	3	0
η_3	2	2

Universal and existential fragment of CTL, respectively:

$$\mu ::= \top | \boldsymbol{p} | \neg \boldsymbol{p} | \mu \lor \mu | A\mu | A \Box \mu | A(\mu \mathcal{U} \mu)$$

$$\varepsilon ::= \top | \boldsymbol{p} | \neg \boldsymbol{p} | \varepsilon \lor \varepsilon | E\varepsilon | E \Box \varepsilon | E(\varepsilon \mathcal{U} \varepsilon)$$

- If u_i(K) = n and γ_i[n] is universal, then δ_i(K, K † η) ≥ 0 for any social law η
- If $u_i(K \dagger \eta) = n$ for some social law η and $\gamma_i[n]$ is existential, then $\delta_i(K \dagger \eta, K) \ge 0$.

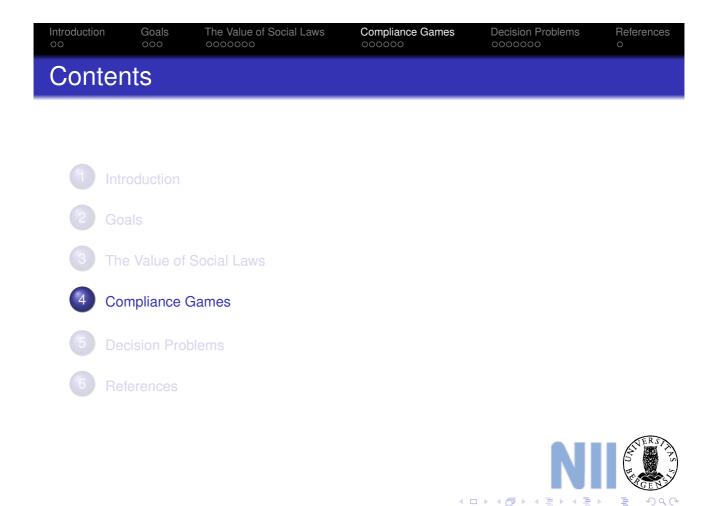
Introduction	Goals 000	The Value of Social Laws ০০০০০০০●	Compliance Games	Decision Problems	References o
Univer	sal ar	nd Existential (Goals		

Universal and existential fragment of CTL, respectively:

$$\mu ::= \top | \boldsymbol{p} | \neg \boldsymbol{p} | \mu \lor \mu | A\mu | A \Box \mu | A(\mu \mathcal{U} \mu)$$

$$\varepsilon ::= \top | \boldsymbol{p} | \neg \boldsymbol{p} | \varepsilon \lor \varepsilon | E\varepsilon | E \Box \varepsilon | E(\varepsilon \mathcal{U} \varepsilon)$$

- If u_i(K) = n and γ_i[n] is universal, then δ_i(K, K † η) ≥ 0 for any social law η
- If $u_i(K \dagger \eta) = n$ for some social law η and $\gamma_i[n]$ is existential, then $\delta_i(K \dagger \eta, K) \ge 0$.


Universal and existential fragment of CTL, respectively:

$$\mu ::= \top | \boldsymbol{p} | \neg \boldsymbol{p} | \mu \lor \mu | A\mu | A \Box \mu | A(\mu \mathcal{U} \mu)$$
$$\varepsilon ::= \top | \boldsymbol{p} | \neg \boldsymbol{p} | \varepsilon \lor \varepsilon | E\varepsilon | E \Box \varepsilon | E(\varepsilon \mathcal{U} \varepsilon)$$

- If $u_i(K) = n$ and $\gamma_i[n]$ is universal, then $\delta_i(K, K \dagger \eta) \ge 0$ for any social law η
- If $u_i(K \dagger \eta) = n$ for some social law η and $\gamma_i[n]$ is existential, then $\delta_i(K \dagger \eta, K) \ge 0$.

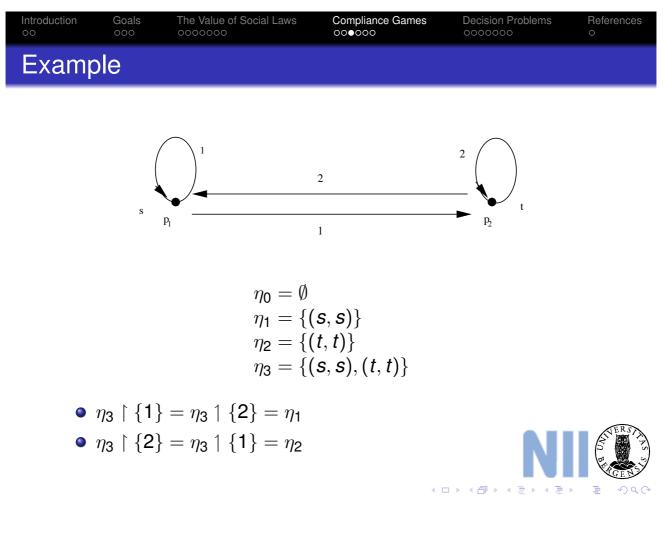
э

Setting	Introduction	Goals 000	The Value of Social Laws	Compliance Games ●ooooo	Decision Problems	References o
	Setting					

- Given:
 - Kripke structure K
 - Goals $\gamma_i = \langle \varphi_0^i, \dots, \varphi_{k_i}^i \rangle$ Social law η over K
- It is proposed η should be imposed
- Each agent must decide: should it commit to η or not
- Before the system "starts"

Introduction	Goals 000	The Value of Social Laws	Compliance Games ○●○○○○	Decision Problems	References o
Restric	ctions	on Social Lav	/S		

Define operators on social laws which correspond to groups of agents "defecting" from the social law.


$\eta \restriction C$

is the social law that is the same as η except that it only contains the arcs of η that correspond to the actions of agents in C.

$\eta \perp C$

denotes the social law that is the same as η except that it only contains the arcs of η that *do not* correspond to actions of agents in C.

Image: A image: A

Introduction 00	Goals 000	The Value of Social Laws	Compliance Games	Decision Problems	References o
Strate	gic Fo	rm Games			

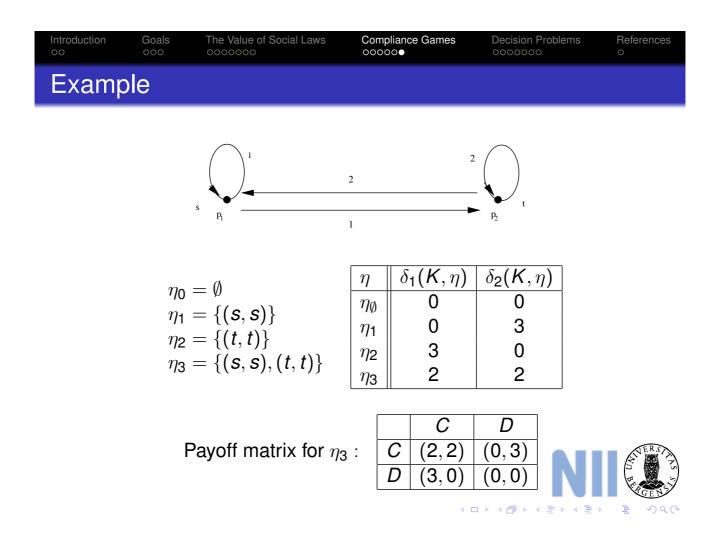
A game in strategic form :

 $\mathcal{G} = \langle \mathcal{AG}, \mathcal{S}_1, \dots, \mathcal{S}_n, \mathcal{U}_1, \dots, \mathcal{U}_n \rangle$ where:

 $\mathcal{AG} = \{1, \ldots, n\}$ is a set of players \mathcal{S}_i is the set of strategies for each agent $i \in \mathcal{AG}$ $\mathcal{U}_i : (\mathcal{S}_1 \times \cdots \times \mathcal{S}_n) \to \mathbb{R}$ is the utility function for agent $i \in \mathcal{AG}$

Given $\Sigma = \langle K, \gamma_1, \dots, \gamma_n, \eta \rangle$, the social law game \mathcal{G}_{Σ} is:

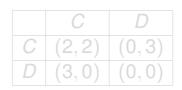
The agents \mathcal{AG} in \mathcal{G}_{Σ} are as in Σ .


Each agent *i* has just two strategies available to it:

C - comply with the norm system;

D – do not comply.

 $\mathcal{U}_i(S) = \delta_i(K, K \dagger (\eta \restriction \text{agents that play C in } S)).$



Introduction	Goals	The Value of Social Laws	Compliance Games	Decision Problems	References o
Conte	nts				
	troduction				
2 G	oals				
3 Tł	ne Value of	Social Laws			
4 C	ompliance	Games			
5 De	ecision Pro	blems			
6 R	eferences				
				Ν	AVERST AS
			∢ 1	⊐≻∢∄≻∢≧≻∢≧∣)
Introduction	Goals 000	The Value of Social Laws	Compliance Games	Decision Problems	References o

00	000	0000000	000000	000000	0
Individ	ually	Rational Socia	al Laws		

• A social law is individually rational if every agent would fare better if the social law was imposed than otherwise.

Example:

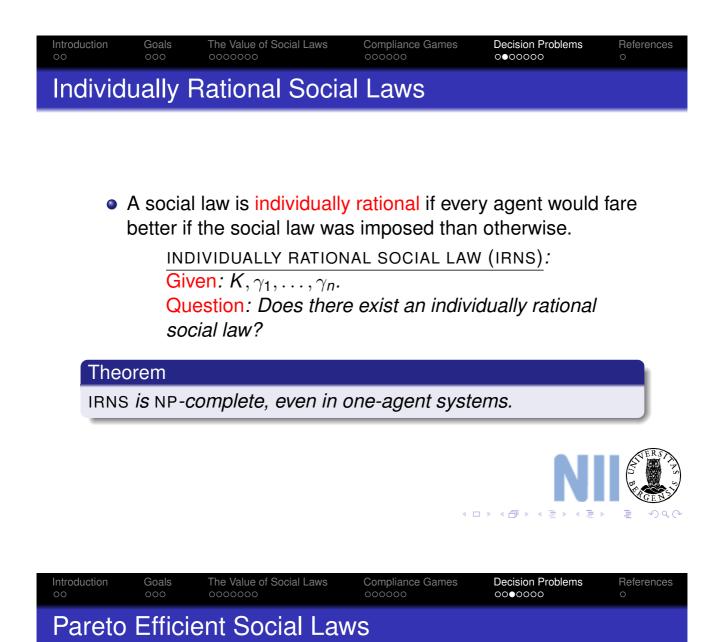
• A social law is individually rational if every agent would fare better if the social law was imposed than otherwise.

Example:

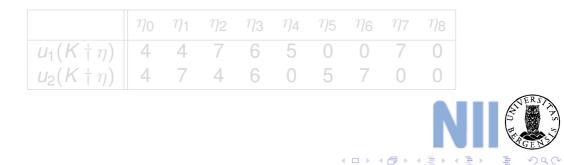
	С	D
С	(2,2)	(0,3)
D	(3,0)	(0,0)

Introduction	Goals 000	The Value of Social Laws	Compliance Games	Decision Problems o●ooooo	References o
Individ	ually	Rational Socia	al Laws		

• A social law is individually rational if every agent would fare better if the social law was imposed than otherwise.


INDIVIDUALLY RATIONAL SOCIAL LAW (IRNS):

Given: $K, \gamma_1, \ldots, \gamma_n$. Question: Does there exist an individually rational social law?


Theorem

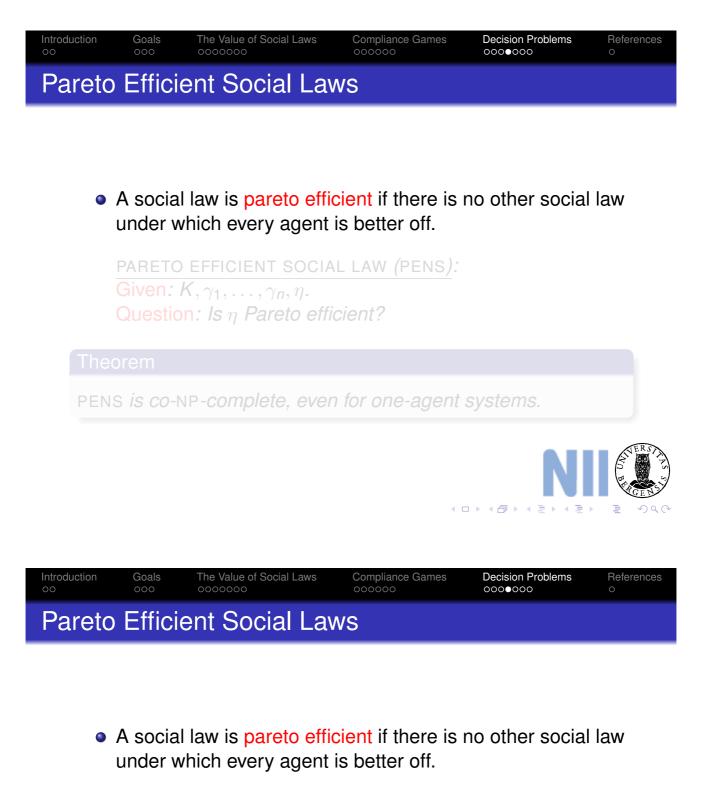
IRNS is NP-complete, even in one-agent systems.

- - A benign leader asks: *is it possible to make some agents better off* without *making anybody else worse off?*
 - A system is *Pareto efficient* if no such *Pareto improvements* are possible.
 - A social law is pareto efficient if there is no other social law under which every agent is better off.

Introduction	Goals	The Value of Social Laws	Compliance Games	Decision Problems	References o
Pareto	Effici	ent Social Lav	VS		

- A benign leader asks: *is it possible to make some agents better off* without *making anybody else worse off?*
- A system is *Pareto efficient* if no such *Pareto improvements* are possible.
- A social law is pareto efficient if there is no other social law under which every agent is better off.

$u_1(K \dagger \eta) u_2(K \dagger \eta)$	η_0	η_1	η_2	η_{3}	η_4	η_5	η_{6}	η_7	η_{8}
$U_1(K \dagger \eta)$	4	4	7	6	5	0	0	7	0
$U_2(K \dagger \eta)$	4	7	4	6	0	5	7	0	0

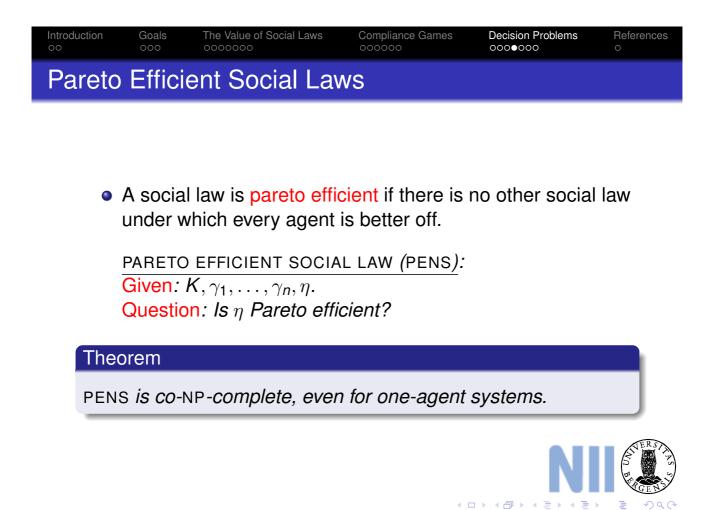

< ⊡ >

< 4 ₽ > < 3 > >

Introduction	Goals 000	The Value of Social Laws	Compliance Games	Decision Problems	References ○
Pareto	Effici	ent Social Lav	NS		

- A benign leader asks: *is it possible to make some agents better off* without *making anybody else worse off?*
- A system is *Pareto efficient* if no such *Pareto improvements* are possible.
- A social law is pareto efficient if there is no other social law under which every agent is better off.

	η_0	η_1	η_2	η_3	η_4	η_5	η_{6}	η_7	η_8
$u_1(K \dagger \eta)$	4	4	7	6	5	0	0	7	0
$\begin{array}{c} u_1(K \dagger \eta) \\ u_2(K \dagger \eta) \end{array}$	4	7	4	6	0	5	7	0	0



PARETO EFFICIENT SOCIAL LAW (PENS): Given: $K, \gamma_1, \dots, \gamma_n, \eta$. Question: Is η Pareto efficient?

heorem

PENS is co-NP-complete, even for one-agent systems.

Introduction Goals The Value of Social Laws Compliance Games Decision Problems of Social Laws Social L

• A social law is a Nash implementation if everyone complying is a Nash equilibrium \mathcal{G}_{Σ} .

Example: Pay-off matrix for η_3 :

	С	D
С	(2,2)	(0,3)
D	(3,0)	(0, 0)

Is η_3 a Nash implementation?

 A social law is a Nash implementation if everyone complying is a Nash equilibrium *G*_Σ.

Example: Pay-off matrix for η_3 :

	С	D
С	(2,2)	(0,3)
D	(3,0)	(0,0)

Is η_3 a Nash implementation?

Introduction	Goals 000	The Value of Social Laws	Compliance Games	Decision Problems	References o
Nash Implementation					

• A social law is a *Nash implementation* if everyone complying is a Nash equilibrium \mathcal{G}_{Σ} .

```
NASH IMPLEMENTATION (NI) :


Given: K, \gamma_1, \dots, \gamma_n.

Question: Does there exist a Nash implementation?
```

-heorem

NI is NP-complete, even for two-agent systems.

NASH IMPLEMENTABLE (NASH) : Given: $K, \gamma_1, \dots, \gamma_n, \varphi$. Question: Can φ be achieved through a Nash implementation?

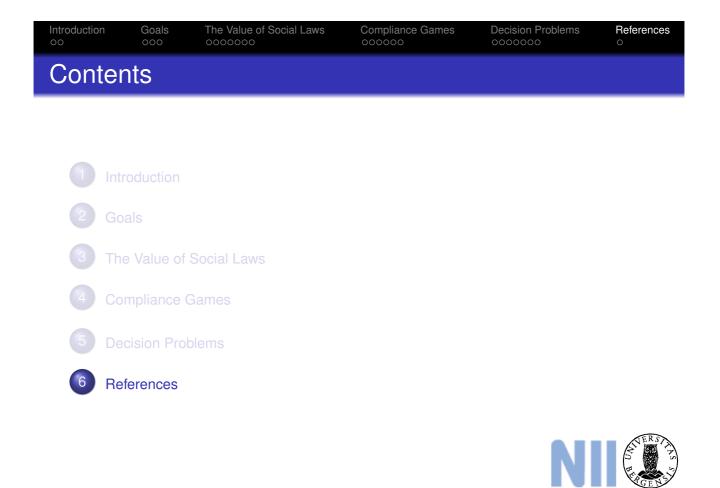
Theorem

NASH *is* NP*-complete.*

 Suppose a system designer has an *objective*, φ, and wants to know whether this objective is achievable via a Nash implementation.

NASH IMPLEMENTABLE (NASH) :

Given: $K, \gamma_1, \ldots, \gamma_n, \varphi$.


Question: Can φ be achieved through a Nash implementation?

Theorem

NASH *is* NP-complete.

・ロト ・回 ト ・ヨト ・ヨ

Introduction	Goals	The Value of Social Laws	Compliance Games	Decision Problems	References ●

Some references I

Thomas Ågotnes, Wiebe van der Hoek, and Michael Wooldridge. Normative system games. In M. Huhns and O. Shehory, editors, *Proceedings of the Sixth International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2007)*, pages 876–883. May 2007.

