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What Happens if Agents Don’t Comply?

An implicit assumption above is that agents will comply

with the rules we present them with.
In the real world, this is not the case: people murder,
commit adultery, steal, and bear false witness. . .
Why should multi-agent systems be any different?
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Why Wouldn’t Agent’s Comply?

Deliberately:
because they personally benefit
because they enjoy causing trouble

Accidentally:
bugs in the program, system crash
failed communication, misunderstanding
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Three Ways of Dealing with Non-Compliance

1 Try to design the social law to be robust against failure
2 Find out who the important agents are, and devote your

attention to them
3 Try to design the social law so that compliance is in

everybody’s interest (next lecture)
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Compliance:notation

⌘ � C

is the social law that is the same as ⌘ except that it only
contains the arcs of ⌘ that correspond to the actions of
agents in C.
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Design for Robustness

With this approach, we try to design the social law so that it

does not matter if some agents do not comply.
We make the social law robust against non-compliance.
Typical approach: include redundancy.
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Goals and Social Laws

We assume that there is a global goal in the form of a
logical formula

'

expressing how the designer wants the system to behave
The goal is typically not satisfied
Design a social law: identify a set of “illegal” transitions
such that the goal formula will be true if those transitions
never are followed
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Example
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Not all norms are created equal

There might be several effective social laws
Which one is better?
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Robustness

A social law is robust to the extent to which it remains

effective (i.e., the system goal is still satisfied) in the event

of non-compliance by some agents
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Example

Example
The system will not overheat as long as at least one sensor
works as it should and either one of the relief valves is working
as it should or the automatic shutdown is working as it should
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Robustness

We formalise three approaches to characterising robustness:
1 Identify coalitions whose compliance is necessary or

sufficient

2 Find the number of agents that we can tolerate
non-compliance from

3 Logical characterisations (later)
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Sufficiency

Let a model K , a norm ⌘ and an objective ' be given.
We say that C ✓ Ag are sufficient for ⌘ if the compliance of C

with ⌘ is effective, i.e., iff:

8C

0 ✓ Ag : (C ✓ C

0) ) [K † (⌘ � C

0) |= '].
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Sufficiency

Let a context K , a norm ⌘ and an objective ' be given.
We say that C ✓ Ag are sufficient for ⌘ if the compliance of C

with ⌘ is effective, i.e., iff:

8C

0 ✓ Ag : (C ✓ C

0) ) [K † (⌘ � C

0) |= '].

Note: we can have that:

K † (⌘ � C) |= E}happy(d) & K † (⌘ � C [ {d}) 6|= E}happy(d)
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Example

a c c

a a b b

p p

Take the system above, with ' = E iA i
p.

1 {a} is sufficient
2

K † (⌘ � {b}) |= ';
3 none of {b}, {c} or {b, c} is sufficient
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Necessity

We say that C are necessary for ⌘ iff C must comply with ⌘ in
order for it to be effective, i.e., iff:

8C

0 ✓ A : [K † (⌘ � C

0) |= '] ) (C ✓ C

0).
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Necessity
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Some Results

General C-sufficiency
Deciding C-sufficiency is co-NP-complete

Universal C-sufficiency
Deciding C-sufficiency for universal objectives is polynomial
time decidable
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Universal and Existential Goals

Universal and existential fragment of CTL, respectively:

µ ::= > | p | ¬p | µ _ µ | Aµ | A µ | A(µU µ)
" ::= > | p | ¬p | " _ " | E" | E " | E("U ")
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Some properties

Some Properties
There might be no sufficient coalitions.
There is always a necessary coalition: the empty coalition.
There might be disjoint sufficient coalitions.
There might be no non-empty necessary coalitions.
If C is necessary and C

0 sufficient, then C ✓ C

0.
. . .
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Feasibility of Robust Systems

Given a goal ', and a ‘reliable’ coalition C:

C-sufficient feasibility

9⌘ : (K † ⌘ |= ') ^
8C

0 ✓ Ag : (C ✓ C

0) ) [K † (⌘ � C

0) |= '].

Theorem

Deciding C-sufficient feasibility is ⌃p

2-complete.
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k -sufficiency

Let K and ' be given.

Definition
Where k � 1, we say a social law ⌘ is k-sufficient if the
compliance of any arbitrary k agents is sufficient to ensure that
the social law is effective with respect to '. Formally, this
involves checking that:

8C ✓ A : (|C| � k) ) (K † (⌘ � C)) |= '.
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Example

Example (thanks to Dov Gabbay)
A senate with n members. Social law: follow the party line. The
social law is robust in the sense that we can tolerate k rebels
and still function towards our goals.
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k -necessity

Let K and ' be given.

Definition
⌘ is k -necessary (w.r.t. K , ') iff:

8C ✓ A : (K † (⌘ � C)) |= ' ) (|C| � k).
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Resilience

We define the resilience of a social law ⌘ (w.r.t. K , ') as the
largest number of non-compliant agents the system can
tolerate.

Definition
the resilience is the largest number k , k  n, such that

8C ✓ A : (|C|  k) ) (K † (⌘ � A \ C)) |= '.

where n is the number of agents.
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Results

Theorems
Deciding k -sufficiency, k -necessity and resilience is
co-NP-complete.
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Focus on the Important Agents

Both sufficient and neccessary agents are important.
However, agents who (for example) are neither sufficient or
necessary might have a very different degree of
importance

For example, it might be that one agent ensures the goal
when he joins almost all coalitions, but not all (hence, she is
not sufficient)

It makes sense to consider in more detail how important

agents are to success/failure of the social law; how likely it
is that their compliance or otherwise will affect the
objective.
We can then devote our attention to the most important

agents.
Idea: use power indices developed in coalitional game
theory/voting theory for this purpose.
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Coalitional Games

A cooperative game is a pair

G = hA, ⌫i

where
A = {1, . . . , n} is a set of players, and
⌫ : 2A ! R is the characteristic function of the game, which
assigns to every set of agents a numeric value, intuitively
corresponding to the utility that this group of agents could
obtain if they chose to cooperate.

A game is simple if it gives 0,1 values only: if ⌫(C) = 0
then C is losing, if ⌫(C) = 1 then C are winning.
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Power Indices

Power indices characterise the influence that an agent has,
by measuring how effective the agent is at turning a losing
coalition into a winning coalition.
Agent i is said to be a swing player for C ✓ A if C is not
winning but C [ {i} is.
Define a function swing(C, i) (where i 62 C) so that this
function returns 1 if i is a swing player for C, and 0
otherwise, i.e.,

swing(C, i) =

⇢
1 if ⌫(C) = 0 and ⌫(C [ {i}) = 1
0 otherwise.
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The Banzhaf Score

The Banzhaf score for i , �
i

, is number of coalitions for
which i is a swing player:

�
i

=
X

C✓A\{i}

swing(C, i). (1)
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The Banzhaf Measure

The Banzhaf measure, denoted µ
i

, is the probability that i

would be a swing player for a coalition chosen at random
from 2A\{i}:

µ
i

=
�

i

2n�1 (2)
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The Banzhaf Index

Banzhaf index for i 2 A, denoted by ⌘
i

, is the proportion of
coalitions for which i is a swing to the total number of
swings in the game:

⌘
i

=
�

iP
j2A

�
j

(3)
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Power in Social Laws

Idea: measure the power of agents by complying/not
complying with a norm.
Given K , ⌘,', we obtain a simple coalitional game:

⌫
S

(C) =

⇢
1 if K † (⌘ � C) |= '
0 otherwise.

In other words, a coalition “wins” if their compliance to ⌘
(and the others not complying) will make ' hold.
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Complexity of the Banzhaf Score

Theorem

Given a social system S = hK ,', ⌘i and agent i in K ,

computing the Banzhaf score �
i

for i in the corresponding

coalitional game G(S) is #P-complete.

This is a very negative result: worse than NP hardness.
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Complexity of Computing Power

Theorem

Given a social system S = hK ,', ⌘i and agent i in K , the

following problems are #P-equivalent: computing the Banzhaf

index ⌘
i

; and computing the Banzhaf measure µ
i

.
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Dummies and Dictators

We say that a player i is a dictator in a social system if µ
i

= 1,
and a dummy if µ

i

= 0.

Theorem

Given a social system S = hK ,', ⌘i and agent i in K , the

following problems are co-NP-complete: checking whether

�
i

= 0; checking whether µ
i

= 0; checking whether µ
i

= 1;

checking whether ⌘
i

= 0; checking whether ⌘
i

= 1; checking

whether &
i

= 0; and checking whether &
i

= 1.
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Measuring Relative Power

Given two agents i , j 2 A and a power index M 2 {�, µ,�, &}, we
write i �

M

j to mean M

i

> M

j

.

Theorem
Given a social system S = hK ,', ⌘i, agents i , j in K , and power

measure M 2 {�, µ,�, &}, it is NP-hard to decide whether i �
M

j.
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Tractable Instances: Minimal Social Laws

A social law is minimal if no transitions can be eliminated
without the norm failing.

Theorem

If S = hK ,', ⌘i is a minimal social system, then for each

i 2 A(⌘), the values �
i

, µ
i

, ⌘
i

, and &
i

are polynomial time

computable.
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Tractable Instances: Bridge Social Laws

Suppose your objective is to keep p true.

p

p
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Tractable Instances: Bridge Social Laws

A bridge social law is an easily identified type of minimal
system: where we have a single transition (the bridge)
leading to a “bad region” in which the objective is never
satisfied.
Bridge norms are minimal, and can be easily identified.
Certain tree-like systems can also be seen to have minimal
social laws, and easily computable power indices.
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