
General Introduction Kripke Models CTL ATL Model checking

Social Laws for Multi-Agent Systems: Logic and Games

Lecture 1: Specifying and verifying
state-transition models

Thomas Ågotnes1

1Department of Information Science and Media Studies
University of Bergen, Norway

NII Tokyo 13 December 2011

General Introduction Kripke Models CTL ATL Model checking

Contents

1 General Introduction

2 Kripke Models

3 CTL

4 ATL

5 Model checking

General Introduction Kripke Models CTL ATL Model checking

Lecturer

Professor Thomas Ågotnes
University of Bergen, Norway

14500 students, 3200 faculty and staff

Visiting NII 3 December 2011 – 4 February 2012
Contact: thomas.agotnes@infomedia.uib.no

General Introduction Kripke Models CTL ATL Model checking

About the lecture series

Goals:
To motivate and introduce the idea of social laws , or
normative systems, as a coordination mechanism for
multi-agent systems
To motivate the idea of using logic in this context, and in
particular temporal logics and cooperation logics in the
formal specification and verifaction of social laws

A social law is a restriction on the behaviour of individual
agents, which ensures some desired global properties of the
behaviour of the system

General Introduction Kripke Models CTL ATL Model checking

About the lecture series

1 Specifying and veryfying state-transition models for
multi-agent systems

2 Social laws for coordination
3 Dealing with non-compliance
4 Coordinating self-interested agents
5 Social laws design as an optiomisation problem, and as an

optimisation problem
6 Reasoning about social laws
7 Strategic reasoning under imperfect information

General Introduction Kripke Models CTL ATL Model checking

Contents

1 General Introduction

2 Kripke Models

3 CTL

4 ATL

5 Model checking

General Introduction Kripke Models CTL ATL Model checking

Multi-agent systems

Consists of several autonomous agents that interact
An agent is an entity that perceives the enviroment, and
acts
An agent can be an (artificially) intelligent agent program
But can also be a simple component of some system, like
a thermostate

General Introduction Kripke Models CTL ATL Model checking

Formal models of multi-agent systems

State-transition models
Quite common abstraction

Ex.: UML

p

...

...

p

General Introduction Kripke Models CTL ATL Model checking

Example: microwave oven

a

b started
error c

closed
d closed

warm

e

started
closed
error

f

started
closed

g

started
closed
warm

General Introduction Kripke Models CTL ATL Model checking

Computations

Every path in the tree obtained from a given initial state
represents a possible computation

General Introduction Kripke Models CTL ATL Model checking

Computations: example

a

b

b c

c

a fe

g

d

a c d

closed

started, closed

started, closed, warm

closed, warm

closed closed, warm

started, error

started, closed,
error

started,
error closed

General Introduction Kripke Models CTL ATL Model checking

Adding agents

If the system is a multi-agent system, the states are global
states
We label the transitions with the name of the agent that
causes the transition by executing some action
This assumes asynchronous action

p

...

...

a

a

a

b

b

ba
p

General Introduction Kripke Models CTL ATL Model checking

Formally

An agent-labelled Kripke structure (over Φ) is a 6-tuple:

K = 〈S,S0,R,Ag, α,V 〉, where

S is a finite, non-empty set of states,
S0 ⊆ S (S0 6= ∅) is the set of initial states;
R ⊆ S × S is a total (each state has a successor) binary
transition relation on S;
Ag = {1, . . . ,n} is the set of agents;
α : R → Ag labels each transition in R with an agent
V : S → 2Φ labels states with a set of propositional atoms

Note: simplifying assumption: single agent execute single
action in each state (interleaved concurrency)

General Introduction Kripke Models CTL ATL Model checking

Contents

1 General Introduction

2 Kripke Models

3 CTL

4 ATL

5 Model checking

General Introduction Kripke Models CTL ATL Model checking

Introduction

Consider this statement:
The microwave can only start without error if it is
closed

Is it true in our microwave model?
This statement is true in some models (including ours), but
false in others
We want to be able to check whether such properties hold
or not automatically
Thus we need a precise way of writing down statements
For that we can use modal logic, and in particular
Computation Tree Logic (CTL)

General Introduction Kripke Models CTL ATL Model checking

CTL: language

The language of CTL (CTL formulas) is defined as follows:
Propositional atoms such as p or started are formulas
Formulas can be combined using propositional connectives
such as ∧ (and), ∨ (or), ¬ (not),→ (implication), etc.
We can construct new formulas by putting temporal
connectives in front of an existing formula. If ϕ and ψ are
formulas, then the following as also formulas:

E iϕ on some path, ϕ is true next
E(ϕU ψ) on some path, ϕ until ψ
E♦ϕ on some path, eventually ϕ
E ϕ on some path, always ϕ
A iϕ on all paths, ϕ is true next
A(ϕU ψ) on all paths, ϕ until ψ
A♦ϕ on all paths, eventually ϕ
A ϕ on all paths, always ϕ

General Introduction Kripke Models CTL ATL Model checking

CTL: language

The language of CTL (CTL formulas) is defined as follows:
Propositional atoms such as p or started are formulas
Formulas can be combined using propositional connectives
such as ∧ (and), ∨ (or), ¬ (not),→ (implication), etc.
We can construct new formulas by putting temporal
connectives in front of an existing formula. If ϕ and ψ are
formulas, then the following as also formulas:

E iϕ on some path, ϕ is true next
E(ϕU ψ) on some path, ϕ until ψ
E♦ϕ on some path, eventually ϕ
E ϕ on some path, always ϕ
A iϕ on all paths, ϕ is true next
A(ϕU ψ) on all paths, ϕ until ψ
A♦ϕ on all paths, eventually ϕ
A ϕ on all paths, always ϕ

General Introduction Kripke Models CTL ATL Model checking

Examples

E ierror (it is possible that there is an error in the next
state)
¬A ierror (it is not necessary that there is an error in the
next state)
E♦warm (it is possible that the oven will eventually be
warm)
A ¬(warm ∧ error) (it is necessary that the microwave
can never be both warm and have an error)
A♦closed (it is necessary that the microwave will
eventually be closed)
A(¬warmU closed) (it is necessary that the microwave is
cold until it is closed)
A (¬closed → ¬E i(start ∧ ¬error)) (the microwave
can only start without error if it is closed)

General Introduction Kripke Models CTL ATL Model checking

Examples

E ierror (it is possible that there is an error in the next
state)
¬A ierror (it is not necessary that there is an error in the
next state)
E♦warm (it is possible that the oven will eventually be
warm)
A ¬(warm ∧ error) (it is necessary that the microwave
can never be both warm and have an error)
A♦closed (it is necessary that the microwave will
eventually be closed)
A(¬warmU closed) (it is necessary that the microwave is
cold until it is closed)
A (¬closed → ¬E i(start ∧ ¬error)) (the microwave
can only start without error if it is closed)

General Introduction Kripke Models CTL ATL Model checking

Examples

E ierror (it is possible that there is an error in the next
state)
¬A ierror (it is not necessary that there is an error in the
next state)
E♦warm (it is possible that the oven will eventually be
warm)
A ¬(warm ∧ error) (it is necessary that the microwave
can never be both warm and have an error)
A♦closed (it is necessary that the microwave will
eventually be closed)
A(¬warmU closed) (it is necessary that the microwave is
cold until it is closed)
A (¬closed → ¬E i(start ∧ ¬error)) (the microwave
can only start without error if it is closed)

General Introduction Kripke Models CTL ATL Model checking

Examples

E ierror (it is possible that there is an error in the next
state)
¬A ierror (it is not necessary that there is an error in the
next state)
E♦warm (it is possible that the oven will eventually be
warm)
A ¬(warm ∧ error) (it is necessary that the microwave
can never be both warm and have an error)
A♦closed (it is necessary that the microwave will
eventually be closed)
A(¬warmU closed) (it is necessary that the microwave is
cold until it is closed)
A (¬closed → ¬E i(start ∧ ¬error)) (the microwave
can only start without error if it is closed)

General Introduction Kripke Models CTL ATL Model checking

Examples

E ierror (it is possible that there is an error in the next
state)
¬A ierror (it is not necessary that there is an error in the
next state)
E♦warm (it is possible that the oven will eventually be
warm)
A ¬(warm ∧ error) (it is necessary that the microwave
can never be both warm and have an error)
A♦closed (it is necessary that the microwave will
eventually be closed)
A(¬warmU closed) (it is necessary that the microwave is
cold until it is closed)
A (¬closed → ¬E i(start ∧ ¬error)) (the microwave
can only start without error if it is closed)

General Introduction Kripke Models CTL ATL Model checking

Examples

E ierror (it is possible that there is an error in the next
state)
¬A ierror (it is not necessary that there is an error in the
next state)
E♦warm (it is possible that the oven will eventually be
warm)
A ¬(warm ∧ error) (it is necessary that the microwave
can never be both warm and have an error)
A♦closed (it is necessary that the microwave will
eventually be closed)
A(¬warmU closed) (it is necessary that the microwave is
cold until it is closed)
A (¬closed → ¬E i(start ∧ ¬error)) (the microwave
can only start without error if it is closed)

General Introduction Kripke Models CTL ATL Model checking

Examples

E ierror (it is possible that there is an error in the next
state)
¬A ierror (it is not necessary that there is an error in the
next state)
E♦warm (it is possible that the oven will eventually be
warm)
A ¬(warm ∧ error) (it is necessary that the microwave
can never be both warm and have an error)
A♦closed (it is necessary that the microwave will
eventually be closed)
A(¬warmU closed) (it is necessary that the microwave is
cold until it is closed)
A (¬closed → ¬E i(start ∧ ¬error)) (the microwave
can only start without error if it is closed)

General Introduction Kripke Models CTL ATL Model checking

Examples

A (A♦enabled) (the process is infinitely often enabled)
A (A♦deadlock) (the process will eventually be in a
permanent deadlock)
A (E♦restart) (it is always possible to get to the
restart-state)
A ¬(c1 ∧ c2) (safety)
A (t1 → ♦c1) (liveness)

General Introduction Kripke Models CTL ATL Model checking

Examples

A (A♦enabled) (the process is infinitely often enabled)
A (A♦deadlock) (the process will eventually be in a
permanent deadlock)
A (E♦restart) (it is always possible to get to the
restart-state)
A ¬(c1 ∧ c2) (safety)
A (t1 → ♦c1) (liveness)

General Introduction Kripke Models CTL ATL Model checking

Examples

A (A♦enabled) (the process is infinitely often enabled)
A (A♦deadlock) (the process will eventually be in a
permanent deadlock)
A (E♦restart) (it is always possible to get to the
restart-state)
A ¬(c1 ∧ c2) (safety)
A (t1 → ♦c1) (liveness)

General Introduction Kripke Models CTL ATL Model checking

Examples

A (A♦enabled) (the process is infinitely often enabled)
A (A♦deadlock) (the process will eventually be in a
permanent deadlock)
A (E♦restart) (it is always possible to get to the
restart-state)
A ¬(c1 ∧ c2) (safety)
A (t1 → ♦c1) (liveness)

General Introduction Kripke Models CTL ATL Model checking

Examples

A (A♦enabled) (the process is infinitely often enabled)
A (A♦deadlock) (the process will eventually be in a
permanent deadlock)
A (E♦restart) (it is always possible to get to the
restart-state)
A ¬(c1 ∧ c2) (safety)
A (t1 → ♦c1) (liveness)

General Introduction Kripke Models CTL ATL Model checking

Formal interpretation

Given a Kripke model K , a state s in K and a CTL formula ϕ,

K , s |= ϕ

means that ϕ is true (or satisfied) in state s of K .

General Introduction Kripke Models CTL ATL Model checking

E m
E i= for some path, in the next state

General Introduction Kripke Models CTL ATL Model checking

Example: E m
a

b

b c

c

a fe

g

d

a c d

closed

started, closed

started, closed, warm

closed, warm

closed closed, warm

started, error

started, closed,
error

started,
error closed

sK:

K , s |= E ierror

General Introduction Kripke Models CTL ATL Model checking

A m
A i= for all paths, in the next state

General Introduction Kripke Models CTL ATL Model checking

Example: A m
a

b

b c

c

a fe

g

d

a c d

closed

started, closed

started, closed, warm

closed, warm

closed closed, warm

started, error

started, closed,
error

started,
error closed

sK:

¬warm¬warm

K , s |= A i¬warm

General Introduction Kripke Models CTL ATL Model checking

E♦

E♦ = for some path, in some future state

General Introduction Kripke Models CTL ATL Model checking

Example: E♦

a

b

b c

c

a fe

g

d

a c d

closed

started, closed

started, closed, warm

closed, warm

closed closed, warm

started, error

started, closed,
error

started,
error closed

sK:

K , s |= E♦warm

General Introduction Kripke Models CTL ATL Model checking

A♦

A♦ = for all paths, in some future state

General Introduction Kripke Models CTL ATL Model checking

Example: A♦

a

b

b c

c

a fe

g

d

a c d

closed

started, closed

started, closed, warm

closed, warm

closed closed, warm

started, error

started, closed,
error

started,
error closed

sK:

K , s |= A♦closed

General Introduction Kripke Models CTL ATL Model checking

E

E = for some path, in all future states

General Introduction Kripke Models CTL ATL Model checking

Example: E

a

b

b c

c

a fe

g

d

a c d

closed

started, closed

started, closed, warm

closed, warm

closed closed, warm

started, error

started, closed,
error

started,
error closed

sK:

¬warm

¬warm

K , s |= E ¬warm

General Introduction Kripke Models CTL ATL Model checking

A

A = for all paths, in all future states

General Introduction Kripke Models CTL ATL Model checking

Example: A

a

b

b c

c

a fe

g

d

a c d

closed

started, closed

started, closed, warm

closed, warm

closed closed, warm

started, error

started, closed,
error

started,
error closed

sK:

K , s |= A ¬(warm ∧ error)

General Introduction Kripke Models CTL ATL Model checking

AU

AU = for all paths, ψ becomes true in some future states and ϕ
is true in all states before that

General Introduction Kripke Models CTL ATL Model checking

Example: U

a

b

b c

c

a fe

g

d

a c d

closed

started, closed

started, closed, warm

closed, warm

closed closed, warm

started, error

started, closed,
error

started,
error closed

sK:

¬warm

¬warm

K , s |= A(¬warm U closed)

General Introduction Kripke Models CTL ATL Model checking

Example: nesting

a

b

b c

c

a fe

g

d

a c d

closed

started, closed

started, closed, warm

closed, warm

closed closed, warm

started, error

started, closed,
error

started,
error closed

sK:

EO (closed ∧ error)

K , s |= E iE i(closed ∧ error)

General Introduction Kripke Models CTL ATL Model checking

Notation

We use
K |= ϕ

to denote the fact that K , s |= ϕ for all initial states s ∈ S0.

General Introduction Kripke Models CTL ATL Model checking

Some equivalences

ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ)

A iϕ ≡ ¬E i¬ϕ
E♦ ≡ E(> U ϕ)

A ϕ ≡ ¬E♦¬ϕ
A(ϕU ψ) ≡ ¬(E(¬ψ U ¬(ϕ ∨ ψ)) ∨ E ¬ψ)

That means that we only need the operators
{>,¬,∧,E ,EU ,E i}!

General Introduction Kripke Models CTL ATL Model checking

Some equivalences

ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ)

A iϕ ≡ ¬E i¬ϕ
E♦ ≡ E(> U ϕ)

A ϕ ≡ ¬E♦¬ϕ
A(ϕU ψ) ≡ ¬(E(¬ψ U ¬(ϕ ∨ ψ)) ∨ E ¬ψ)

That means that we only need the operators
{>,¬,∧,E ,EU ,E i}!

General Introduction Kripke Models CTL ATL Model checking

Some equivalences

ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ)

A iϕ ≡ ¬E i¬ϕ
E♦ ≡ E(> U ϕ)

A ϕ ≡ ¬E♦¬ϕ
A(ϕU ψ) ≡ ¬(E(¬ψ U ¬(ϕ ∨ ψ)) ∨ E ¬ψ)

That means that we only need the operators
{>,¬,∧,E ,EU ,E i}!

General Introduction Kripke Models CTL ATL Model checking

Some equivalences

ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ)

A iϕ ≡ ¬E i¬ϕ
E♦ ≡ E(> U ϕ)

A ϕ ≡ ¬E♦¬ϕ
A(ϕU ψ) ≡ ¬(E(¬ψ U ¬(ϕ ∨ ψ)) ∨ E ¬ψ)

That means that we only need the operators
{>,¬,∧,E ,EU ,E i}!

General Introduction Kripke Models CTL ATL Model checking

Some equivalences

ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ)

A iϕ ≡ ¬E i¬ϕ
E♦ ≡ E(> U ϕ)

A ϕ ≡ ¬E♦¬ϕ
A(ϕU ψ) ≡ ¬(E(¬ψ U ¬(ϕ ∨ ψ)) ∨ E ¬ψ)

That means that we only need the operators
{>,¬,∧,E ,EU ,E i}!

General Introduction Kripke Models CTL ATL Model checking

Some equivalences

ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ)

A iϕ ≡ ¬E i¬ϕ
E♦ ≡ E(> U ϕ)

A ϕ ≡ ¬E♦¬ϕ
A(ϕU ψ) ≡ ¬(E(¬ψ U ¬(ϕ ∨ ψ)) ∨ E ¬ψ)

That means that we only need the operators
{>,¬,∧,E ,EU ,E i}!

General Introduction Kripke Models CTL ATL Model checking

Contents

1 General Introduction

2 Kripke Models

3 CTL

4 ATL

5 Model checking

General Introduction Kripke Models CTL ATL Model checking

ATL

Alternating-time Temporal Logic (ATL) is an agentized
extension of CTL introduced by Alur and colleagues (1997)
The language of ATL is obtained by replacing A and E with
〈〈C〉〉 where C ⊆ Ag and Ag is the finite set of all agents in
the system
Intuitively,

〈〈C〉〉♦ϕ
means that

C can cooperate to ensure that ϕ becomes true sometime
in the future no matter what the other agents do (and
similarly for h, , U)
C has a strategy to enforce that ϕ becomes true sometime
in the future
Is used to reason about game-like distributed systems

General Introduction Kripke Models CTL ATL Model checking

Example

〈〈merkel , sarkozy〉〉♦¬crisis

Merkel and Sarkozy can cooperate to ensure that at some point
in the future the crisis is over

General Introduction Kripke Models CTL ATL Model checking

Example

〈〈Ann〉〉 〈〈Bob〉〉♦win

General Introduction Kripke Models CTL ATL Model checking

ATL and CTL

CTL is contained in ATL:
A ≡ 〈〈∅〉〉
E ≡ 〈〈Ag〉〉

General Introduction Kripke Models CTL ATL Model checking

Definition (ATL models)

A concurrent game structure is a tuple M = 〈Ag,S, π,Act ,d ,o〉,
where:

Ag: a finite set of all agents
S: a set of states
π: a valuation of propositions
Act : a finite set of (atomic) actions
d : Ag × S → ℘(Act) defines actions available to an agent
in a state
o: a deterministic transition function that assigns outcome
states q′ = o(q, α1, . . . , αk) to states and tuples of actions

A strategy for agent i is a function f : S → Act such that

f (s) ∈ d(i , s)

General Introduction Kripke Models CTL ATL Model checking

Definition (ATL models)

A concurrent game structure is a tuple M = 〈Ag,S, π,Act ,d ,o〉,
where:

Ag: a finite set of all agents
S: a set of states
π: a valuation of propositions
Act : a finite set of (atomic) actions
d : Ag × S → ℘(Act) defines actions available to an agent
in a state
o: a deterministic transition function that assigns outcome
states q′ = o(q, α1, . . . , αk) to states and tuples of actions

A strategy for agent i is a function f : S → Act such that

f (s) ∈ d(i , s)

General Introduction Kripke Models CTL ATL Model checking

Definition (ATL models)

A concurrent game structure is a tuple M = 〈Ag,S, π,Act ,d ,o〉,
where:

Ag: a finite set of all agents
S: a set of states
π: a valuation of propositions
Act : a finite set of (atomic) actions
d : Ag × S → ℘(Act) defines actions available to an agent
in a state
o: a deterministic transition function that assigns outcome
states q′ = o(q, α1, . . . , αk) to states and tuples of actions

A strategy for agent i is a function f : S → Act such that

f (s) ∈ d(i , s)

General Introduction Kripke Models CTL ATL Model checking

Definition (ATL models)

A concurrent game structure is a tuple M = 〈Ag,S, π,Act ,d ,o〉,
where:

Ag: a finite set of all agents
S: a set of states
π: a valuation of propositions
Act : a finite set of (atomic) actions
d : Ag × S → ℘(Act) defines actions available to an agent
in a state
o: a deterministic transition function that assigns outcome
states q′ = o(q, α1, . . . , αk) to states and tuples of actions

A strategy for agent i is a function f : S → Act such that

f (s) ∈ d(i , s)

General Introduction Kripke Models CTL ATL Model checking

Definition (ATL models)

A concurrent game structure is a tuple M = 〈Ag,S, π,Act ,d ,o〉,
where:

Ag: a finite set of all agents
S: a set of states
π: a valuation of propositions
Act : a finite set of (atomic) actions
d : Ag × S → ℘(Act) defines actions available to an agent
in a state
o: a deterministic transition function that assigns outcome
states q′ = o(q, α1, . . . , αk) to states and tuples of actions

A strategy for agent i is a function f : S → Act such that

f (s) ∈ d(i , s)

General Introduction Kripke Models CTL ATL Model checking

Definition (ATL models)

A concurrent game structure is a tuple M = 〈Ag,S, π,Act ,d ,o〉,
where:

Ag: a finite set of all agents
S: a set of states
π: a valuation of propositions
Act : a finite set of (atomic) actions
d : Ag × S → ℘(Act) defines actions available to an agent
in a state
o: a deterministic transition function that assigns outcome
states q′ = o(q, α1, . . . , αk) to states and tuples of actions

A strategy for agent i is a function f : S → Act such that

f (s) ∈ d(i , s)

General Introduction Kripke Models CTL ATL Model checking

Definition (ATL models)

A concurrent game structure is a tuple M = 〈Ag,S, π,Act ,d ,o〉,
where:

Ag: a finite set of all agents
S: a set of states
π: a valuation of propositions
Act : a finite set of (atomic) actions
d : Ag × S → ℘(Act) defines actions available to an agent
in a state
o: a deterministic transition function that assigns outcome
states q′ = o(q, α1, . . . , αk) to states and tuples of actions

A strategy for agent i is a function f : S → Act such that

f (s) ∈ d(i , s)

General Introduction Kripke Models CTL ATL Model checking

Example: Robots and Carriage

1 2

1

2

1

2

pos0

pos1pos2

q0

q2 q1

pos0

pos1

wait,wait

wait,wait wait,wait

push,push

push,push push,push

pu
sh

,w
ai

t

push,wait

push,w
ait

wait,push

pos2

w
ait,pushw

ai
t,p

us
h

General Introduction Kripke Models CTL ATL Model checking

Example: Robots and Carriage

q0

q2 q1

pos0

pos1

wait,wait

wait,wait wait,wait

push,push

push,push push,push

pu
sh

,w
ai

t

push,wait

w
ait,push

push,w
ait

wait,push

w
ai

t,p
us

h

pos2

pos0 → 〈〈1〉〉 ¬pos1

General Introduction Kripke Models CTL ATL Model checking

Example: Robots and Carriage

q0

q2 q1

pos0

pos1

wait,wait

wait,wait wait,wait

push,push

push,push push,push

pu
sh

,w
ai

t

push,wait
push,w

ait
wait,push

pos2

w
ait,pushw

ai
t,p

us
h

pos0 → 〈〈1〉〉 ¬pos1

General Introduction Kripke Models CTL ATL Model checking

Example: Robots and Carriage

q0

q2 q1

pos0

pos1

wait,wait

wait,wait wait,wait

push,push

push,push push,push

pu
sh

,w
ai

t

push,wait

w
ait,push

push,w
ait

wait,push

w
ai

t,p
us

h

pos2

wait

waitpush

pos0 → 〈〈1〉〉 ¬pos1

General Introduction Kripke Models CTL ATL Model checking

Example: Robots and Carriage

q0

q2 q1

pos0

pos1

wait,waitwait

wait,wait wait,waitwait

push,push

push,push push,push

pu
sh

,w
ai

t

pu
sh

push,wait

w
ait,push

w
ait

push,w
ait

wait,push

w
ai

t,p
us

h

w
ai

t

pos2

pos0 → 〈〈1〉〉 ¬pos1

General Introduction Kripke Models CTL ATL Model checking

Example: Robots and Carriage

q0

q2 q1

pos0

pos1

wait,waitwait

wait,wait wait,waitwait

push,push

push,push push,push

pu
sh

,w
ai

t

pu
sh

push,wait

w
ait,push

w
ait

push,w
ait

wait,push

w
ai

t,p
us

h

w
ai

t

pos2

pos0 → 〈〈1〉〉 ¬pos1

General Introduction Kripke Models CTL ATL Model checking

Example: Robots and Carriage

q0

q2 q1

pos0

pos1

wait,waitwait,wait

wait,wait wait,waitwait,wait

push,push

push,pushpush,push push,push

pu
sh

,w
ai

t

pu
sh

,w
ai

t

push,wait

w
ait,push

w
ait,push

push,w
ait

wait,push

w
ai

t,p
us

h

w
ai

t,p
us

h

pos2

pos0 → 〈〈1〉〉 ¬pos1

General Introduction Kripke Models CTL ATL Model checking

Example: Robots and Carriage

q0

q2 q1q1

pos0

pos1pos1

wait,waitwait,wait

wait,wait wait,waitwait,wait

push,push

push,pushpush,push push,push

pu
sh

,w
ai

t

pu
sh

,w
ai

t

push,wait

w
ait,push

w
ait,push

push,w
ait

wait,push

w
ai

t,p
us

h

w
ai

t,p
us

h

pos2

pos0 → 〈〈1〉〉 ¬pos1

General Introduction Kripke Models CTL ATL Model checking

Contents

1 General Introduction

2 Kripke Models

3 CTL

4 ATL

5 Model checking

General Introduction Kripke Models CTL ATL Model checking

Verification

Verification means to make sure that the design of a
(hardware or software) system is correct
Ariane 5: the world’s most expensive software bug
(exploded 37 seconds after takeoff)

General Introduction Kripke Models CTL ATL Model checking

Formal specification and verification

Traditional verification methods such as simulation or
testing are not exhaustive, they don’t explore all possible
behaviours of the system
Formal verification methods do, and they can therefore
give a guarantee that the design does not have any errors
We specify the properties we want to check that the
system has as a formula in some formal logic

Example: A (t1 → A♦c1) (liveness)
Two main techniques:

Proof-based: describe also the system using formal logic,
and try to find a formal proof that the property follows
Model-based: describe the system using a mathematical
structure, and use an algorithm to check whether the
property holds

General Introduction Kripke Models CTL ATL Model checking

Reasoning: satisfiability

The satisfiability problem is as follows:
Given a formula ϕ is there some interpretation that makes
ϕ true?
How hard is the satisfiability problem?

For Coalition Logic: PSPACE-complete (Pauly, 2001).
For CTL: EXPTIME-complete – a lower bound for ATL.

General Introduction Kripke Models CTL ATL Model checking

Reasoning with ATL: Satisfiability

Theorem (van Drimmelen, 2003)
For any fixed set of agents Ag, satisfiability for ATL formulae
over Ag is EXPTIME-complete.

But if the set of agents is not fixed, van Drimmelen’s algorithm
is 2EXPTIME.

Theorem (Walther, Lutz, Wolter, Wooldridge, 2006)

The satisfiability problem for arbitrary ATL formulae is
EXPTIME-complete (and hence no harder than CTL).

General Introduction Kripke Models CTL ATL Model checking

Reasoning with ATL: Satisfiability

Theorem (van Drimmelen, 2003)
For any fixed set of agents Ag, satisfiability for ATL formulae
over Ag is EXPTIME-complete.

But if the set of agents is not fixed, van Drimmelen’s algorithm
is 2EXPTIME.

Theorem (Walther, Lutz, Wolter, Wooldridge, 2006)

The satisfiability problem for arbitrary ATL formulae is
EXPTIME-complete (and hence no harder than CTL).

General Introduction Kripke Models CTL ATL Model checking

Reasoning with ATL: Satisfiability

Theorem (van Drimmelen, 2003)
For any fixed set of agents Ag, satisfiability for ATL formulae
over Ag is EXPTIME-complete.

But if the set of agents is not fixed, van Drimmelen’s algorithm
is 2EXPTIME.

Theorem (Walther, Lutz, Wolter, Wooldridge, 2006)

The satisfiability problem for arbitrary ATL formulae is
EXPTIME-complete (and hence no harder than CTL).

General Introduction Kripke Models CTL ATL Model checking

Model checking

Successfull model-based verification technique
Input: K , ϕ
Output: yes if K |= ϕ

Effective algorithms exist

General Introduction Kripke Models CTL ATL Model checking

Model checking

Model
checker

A□ (A◇ enabled)

"no"

Input: model and formula Output: "no" and a counterexample
(sequence of states where the
property does not hold)

"yes"

General Introduction Kripke Models CTL ATL Model checking

Model checking: complexity

Model checking CTL and ATL can be done in time polynomial in
the size of the formula and the number of states in the model

... if the model is explicitly represented

General Introduction Kripke Models CTL ATL Model checking

Model checking: complexity

Model checking CTL and ATL can be done in time polynomial in
the size of the formula and the number of states in the model

... if the model is explicitly represented

General Introduction Kripke Models CTL ATL Model checking

Explicit representation

Explicit representation is often not feasible
Number of states increase exponentially with the number
of independent variables

v1=0
v2=0

v1=1
v2=0

v1=0
v2=1

v1=1
v2=1

2 independent variables number of variables

number of states

General Introduction Kripke Models CTL ATL Model checking

Model representation languages

Practical model checkers use high-level model
specification languages.
Reactive modules: a rule-based language for model
specification. . .

module toggle controls x
init
[]> -> x ′ := >
[]> -> x ′ := ⊥
update
[]x-> x ′ := ⊥
[](¬x)->x ′ := >

General Introduction Kripke Models CTL ATL Model checking

Practical model checking

The complexity of model checking depends on the specification
language and the representation of the model.

Theorem (van der Hoek, Lomuscio, Wooldridge, AAMAS06)
For Reactive Modules models, model checking is exactly as
hard as theorem proving in the corresponding language:

ATL EXPTIME-complete
Coalition Logic PSPACE-complete
prop logic co-NP-complete

	General Introduction
	Kripke Models
	CTL
	ATL
	Model checking

