Detecting and Avoiding Atomicity Violations

Luis Ceze, University of Washington

Safe MultiProcessing Architectures at the University of Washington

A multithreaded voting machine

Can we go further than determinism?

- •Concurrency bugs manifest when *bad interleavings* happen
- •We ought to be able to *dynamically avoid* these bad interleavings
 - User would not experience fault, system could collect more data about bug
- Dynamic bug avoidance nicely complements determinism
- •Challenges:
 - Avoid bugs without second-guessing programmer (*preserve semantics*)
 - Not affect performance significantly

Data Races

•A definition:

- two accesses, at least one is a write
- from different threads
- no happens before relationship between them (synchronization)

Detecting Data Races with Happens-Before

Locking Discipline Violation

Atomicity Violations

•'08 study by Lu, et al. showed that more than 2/3 of nondeadlock concurrency bugs are atomicity violations

sallipa

Bug Avoidance from 10,000' (Atom-Aid)

1.Detect patterns of buggy interleavings

2. Steer the execution away from likely bad interleavings

→ Why HW? Performance, transparency.

Implicit Atomicity

•Arbitrary blocks of dynamic instructions that execute atomically and in isolation

•Interleaving can only occur at quantum boundaries

•Quantum size/boundaries can be adjusted arbitrarily, so interleavings can be changed while preserving memory semantics

Many recent Implicit Atomicity proposals: DMP, BulkSC, Implicit Transactions, ASO, ...

Implicit Atomicity and Atomicity Violations

10

Probabilistic Avoidance of Violations

•If a violation is exposed and a certain interleaving occurs, the bug manifests itself

• If P_{exposed} could be reduced to 0 the violation would never manifest itself

•Implicit Atomicity reduces P_{exposed} so some violations are naturally hidden

Natural Hiding of Implicit Atomicity

Implicit Atomicity alone survives a large proportion of violations in these applications

Atom-Aid: Smart Chunking

•Atom-Aid survives even more violations by dynamically adjusting quanta

•Atom-Aid infers where atomic regions in an execution should be

Detecting Likely Atomicity Violations

Begin Monitoring ctr, break quanta before accesses to ctr.

Serializability

An interleaving is unserializable if there is no equivalent sequential execution

•Read and Write to counter variable A should be atomic

•If a write from another thread interleaves, there is no equivalent sequential execution

•There are several types of unserializable interleaving

Active Hiding in Atom-Aid

Atom-Aid hides virtually 100% of instances of the violations in these applications

Hiding Bugs in Full Applications

•Atom-Aid hides most instances of the violations in the applications we evaluated

•Atom-Aid's performance impact is negligible, on top of performance impact of implicit atomicity

•Atom-Aid requires no modifications to software and no code annotations

Wait, Is Atom-Aid just Hiding Bugs?

- It also produces a report to the programmer pinpointing bugs
 - False positives not great, but not terrible either
- •Avoidance in fact also gives a longer debugging window
- •Can leverage data from avoidance in the field to aid debugging
 - Clients can "phone home" with information about dynamic avoidance

Conclusions

- •DMP is a new multiprocessor architecture that provides determinism for arbitrary shared memory programs
 - Execution is repeatable, simplifies debugging, testing, replicating and deployment
 - Leverages existing architectural techniques
 - Performance very close to nondeterministic execution
- Atom-Aid provides both resilience and debugability of atomicity violations
- •Determinism and dynamic bug avoidance are worthwhile and achievable goals

• Architecture plays a key role in both

Current/Future Work

- Bug Avoidance/Detection
 - addressing *multi-variable* instances
 - **beyond** atomicity violations
 - reducing *false positives* in reports

A Bit of How I See Architecture **Research Now**

Safe MultiProcessing Architectures at the University of Washington

HW/SW Interface: tremendous opportunity!

• Multicores:

• synchronization primitives, concurrency debugging, bug avoidance

• Dynamic languages:

- very hard to generate efficient native code for these languages: performance, power problems.
- can we make python, ruby, etc faster? Architecture can help!

•Security:

• taint propagation, hardware-enforced rules

•Application-specific support:

- ML, spam, image recognition, ultra-fancy HCI, etc...
- •Accelerators: even more interesting interface issues
 - what are the primitives, data-formats, communication mechanisms
- •Remember, we have a **lot of transistors** to spend!
 - as long as not active all the time :)

New Domains

•Very large systems

• manageability, accounting, performance monitoring, energy

•Very small systems

- really really small, think blood-cell sized, or virus-sized (in-body)
- bare minimum set of services, massive communication latency, ultra low power
- look at Pistol et. al this ASPLOS

• Mobile devices

 who isn't addicted to the iPhone? Can you make it crash less often and make the battery last longer?

•Should we look at **analog computation** again?

look at St Amant et. al MICRO'08

How I see Architecture Research now

•Find a **problem**

- •How much of it can you address with software only?
- •Think: wouldn't it be nice if the HW did this or that?
 - makes OS/compilers/PL even more interesting
 - what is the simplest way you can provide that functionality?

•My current style:

- Architecture support for better software
- A little bit of simple HW support with many uses in SW
- a couple of examples of projects going on at UW ...

