Detecting and Avoiding Atomicity
Violations

Luis Ceze, University of Washington

S a Safe MultiProcessing Architectures
at the University of Washington

A multithreaded voting machine

thread O thread 1

while (nore votes) { while (nore_votes) {

| oad t <- votes load t <- votes
t ++ t ++

ot A~ + ~N vint A ~+t Avr A + ~N vt A

We want bugs to come back during

development but go away post-deployment.

votes == votes == votes ==

* sappa

Can we go further than determinism?

eConcurrency bugs manifest when bad interleavings happen

*\We ought to be able to dynamically avoid these bad
interleavings

¢ User would not experience fault, system could collect more data about bug
= Dynamic bug avoidance nicely complements determinism

eChallenges:

¢ Avoid bugs without second-guessing programmer (preserve semantics)

¢ Not affect performance significantly

* sampa

Data Races

e A definition:
e twoO accesses, at least one is a write
e from different threads

* no happens before relationship between them (synchronization)

* sampa

Detecting Data Races with Happens-
Before

lock (mu) ;

v

v=v+1;

v

unlock (mu) ;

yzy%ﬂz

lock (mu) ;

v

v=v+1;

v

unlock (mu) ;

* sampa

Locking Discipline Violation

P samip

Atomicity Violations

thread O thread 1

while (nore_votes) { while (nore_votes) {
| ock(l) | ock(1)
|l oad t <- votes load t <- votes
unl ock() unl ock(1)

t++ t++

| ock(]) | ock(])

store t -> votes store t -> votes
unl ock(1) unl ock(1)

®‘08 study by Lu, et al. showed that more than 2/3 of non-
deadlock concurrency bugs are atomicity violations

* sampa

Bug Avoidance from 10,000’ (Atom-Aid)

1.Detect patterns of buggy interleavings
2.Steer the execution away from likely bad interleavings

= \Why HW? Performance, transparency.

* sampa

Implicit Atomicity

*Arbitrary blocks of dynamic
instructions that execute
atomically and in isolation

*Interleaving can only occur at
quantum boundaries

eQuantum size/boundaries can be
adjusted arbitrarily, so interleavings
can be changed while preserving

Memory semantics Many recent Implicit Atomicity proposals:
DMP, BulkSC, Implicit Transactions, ASO, ...

* sappa

Implicit Atomicity and Atomicity Violations

* Atomicity violations can be exposed * Atomicity violations can be hidden

Exposed violations are split
Hidden violations execute
atomically within a quantum

between quantum, so they can
be interleaved

*Exposed violations may
manifest themselves if
unserializably interleaved

* sampa

*[f a violation is hidden
avoidance is guaranteed

Probabilistic Avoidance of Violations

*[f a violation is exposed and a certain interleaving occurs, the bug
manifests itself

Pmanifestation = Pes posed X Pbad interleaving

®[f Pexposed could be reduced to O the violation would never manifest itself

*Implicit Atomicity reduces Pexposed SO some violations are naturally hidden

g sampa

Natural Hiding of Implicit Atomicity

100

BankAccount
MySQL-extract
LogProc&Sweep
StringBuffer
CircularList
Apache-extract
BankAccount2

7 © LogProc&Sweep2
. CifcularListZ ’

750 1000 1500 2000 4000 6000 8000

Q Size

Percent of Violations Hidden

Implicit Atomicity alone survives a large proportion of violations in these applications

sampa

12

Atom-Aid: Smart Chunking

Begin quanta as closely as
possible to the first
instruction of a violation

e Atom-Aid survives even more
violations by dynamically
adjusting quanta

Increased likelihood that
entire violation is inside one
quatum

e Atom-Aid infers where atomic
regions in an execution should be

g sampa

Detecting Likely Atomicity Violations

T2

Atom-Aid Monitors an address, ctr, if:

|.A thread makes 2 “nearby” accesses to A

'
O

4

2.Another thread has “recently” accessed A

3.The accesses are potentially unserializable

Begin Monitoring Ct r, break quanta before

accessesto Ctr.

’ sampa

Serializability

An interleaving is unserializable if there is no equivalent sequential execution

*Read and Write to counter
variable A should be atomic

e|f a2 write from another thread
interleaves, there is no
equivalent sequential execution

*There are several types of
unserializable interleaving

B sampa

Active Hiding in Atom-Aid

Q Size (insns.)

B 750 [1000

100

75

50

25

Percent of Violations Hidden

1500 @ 2000 [4000 [6000 [8000

Atom-Aid hides virtually 100% of instances of the violations in these applications

sampa

16

Hiding Bugs in Full Applications

100

c
)
kT
T 75 -
T
(%)
c
RS
5 50 -
9
>
(.
o)
L 25 -
Q
e
()
(a8
0

Apache MySQL XMMS
Natural Hiding

g B Active Hiding

* Atom-Aid hides most instances of the
violations in the applications we evaluated

* Atom-Aid’s performance impact is negligible,
on top of performance impact of implicit
atomicity

* Atom-Aid requires no modifications to
software and no code annotations

sampa

17

Wait, Is Atom-Aid just Hiding Bugs?

|t also produces a report to the programmer pinpointing
bugs

¢ False positives not great, but not terrible either
eAvoidance in fact also gives a longer debugging window

eCan leverage data from avoidance in the field to aid
debugging

¢ Clients can “phone home” with information about dynamic avoidance

* sampa

Conclusions

eDMP is a new multiprocessor architecture that provides
determinism for arbitrary shared memory programs

e Execution is repeatable, simplifies debugging, testing, replicating and
deployment

¢ | everages existing architectural techniques
¢ Performance very close to nondeterministic execution

e Atom-Aid provides both resilience and debugability of
atomicity violations

eDeterminism and dynamic bug avoidance are worthwhile
and achievable goals

¢ Architecture plays a key role in both

* sampa

Current/Future Work

eBug Avoidance/Detection

¢ addressing multi-variable instances
¢ beyond atomicity violations

e reducing false positives in reports

sampa

20

A Bit of How | See Architecture
Research Now

S a Safe MultiProcessing Architectures
at the University of Washington

HW/SW Interface: tremendous opportunity!

*Multicores:
¢ synchronization primitives, concurrency debugging, bug avoidance
eDynamic languages:

¢ very hard to generate efficient native code for these languages: performance, power
problems.

e can we make python, ruby, etc faster? Architecture can help!
eSecurity:

e taint propagation, hardware-enforced rules
¢ Application-specific support:

e ML, spam, image recognition, ultra-fancy HCI, etc...
e Accelerators: even more interesting interface issues

e what are the primitives, data-formats, communication mechanisms

*Remember, we have a lot of transistors to spend!
¢ as long as not active all the time :)

* sampa

22

New Domains

eVery large systems
e manageability, accounting, performance monitoring, energy

eVery small systems

e really really small, think blood-cell sized, or virus-sized (in-body)

¢ bare minimum set of services, massive communication latency, ultra low
power

¢ |ook at Pistol et. al this ASPLOS

*Mobile devices

e who isn’t addicted to the iPhone? Can you make it crash less often and
make the battery last longer?

eShould we look at analog computation again?
¢ |ook at St Amant et. al MICRO’08

* sampa

23

How | see Architecture Research now

e[ind a problem
eHow much of it can you address with software only?
eThink: wouldn’t it be nice if the HW did this or that?

e makes OS/compilers/PL even more interesting

e what is the simplest way you can provide that functionality?
My current style:

¢ Architecture support for better software

o A little bit of simple HW support with many uses in SW

¢ a couple of examples of projects going on at UW ...

* sampa

24

