
sa pa Safe MultiProcessing Architectures

at the University of Washington

Detecting and Avoiding Atomicity
Violations
Luis Ceze, University of Washington

sa pa

A multithreaded voting machine

2

while (more_votes) {
 load t <- votes
 t++
 store t -> votes
}

thread 0 thread 1
while (more_votes) {
 load t <- votes
 t++
 store t -> votes
}

votes == 2 votes == 2 votes == 1

We want bugs to come back during
development but go away post-deployment.

sa pa

Can we go further than determinism?

3

•Concurrency bugs manifest when bad interleavings happen

•We ought to be able to dynamically avoid these bad
interleavings
•User would not experience fault, system could collect more data about bug

➡Dynamic bug avoidance nicely complements determinism

•Challenges:
•Avoid bugs without second-guessing programmer (preserve semantics)

•Not affect performance significantly

sa pa

Data Races

•A definition:
•two accesses, at least one is a write

• from different threads

•no happens before relationship between them (synchronization)

4

sa pa

Detecting Data Races with Happens-
Before

5

Most of the previous work, and our RecPlay tool, is based on Lamport’s
so-called happens-before relation. This relation is a partial order on all
synchronization events in a particular parallel execution. If two threads
access the same variable using operations that are not ordered by the
happens-before relation and one of them modifies the variable, a data race
occurs. Therefore, by checking the ordering of all events and monitoring all
memory accesses, data races can be detected for one particular program
execution.

Replay mechanisms based on the scheduling order of the different
threads can be used for uniprocessor systems. Indeed, by imposing the
same scheduling order during replay, an equivalent execution is con-
structed [Holloman 1989; Russinovich and Cogswell 1996]. This scheme can
be extended to multiprocessor systems by also tracing the memory opera-
tions executed between two successive scheduling operations. Choi and
Srinivasan [1998] describe such an implementation for Java. As a typical
execution of a Java program has a small number of schedule operations (no
time slicing is used, and therefore scheduling is only performed at pre-
defined points such as monitorenter calls) they succeed in producing very
small trace files albeit at the cost of a large overhead (17–88%).

Another approach is taken by a more recent race detector: Eraser
[Savage et al. 1997]. It goes slightly beyond work based on the happens-
before relation. Eraser checks that a locking discipline is used to access
shared variables: for each variable it keeps a list of locks that were held
while accessing the variable. Each time a variable is accessed, the list
attached to the variable is intersected with the list of locks currently held,
and the intersection is attached to the variable. If this list becomes empty,
the locking discipline is violated, meaning that a data race occurred. In a
sense, it does for the synchronization operations what Purify and Insight do
for the memory allocation and memory accesses. By checking the locking

Fig. 6. Two possible executions of the same program: both happens-before-based tools and
Eraser detect the race in (b) while only Eraser detects the race in (a).

148 • M. Ronsse and K. De Bosschere

ACM Transactions on Computer Systems, Vol. 17, No. 2, May 1999.

sa pa

Locking Discipline Violation

6

sa pa

Atomicity Violations

7

thread 0 thread 1
while (more_votes) {
 lock(l)
 load t <- votes
 unlock(l)
 t++
 lock(l)
 store t -> votes
 unlock(l)
}

while (more_votes) {
 lock(l)
 load t <- votes
 unlock(l)
 t++
 lock(l)
 store t -> votes
 unlock(l)
}

•‘08 study by Lu, et al. showed that more than 2/3 of non-
deadlock concurrency bugs are atomicity violations

sa pa

Bug Avoidance from 10,000’ (Atom-Aid)

8

bug!

P1 P2

1.Detect patterns of buggy interleavings

2.Steer the execution away from likely bad interleavings

➡ Why HW? Performance, transparency.

sa pa

Implicit Atomicity

9

load c

store b

load a

store c

load d

store b

load a

store b

Fewer opportunities for dangerous
interleavings to occur

•Interleaving can only occur at
quantum boundaries

•Quantum size/boundaries can be
adjusted arbitrarily, so interleavings
can be changed while preserving
memory semantics

•Arbitrary blocks of dynamic
instructions that execute
atomically and in isolation

Many recent Implicit Atomicity proposals:
DMP, BulkSC, Implicit Transactions, ASO, ...

sa pa

Implicit Atomicity and Atomicity Violations

10

Exposed violations are split
between quantum, so they can

be interleaved
Hidden violations execute

atomically within a quantum
load t

store tstore t

load t

•Atomicity violations can be exposed •Atomicity violations can be hidden

•Exposed violations may
manifest themselves if
unserializably interleaved

•If a violation is hidden
avoidance is guaranteed

sa pa

Probabilistic Avoidance of Violations

11

Pmanifestation = Pexposed x Pbad interleaving

•If a violation is exposed and a certain interleaving occurs, the bug
manifests itself

•If Pexposed could be reduced to 0 the violation would never manifest itself

•Implicit Atomicity reduces Pexposed so some violations are naturally hidden

sa pa

Natural Hiding of Implicit Atomicity

12

Implicit Atomicity alone survives a large proportion of violations in these applications

0

25

50

75

100

750 1000 1500 2000 4000 6000 8000

BankAccount
MySQL-extract
LogProc&Sweep
StringBuffer
CircularList
Apache-extract
BankAccount2
LogProc&Sweep2
CircularList2

Q Size

Pe
rc

en
t

of
 V

io
la

tio
ns

 H
id

de
n

This is not bad, but can we do better?

sa pa

Atom-Aid: Smart Chunking

13

store t

load t

Increased likelihood that
entire violation is inside one

quatum

Begin quanta as closely as
possible to the first

instruction of a violation•Atom-Aid survives even more
violations by dynamically
adjusting quanta

•Atom-Aid infers where atomic
regions in an execution should be

sa pa

Detecting Likely Atomicity Violations

14

lock(L);
tmp = ctr;
unlock(L);

tmp++;

lock(L);
ctr = tmp;
unlock(L);

T1

lock(L);
tmp = ctr;
unlock(L);

temp++;

lock(L);
ctr = tmp;
unlock(L);

T2

Atom-Aid Monitors an address, ctr, if:

1.A thread makes 2 “nearby” accesses to A

2.Another thread has “recently” accessed A

3.The accesses are potentially unserializable

Rd

Wr

Wr ?

Begin Monitoring ctr, break quanta before
accesses to ctr.

sa pa

Serializability

15

An interleaving is unserializable if there is no equivalent sequential execution

read A

write A

write A

read A

read A

write A

write A

read A

write A

write A

write A

read A

•Read and Write to counter
variable A should be atomic

•If a write from another thread
interleaves, there is no
equivalent sequential execution

•There are several types of
unserializable interleaving

sa pa
16

Active Hiding in Atom-Aid

Atom-Aid hides virtually 100% of instances of the violations in these applications

0

25

50

75

100

Ba
nk

Acc
ou

nt

MyS
Q

L-e
xt

ra
ct

Lo
gP

ro
c&

Sw
ee

p

Str
ing

Bu
ffe

r

Circ
ula

rL
ist

Apa
ch

e-e
xt

ra
ct

Ba
nk

Acc
ou

nt
2

Lo
gP

ro
c&

Sw
ee

p2

Circ
ula

rL
ist

2

750 1000 1500 2000 4000 6000 8000

Pe
rc

en
t

of
 V

io
la

tio
ns

 H
id

de
n Q Size (insns.)

sa pa
17

Hiding Bugs in Full Applications

•Atom-Aid hides most instances of the
violations in the applications we evaluated

•Atom-Aid’s performance impact is negligible,
on top of performance impact of implicit
atomicity

•Atom-Aid requires no modifications to
software and no code annotations0

25

50

75

100

ApacheMySQL XMMS

Natural Hiding
Active Hiding

Pe
rc

en
t

of
 V

io
la

tio
ns

 H
id

de
n

sa pa

Wait, Is Atom-Aid just Hiding Bugs?

18

•It also produces a report to the programmer pinpointing
bugs
•False positives not great, but not terrible either

•Avoidance in fact also gives a longer debugging window

•Can leverage data from avoidance in the field to aid
debugging
•Clients can “phone home” with information about dynamic avoidance

sa pa

Conclusions

•DMP is a new multiprocessor architecture that provides
determinism for arbitrary shared memory programs
•Execution is repeatable, simplifies debugging, testing, replicating and

deployment

•Leverages existing architectural techniques

•Performance very close to nondeterministic execution

•Atom-Aid provides both resilience and debugability of
atomicity violations

•Determinism and dynamic bug avoidance are worthwhile
and achievable goals
•Architecture plays a key role in both

19

sa pa

Current/Future Work

•Bug Avoidance/Detection
•addressing multi-variable instances

•beyond atomicity violations

•reducing false positives in reports

20

sa pa Safe MultiProcessing Architectures

at the University of Washington

A Bit of How I See Architecture
Research Now

sa pa

HW/SW Interface: tremendous opportunity!

22

•Multicores:
• synchronization primitives, concurrency debugging, bug avoidance

•Dynamic languages:
• very hard to generate efficient native code for these languages: performance, power

problems.

• can we make python, ruby, etc faster? Architecture can help!

•Security:
• taint propagation, hardware-enforced rules

•Application-specific support:
• ML, spam, image recognition, ultra-fancy HCI, etc...

•Accelerators: even more interesting interface issues
• what are the primitives, data-formats, communication mechanisms

•Remember, we have a lot of transistors to spend!
• as long as not active all the time :)

sa pa

New Domains

•Very large systems
•manageability, accounting, performance monitoring, energy

•Very small systems
•really really small, think blood-cell sized, or virus-sized (in-body)

•bare minimum set of services, massive communication latency, ultra low
power

• look at Pistol et. al this ASPLOS

•Mobile devices
•who isn’t addicted to the iPhone? Can you make it crash less often and

make the battery last longer?

•Should we look at analog computation again?
•look at St Amant et. al MICRO’08

23

sa pa

How I see Architecture Research now

24

•Find a problem

•How much of it can you address with software only?

•Think: wouldn’t it be nice if the HW did this or that?
•makes OS/compilers/PL even more interesting

•what is the simplest way you can provide that functionality?

•My current style:
•Architecture support for better software

•A little bit of simple HW support with many uses in SW

•a couple of examples of projects going on at UW ...

