Divisible Load Scheduling

Henri Casanova1,2

1Associate Professor
Department of Information and Computer Science
University of Hawai‘i at Manoa, U.S.A.
2Visiting Associate Professor
National Institute of Informatics, Japan

NII Seminar Series, October 2013
Why are many scheduling problems hard?

- We have seen in the last seminar that many scheduling problems are \(\mathcal{NP} \)-complete.
- It turns out that this is often because of integer constraints.
 - The same reason why bin packing is difficult: you can’t cut boxes into pieces!
- This is somewhat the same idea as the use of *preemption*:
 - \(P||C_{\text{max}} \) is \(\mathcal{NP} \)-complete
 - \(P|\text{pmtn}|C_{\text{max}} \) is in \(\mathcal{P} \)!
- Let’s see this on an example.
$P4 || C_{max}$ example schedule (offline)

$\sum a_i = 21; \; C_{max} = 8$
Let's modify the schedule using preemption.

\[\sum a_i = 21; C_{\text{max}} = 7 \text{ (optimal: no idle time)} \]
By “cutting” a task in two, we’re able to have all processors finish at the same time
- Zero idle time means the schedule is optimal
- If we were able to cut all tasks into tiny bits, then we would always be able to achieve zero idle time
 - Again, if you have a knife, binpacking is easy
- Question: Can this be done for real-world applications?
It turns out that many useful applications consist of very large numbers of small, independent, and identical tasks.

- task execution time $<<$ application execution time
- tasks can be completed in any order
- tasks all do the same thing, but on different data

Example applications:

- Ray tracing (1 task = 1 photon)
- MPEG encoding of a movie (1 task = 1 frame)
- Seismic event processing (1 task = 1 event)
- High-Energy Physics (1 task = 1 particle)

- These applications are termed *Divisible Loads* (DLs)
 - So fine-grain that a *continuous load* assumption is valid

- By the previous seminar, DL scheduling is trivial...
Introduction

Input data?

- In the previous seminar there was no notion of “input data”
 - The implicit assumption was that tasks had access to whatever data they needed
- But in many real-world applications, including DLs, there is some input data for each task
- This input data is stored at some location (the hard drive of a computer)
- If the DL is large, one wants to enroll multiple computers
- Problem: The data must be transferred over the network, which takes time
Introduction

Here comes the network

- When scheduling applications on processors within a single machines (multi-core), one often ignores data transfers (questionable)
- When scheduling applications on distributed platforms, one has to schedule both computation and communication
- Many theoretical scheduling results ignore the network component
 - In some cases communication can be seen as computation, e.g., a computation task depends on a communication task and each type of task can only run on a subset of the “resources”
- Let us define first a very simple execution and platform model...
Master-worker execution

- The computer that holds all input data is called the master (P_0)
- All m other computers are called the workers (P_1, \ldots, P_m)
- All P_i’s can compute (master and workers)
- P_0 initially holds W_{total} units of load
- P_0 allocates n_i units of load to worked P_i
- $\sum_i n_i = W_{total}$
- For now, we completely ignore output data (assume it has size zero)
Bus-shaped platforms

Bus-shaped platform - practice

A bit 1980’s 😊
Bus-shaped platform - theory

- P_i computes one unit of load (one infinitesimal task) in w_i seconds
- P_0 sends one unit of load to a worker in c seconds
- P_0 can compute and communicate at the same time
- $P_i, i > 0$ must have received all data before beginning computation
 - Questionable assumption, but will make sense with network latencies
- P_0 can only communicate with one worker at a time
 - Other versions allow communication to a bounded number of workers
 - We’ll talk about such models in other contexts
- Let’s now draw an example schedule...
Bus-shaped platforms

Example schedule

\[W_{total} = 6000, \quad c = 1 \]
\[n_0 = 1000, \quad n_1 = 3000, \quad n_2 = 2000, \quad n_3 = 3000 \]
\[w_0 = 3, \quad w_1 = 3, \quad w_2 = 5, \quad w_3 = 1.5 \]

IDLE TIME
Recursion

- Let’s call T_i the finish time of processor P_i
- We can write a recursion with the T_i’s, n_i’s, w_i’s and c
- Let’s see it on a picture
Example schedule

- P_3
- P_2
- P_1
- P_0

P_0: $T_0 = n_0 w_0$
Bus-shaped platforms

Example schedule

\[P_0 : T_1 = n_1 c + n_1 w_1 \]
Example schedule

\[P_i : T_i = \sum_{j=1}^{i} n_j c + n_i w_i \]
Given the recursion we have the makespan, T, as:

$$T = \max_{0 \leq i \leq m} \left(\sum_{j=0}^{i} n_j c_j + n_i w_i \right)$$

which can be rewritten as:

$$T = n_0 c_0 + \max \left(n_0 w_0, \max_{1 \leq i \leq m} \left(\sum_{j=1}^{i} n_j c_j + n_i w_i \right) \right)$$

which suggests a dynamic programming solution

- An optimal schedule for $m + 1$ processors is constructed from an optimal schedule for m processors
We are stuck

- We now face many difficulties:
 - We don’t have a closed form solution
 - The order of the processors is fixed!
 - We would have to try all $m!$ orders to find the best one
 - The complexity of the dynamic programming solution is $O(W^2_{total}m)$
 - The time to compute the schedule could be longer than the time to execute the application!
 - If we know the optimal schedule for $W_{total} = 1000$, we have to recompute a whole schedule for $W_{total} = 1001$

- Okay, we get it, scheduling is hard 😊
The fact that the n_i’s are integers is the root cause of the difficulties.

But in the case of DLs, since $\sum n_i \gg n_i$, a reasonable approximation is to reason on fractions, i.e., rational numbers.

Let $\alpha_i \geq 0$ be the rational fraction of W_{total} allocated to processor P_i.

- $n_i = \alpha_i W_{total}$
- $\sum_i \alpha_i = 1$
The DL scheduling approach

- We can now rewrite the recursion in terms of the α_i’s
 \[T = \max_{0 \leq i \leq m} \left(\sum_{j=0}^{i} \alpha_j c + \alpha_i w_i \right) W_{total} \]
- It turns out that with rational α_i’s, we can prove two important lemmas

Lemma (1)

In an optimal solution, all processors participate and finish at the same time

Lemma (2)

If one can choose the master processor, it should be the fastest processor. The order of the worker processors does not matter
Proof sketch of Lemma 1

- Take some load from the processor that finishes last, give it to another processor (that perhaps does not yet participate)
- Obtain a better schedule, and repeat until all processors finish at the same time
- Let’s see this (informally) on our example schedule...
 - The formal proof is not difficult but not particularly interesting
Bus-shaped platforms

Example schedule
Bus-shaped platforms

Example schedule

P_0

P_1

P_2

P_3
Example schedule

Strictly shorter makespan (not optimal)
Proof of Lemma 2

- The master should be the fastest processor, and the order of the workers doesn’t matter.
- In an optimal schedule, we know that $T = T_0 = T_1 = \ldots = T_m$ (Lemma 1).
- Therefore:

 \[T = \alpha_0 w_0 W_{total}, \]
 \[T = \alpha_1 (c + w_1) W_{total} \Rightarrow \alpha_1 = \frac{w_0}{c + w_1} \alpha_0, \]
 \[T = (\alpha_1 c + \alpha_2 (c + w_2)) W_{total} \Rightarrow \alpha_2 = \frac{w_1}{c + w_2} \alpha_1, \]

 \[\vdots \]

 \[\Rightarrow \forall i \geq 0 \quad \alpha_i = \prod_{j=1}^{i} \frac{w_j - 1}{c_j + w_j} \alpha_0 \]

 \[\sum_i \alpha_i = 1 \quad \Rightarrow \quad \alpha_i = \frac{\prod_{j=1}^{i} \frac{w_j - 1}{c_j + w_j}}{\sum_{k=0}^{m} \left(\prod_{j=1}^{k} \frac{w_j - 1}{c_j + w_j} \right)} \]
Proof of Lemma 2

- Let us compute the “work” done in time T by processors P_i and P_{i+1} for $0 \leq i \leq m - 1$

- To ease notations let’s define $c_0 = 0$ and $c_i = c$ for $i > 0$

- We have:

\[T = T_i = \left(\left(\sum_{j=0}^{i-1} \alpha_j c_j \right) + \alpha_i w_i + \alpha_i c_i \right) W_{total} \]

and

\[T = T_{i+1} = \left(\left(\sum_{j=0}^{i-1} \alpha_j c_j \right) + \alpha_i c_i + \alpha_{i+1} w_{i+1} + \alpha_{i+1} c_{i+1} \right) W_{total} \]
Proof of Lemma 2

- Let’s define \(K = \frac{T - W_{\text{total}} \left(\sum_{j=0}^{i-1} \alpha_j c_j \right)}{W_{\text{total}}} \)

- We now have \(\alpha_i = \frac{K}{w_i + c_i} \) and \(\alpha_{i+1} = \frac{K - \alpha_i c_i}{w_{i+1} + c_{i+1}} \)

- The total fraction of work processed by \(P_i \) and \(P_{i+1} \) is equal to:
 \[
 \alpha_i + \alpha_{i+1} = \frac{K}{w_i + c_i} + \frac{K}{w_{i+1} + c_{i+1}} - \frac{c_i K}{(w_i + c_i)(w_{i+1} + c_{i+1})}
 \]

- If \(i > 0 \), then \(c_i = c_{i+1} = c \), and the expression above is symmetric in \(w_i \) and \(w_{i+1} \)

- Therefore the order of the workers does not matter
Proof of Lemma 2

- Since $\alpha_i = \frac{K}{w_i+c_i}$ and $\alpha_{i+1} = \frac{K-\alpha_ic_i}{w_{i+1}+c_{i+1}}$

 the total fraction of work processed by P_0 and P_1 is

 $\alpha_0 + \alpha_1 = \frac{K}{w_0} + \frac{K}{w_1+c}$

- The above is maximized when w_0 is smaller than w_1

- By induction, we find that it is better to pick the fastest processor as the master
 - Perhaps counter-intuitive?
For Divisible Load applications on bus-shaped networks, in an optimal schedule the fastest computing processor is the master processor, the order of the communications to the workers has no impact on the quality of a solution, and all processors participate and finish simultaneously. The fraction α_i of load allocated to each processor is:

$$\forall i \in \{0, \ldots, p\} \quad \alpha_i = \frac{\prod_{j=1}^{i} \frac{w_{j-1}}{c_j + w_j}}{\sum_{k=0}^{m} \left(\prod_{j=1}^{k} \frac{w_{j-1}}{c_j + w_j} \right)}$$
Star-shaped platforms - practice
Star-shaped platforms - theory

- P_i computes one unit of load (one infinitesimal task) in w_i seconds
- P_0 sends one unit of load to worker P_i in c_i seconds
- P_0 does not compute (easier to write equations, and no loss of generality as we can add a worker with $c_i = 0$)
Two lemmas revisited

Lemma (1)

In an optimal schedule all workers participate

- Simple proof based on the notion of giving some load from the last processor to an unused processor so as to reduce the makespan

Lemma (2)

There is a unique optimal schedule and in that schedule workers finish at the same time

- Rather technical proof based on a linear programming formulation and reasoning on the extremal solutions
A third lemma

Lemma (3)

In the optimal schedule the workers are served in non-decreasing order of the c_i’s (the w_i’s don’t matter!)

Proof: using the same computation as in the proof of Lemma 2 for bus-shaped platforms, for processors P_i and P_{i+1} we have:

$$\alpha_i = \frac{K}{w_i+c_i} \quad \text{and} \quad \alpha_{i+1} = \frac{K-\alpha_ic_i}{w_{i+1}+c_{i+1}}$$

$$\Rightarrow \alpha_i + \alpha_{i+1} = \left(\frac{1}{w_i+c_i} + \frac{1}{w_{i+1}+c_{i+1}}\right) K - \frac{Kc_i}{(w_i+c_i)(w_{i+1}+c_{i+1})}$$

If we exchange P_i and P_{i+1} we obtain:

$$\alpha_i + \alpha_{i+1} = \left(\frac{1}{w_i+c_i} + \frac{1}{w_{i+1}+c_{i+1}}\right) K - \frac{Kc_{i+1}}{(w_i+c_i)(w_{i+1}+c_{i+1})}$$
The difference in processed load between the P_i, P_{i+1} and the P_{i+1}, P_i orders is $\Delta = (c_i - c_{i+1}) \frac{K}{(w_i+c_i)(w_{i+1}+c_{i+1})}$.

The above is not symmetric! Depending on whether c_i is larger/smaller than c_{i+1} the quantity of processed load increases: If $c_{i+1} > c_i$ then Δ is negative, meaning that the P_i, P_{i+1} order is better than the P_{i+1}, P_i order.

It's easy to verify that communication times are the same in both orders.

Conclusion: more load is processed by serving the workers by non-decreasing c_i's.
For Divisible Load applications on star-shaped networks, in the optimal schedule all workers participate, the workers must be served in non-decreasing c_i’s, all workers finish at the same time, and the load fractions are given by:

$$ \alpha_i = \frac{\frac{1}{c_i+w_i} \prod_{k=1}^{i-1} \left(\frac{w_k}{c_k+w_k} \right)}{\sum_{i=1}^{p} \frac{1}{c_i+w_i} \prod_{k=1}^{i-1} \frac{w_k}{c_k+w_k}} $$
So far... so good

- For bus-shaped platforms, we have solved the problem
- For star-shaped platforms, we have solved the problem
- Other have solved it for other platforms shapes (e.g., trees) and variations (e.g., multiple masters)

- A big problem: our model is very naive
- In practice compute costs and communication costs are rarely linear, but *affine*
Latencies

- The time for the master to send α_i units of load to worker P_i is $C_i + c_i \alpha_i W_{total}$
 - e.g., network latency

- The time for worker P_i to compute α_i units of load is $W_i + w_i \alpha_i W_{total}$
 - e.g., overhead to start a process/VM
 - e.g., software overhead to "prepare" the computation
The addition of latencies makes things much harder

The problem is \(\mathcal{NP} \)-complete (even if \(w_i \)’s are zero)
- Non-trivial reduction to 2-PARTITION

All participating workers finish at the same time
- Easy proof

If \(W_{total} \) is large enough then all workers participate and must be served by non-decreasing \(c_i \)’s
- Much more complicated proof

An optimal solution can be found using a mixed linear program...
Linear Programming

- An Integer Linear Program (ILP):
 - A set of integer variables
 - A set of linear constraints
 - A linear objective function

- A Mixed Integer Linear Program (MILP):
 - A set of integer or rational variables
 - A set of linear constraints
 - A linear objective function

- Both (associated decision problems) are \(\mathcal{NP} \)-complete
 - Fully rational Linear Programs can be solved in \(p \)-time!
Linear programming and scheduling

- MILPs occur frequently when formalizing scheduling problems
- Typical integer variables are binary:
 - \(x_{i,j} \): is task \(i \) scheduled on processor \(j \)?
 - \(x_{i,j} \): is the \(i \)-th communication for processor \(j \)?
 - \(\ldots \)
- Typical rational variables:
 - \(\alpha_{i,j} \): the fraction of load processed on processor \(j \)
 - \(\alpha_{i,j} \): the fraction of network bandwidth to processor \(i \) used for task \(i \)
 - \(\ldots \)
Why are MILP formulations useful?

- After all, solving them is \(\mathcal{NP} \)-complete
 - And there may be easy optimal algorithms instead
- Reason #1: provide concise problem description
 - Useful when writing an article
- Reason #2: can be *relaxed* by making all variables rational
 - Solve the rational program in p-time
 - Obtain the (unfeasible) optimal objective function value
 - This value is a *bound on optimal*, which is useful to gauge the quality of heuristics
 - e.g., for a maximization problem: on this instance my heuristic achieves 92, the upper bound on optimal is 100, so I can say my heuristic is (at most) within 8% of optimal.
Mixed Linear Program for DL with latencies

- We define the following variables:
 - $\alpha_i \geq 0$ (rational): i-th sent load fraction
 - y_j (binary): true if worker P_j participates
 - $x_{i,j}$ (binary): true if worker P_j received the i-th load fraction

- We have the following “setup” constraints:
 - $\sum_i \alpha_i = 1$: the entire load is processed
 - $\forall j \quad \alpha_j \leq y_j$: only participating workers are allocated some load
 - $\forall j \quad \sum_i x_{i,j} = y_j$: a participating worker receives only one fraction of load
Main constraint

With Latencies

The diagram shows the main constraint with latencies.

- First $i-1$ communications
- i-th communication and completion
Main constraint

- The time at which the communication of the $i-1$-th load fraction finishes: $\sum_{k=1}^{i-1} \sum_{j=1}^{m} x_{k,j}(C_j + \alpha_j c_j W_{total})$

- The time to communicate and compute the i-th load fraction: $\sum_{j=1}^{m} x_{i,j}(C_j + \alpha_j c_j W_{total} + W_j + \alpha_j w_j W_{total})$

- Let T_f be the finish time (of all processors)

- We have the constraint:

 $\forall i \sum_{k=1}^{i-1} \sum_{j=1}^{m} x_{k,j}(C_j + \alpha_j c_j W_{total}) + \sum_{j=1}^{m} x_{i,j}(C_j + \alpha_j c_j W_{total} + W_j + \alpha_j w_j W_{total}) \leq T_f$

- And the objective is to minimize T_f
Mixed Linear Program for DL with latencies

Mixed Integer Linear Program

minimize T_f subject to

1. $\forall i, 1 \leq i \leq m, \quad \alpha_i \geq 0$
2. $\sum_{i=1}^{m} \alpha_i = 1$
3. $\forall j, 1 \leq j \leq m, \quad y_j \in \{0, 1\}$
4. $\forall i, j, 1 \leq i, j \leq m, \quad x_{i,j} \in \{0, 1\}$
5. $\forall j, 1 \leq i \leq m, \quad \sum_{i=1}^{m} x_{i,j} = y_j$
6. $\forall j, 1 \leq i \leq m, \quad \alpha_j \leq y_j$
7. $\forall i, 1 \leq i \leq m, \quad \sum_{k=1}^{i-1} \sum_{j=1}^{m} x_{k,j} (C_j + \alpha_j c_j W_{total})$
 \[+ \sum_{j=1}^{m} x_{i,j} (C_j + \alpha_j c_j W_{total} + W_j + \alpha_j w_j W_{total}) \leq T_f\]
In everything we’ve seen so far, there are m communications to m workers.

This leads to a lot of idle time, especially if m is large.
Simple idea: get workers to work early
Even better: hide communication (note the homogeneity)
Several variations of this problem have been studied.

Many authors have studied the following question: "Given a number of rounds, how much work should be allocated at each round and how?"

- Worthwhile question with linear or affine models

More interesting: "How many rounds should be used?"

- Linear models: an infinite number of rounds!
 - "Obvious" but long and technical proof
 - Surprisingly not acknowledged in early DL literature

- Affine models: \mathcal{NP}-complete

Let’s see the known results for both questions above.
Multi-Round scheduling

Homogeneous bus, given number of rounds

- Assume everything is homogeneous \((c_i = c, C_i = C, w_i = w, W_i = W)\) and the number of rounds is \(M\)
- At each round \(m\) "chunks" are sent, one per worker
- Each chunk corresponds to a fraction \(\alpha_j, 0 \leq j < Mm\)
- For convenience we number these chunks in reverse order
 - The first one is \(Mm - 1\), the last one 0
- Let \(R = w/C\) the computation-communication ratio
- Let \(\gamma_i = \alpha_i w W_{total}\) (the compute time of chunk \(i\))
- Let’s write equations that ensure that there is no idle time
No non-initial idle time

- There is no idle time (after the first round) if a worker computes X seconds and the next m communications also take X seconds.
 - In that way, a worker finishes computing round j right when its chunk for round $j+1$ has arrived!

\[
\forall i \geq m, \quad W + \gamma_i = \frac{1}{R} (\gamma_{i-1} + \gamma_{i-2} + \cdots + \gamma_{i-m}) + mC
\]
All workers finish at the same time

For all workers to finish at the same time, the compute time of the last chunk at a worker should be equal to the time for all remaining communication, and the computation time of the last chunk

\[\forall 0 \leq i < m, \quad W + \gamma_i = \frac{1}{R} (\gamma_{i-1} + \gamma_{i-2} + \cdots + \gamma_{i-m}) + iC + \gamma_0 \]

To ensure correctness, we also have

\[\forall i < 0, \quad \gamma_i = 0 \]
\(\forall i \geq m, \quad W + \gamma_i = \frac{1}{R}(\gamma_{i-1} + \gamma_{i-2} + \cdots + \gamma_{i-m}) + mC \)
\(\forall 0 \leq i < m, \quad W + \gamma_i = \frac{1}{R}(\gamma_{i-1} + \gamma_{i-2} + \cdots + \gamma_{i-m}) + iC + \gamma_0 \)
\(\forall i < 0, \quad \gamma_i = 0 \)

- The recursion above corresponds to an infinite \(\gamma_i \) series
- Can be solved using a generating function:
 \[G(x) = \sum_{i=0}^{\infty} \gamma_i x^i \]
- Using the two recursions above we obtain:
 \[G(x) = \frac{(\gamma_0 - mC)(1 - x^m) + (mC - W) + C\left(\frac{x(1 - x^{m-1})}{1 - x} - (m - 1)x^m\right)}{(1 - x - x(1 - x^m)/R} \]
- Using the rational expansion theorem, we obtain the roots of the polynomial denominator, and thus the \(\gamma_i \) values!!
Computing the optimal number of rounds is NP-complete in the general case (i.e., non-homogeneity).

One "brute-force" option is to do an exhaustive search on the number of rounds, searching for the number of rounds that achieves the lowest makespan.

- Potentially exponential time, but in practice likely very doable.

A more elegant approach consists in writing an equation for the makespan and solving an optimization problem.

- Not difficult (based on a Lagrange Multiplier method).
- Can be extended to heterogeneous platforms.
An interesting theoretical result

Theorem

On any bus- or star-platform, with either linear or affine models, a multi-round schedule cannot improve an optimal single-round schedule by more than a factor 2

Proof:

- Let S be any optimal multi-round schedule, which uses K rounds, and has makespan T
- We have m workers, and each received a load fraction $\alpha_i(k)$ at round k
- From S we construct a new schedule S' that sends in a single message $\sum_{k=1}^{K} \alpha_i(k)$ to workers i
- The master does not communicate more in S' than in S (in fact, less with latencies)
An interesting theoretical result

Therefore, not later than time T all workers have received their load fractions (very coarse upper bound)

- No worker will compute more in S' than in S
- Therefore, none of them will spent more than T time units to compute in S'
- Conclusion: the makespan of S' is at most $2T$
Conclusion

So, what do we know?

<table>
<thead>
<tr>
<th></th>
<th>Bus</th>
<th>Star</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td>$M = 1$: closed-form</td>
<td>$M = 1$: closed-form</td>
</tr>
<tr>
<td></td>
<td>optimal: $M = \infty$</td>
<td>optimal: $M = \infty$</td>
</tr>
<tr>
<td></td>
<td>given $M < \infty$: closed-form</td>
<td>given $M < \infty$: closed-form</td>
</tr>
<tr>
<td>Affine</td>
<td>\mathcal{NP}-complete (1-round MILP)</td>
<td>\mathcal{NP}-complete (1-round MILP)</td>
</tr>
<tr>
<td></td>
<td>given M, homogeneous: closed-form</td>
<td>optimal M: heuristics</td>
</tr>
<tr>
<td></td>
<td>optimal M: heuristics</td>
<td></td>
</tr>
</tbody>
</table>

- All processors must finish at the same time
- Multi-round buys at most a factor 2 improvement
- Linear models are strange, but latencies make everything difficult (non-divisible!)
What about sending back results?

- There are essentially no known general results if return messages are to be scheduled.
- If returned messages have the same size as the sent messages, it is easy to come up with the best FIFO (same order) and LIFO (reverse order) strategies.
- But it is easy to find examples in which optimal is neither FIFO nor LIFO.
- Essentially: nobody knows 😊.
Conclusion

Sources and acknowledgments

V. Bharadwaj
D. Ghose
T. Robertazzi

Y. Robert
F. Vivien

H. Casanova
A. Legrand
Y. Robert