Introduction to Scheduling Theory

Henri Casanova!*?

! Associate Professor
Department of Information and Computer Science
University of Hawai'i at Manoa, U.S.A.
2Visiting Associate Professor
National Institute of Informatics, Japan

NIl Seminar Series, October 2013

L Introduction

Presentation and thanks

Thanks to NIl for inviting me to teach this seminar series!

L Introduction

Some of my research topics in last 5 years

m Scheduling (in a broad sense)

Divisible Load Scheduling

Scheduling checkpoints for fault-tolerance
Resource allocation in virtualized environments
Scheduling mixed parallel applications
Scheduling applications on volatile resources
Scheduling for energy savings

[I

m Simulation of distributed systems

m Simulation tools and methodologies (SIMGRID)
m Models for network simulation

m Random Network Topologies (with NIl researchers)

L Introduction

Seminar topics

m Scheduling

m A long-studied theoretical subject with practical applications
m Comes in (too) many flavors

m We'll explore some of them in this seminar series

m Simulation of distributed platforms and applications
m Necessary for research on scheduling and other topics
m Unclear and disappointing state-of-the-art
m The SIMGRID project

L Introduction

Seminar organization

m Introduction to Scheduling Theory

m Scheduling Case Study: Divisible Load Scheduling

m Scheduling Case Study: Scheduling Checkpoints

m Scheduling Case Study: Scheduling Sensor Data Retrieval
m Fast and Accurate Network Simulations

m Simulating Distributed Applications with SIMGRID

L Introduction

Disclaimer on organization

m There are many possible topics here, especially in the area
of scheduling

m e.g., | picked 3 particular case studies but I'll likely refer to
other scheduling domains as well

m | may have too much material for some topics, in which
case I'll skip part of it. But my slides will of course be
available to all

LScheduling on 2 processors

What is scheduling?

m Scheduling is studied in Computer Science and Operations
Research

m Broad definition: the temporal allocation of activities to
resources to achieve some desirable objective
m Examples:
m Assign workers to machines in an factory to increase
productivity
m Pick classrooms for classes at a university to maximize the
number of free classrooms on Fridays
m Assign users to a pay-per-hour telescope to maximize profit
m Assign computation to processors and
communications to network links so as to minimize
application execution time

LScheduling on 2 processors

A simple scheduling problem

m A Scheduling Problem is defined by three components:
A description of a set of resources
A description of a set of tasks
A description of a desired objective
m Let us get started with a simple problem: INDEP(2)
Two identical processors, P; and P,
B Each processor can run only one task at a time
n compute tasks

m Each task can run on either processor in a seconds
B Tasks are independent. can be computed in any order

objective: minimize max(7, T3)
B T; is the time at which processor P; finishes computing

LScheduling on 2 processors

The easy case

m If all tasks are identical, i.e., take the same amount of
compute time, then the solution is obvious: Assign [n/2]
tasks to P1 and |n/2| tasks to P,

m Rule of thumb: try to have both processors finish at the
same time

m The problem size is O(1), the “scheduling algorithm” is
O(1), therefore we have a polynomial time (in fact linear)
algorithm

m For each task pick one of the two processors by comparing
the index of the task with n/2

m We declare the problem “solved”

L Scheduling on 2 processors

Gantt chart for INDEP(2) with 5 identical tasks

makespan = max(3a, 4a)

idle time

|

0 a 2a T> = 3a T, = 4a

time

LScheduling on 2 processors

Non-identical tasks

mTaskT;,i=1,...,ntakes time a; >0
m We say a problem is “easy” when we have a
polynomial-time (p-time) algorithm:
m Number of elementary operations is O(f(n)), where f is a
polynomial and # is the problem size
m P is the set of problems that can be solved with a p-time
algorithm

m Question: is there a p-time algorithms to solve INDEP(2)?

m Disclaimer: Some of you may be familiar with algorithms
and computational complexity, so bear with me while |
review some fundamental background

LScheduling on 2 processors

Decision vs. optimization problem

m Complexity theory is for decision problems, i.e., problems
that have a yes/no answer

m Scheduling problems are optimization problems
m Decision version of INDEP(2): for an integer k is there a
schedule whose makespan is lower than k

m |f we have a p-time algorithm for the optimization problem,
then we have p-time algorithm for the decision problem
m Run the optimization algorithm, and check whether the
makespan is lower than k

LScheduling on 2 processors

Decision vs. optimization problem

m If the decision problem is in P, then there is often (not
always!) a p-time algorithm to solve the optimization
problem

m Binary search for the lowest k (k < n x max; g;)
B Adds a log(n x max; a;) complexity factor, still p-time if the
a;’s are bounded (reasonable assumption)

m Almost always the case in scheduling, and decision and
optimization problems are often thought of as
interchangeable

LScheduling on 2 processors

Problem size?

m One has to be careful when defining the problem size
m For INDEP(2):

m We need to enumerate n integers (the a;’s), so the size is at

least polynomial in n

m Each g; must be encoded (in binary) in [log(a;)] bits

m Thedatais O(f(n) + >_;_, [log(a;)]), where f is a polynomial
m A problem is in P only if an algorithm exist that is

polynomial in the data size as defined above

LScheduling on 2 processors

Pseudo-polynomial algorithm

m |t is often possible to find algorithms polynomial in a
quantity that is exponential in the (real) problem size

m For instance, to solve INDEP(2), one can resort to
dynamic programming to obtain and algorithm with
complexity O(n x Y 1 a;)

m This is a polynomial algorithm if the a; are encoded in
unary, i.e., polynomial in the numerical value of the a;’s

m But with the g; encoded in binary, Y7, a; is exponential in
the problem size!

m To a log, linear is exponential ®
m We say that this algorithm is pseudopolynomial

LScheduling on 2 processors

So, is INDEP(2) difficult?

m Nobody knows a p-time algorithm for solving INDEP(2)
m We define a new complexity class, N'P
m Problems for which we can verify a certificate in p-time.
m “Given a possible solution, can we check that the problem’s
answer is Yes in p-time?”
m There are problems not in AP, but not frequent
m Obviously P C NP
m empty certificate, just solve the problem
m Big question: is P # N'P?
m Most people believe so, but we have no proof
m For all the follows, "unless P = N'P" is implied

LScheduling on 2 processors

NP-complete problems

m Some problems in AP are at least as difficult as all other
problems in NP
m They are called N'P-complete, and their set is N'PC
m Cook’s theorem: The SAT problems is in N'PC
m Satisfiability of a boolean conjunction of disjunctions
m How to prove that a problem, P, is N'P-complete:

m Prove that P € NP (typically easy)
m Prove that P reduces to Q, where Q € N"PC (can be hard)

B For an instance I, construct in p-time an instance Ip
H Prove that I» has a solution if and only if I has a solution

m By now we know many problems in N'PC
m Goal: pick Q € N'PC so that the reduction is easy

LScheduling on 2 processors

Well-known complexity classes

NP

LScheduling on 2 processors

INDEP(2) is N'P-complete

m INDEP(2) (decision version) is in N'P

m Certificate: for each a; whether it is schedule on P; or P,
m In linear time, compute the makespan on both processors,
and compare to k to answer "Yes"

m Let us consider an instance of 2-PARTITION € N'PC:
m Given n integers x;, is there a subset 7 of {1,...,n} such
that 3¢, xi = 3050 xi?
m Let us construct an instance of INDEP(2):
m lLetk = %Zx,-, let a; = x;
m The proof is trivial
m If k is non-integer, neither instance has a solution
m Otherwise, each processor corresponds to one subset

m In fact, INDEP(2) is essentially identical to 2-PARTITION

LScheduling on 2 processors

So what?

m This N'P-completeness proof is probably the most trivial in
the world ©

m But now we are thus pretty sure that there is no p-time
algorithm to solve INDEP(2)

m What we look for now are approximation algorithms...

LScheduling on 2 processors

Approximation algorithms

m Consider an optimization problem

m A p-time algorithm is a A-approximation algorithm if it
returns a solution that’s at most a factor A from the optimal
solution (the closer A to 1, the better)

m)\ is called the approximation ratio

m Polynomial Time Approximation Scheme (PTAS): for any e
there exists a (1 + ¢)-approximation algorithm (may be
non-polynomial is 1/¢)

m Fully Polynomial Time Approximation Scheme (FPTAS): for
any e there exists a (1 + ¢)-approximation algorithm
polynomial in 1/e

m Typical goal: find a FPTAS, if not find a PTAS, if not find a
A-approximation for a low value of A

LScheduling on 2 processors

Greedy algorithms

m A greedy algorithm is one that builds a solution
step-by-step, via local incremental decisions
m It turns out that several greedy scheduling algorithms are
approximation algorithms
m Informally, they’re not as "bad" as one may think
m Two natural greedy algorithms for INDEP(2):

m greedy-online: take the tasks in arbitrary order and assign
each task to the least loaded processor

® We don’t know which tasks are coming

m greedy-offline: sort the tasks by decreasing «;, and assign
each task in that order to the least loaded processor

m We know all the tasks ahead of time

LScheduling on 2 processors

Example with 6 tasks: Online

makespan = 9

time

LScheduling on 2 processors

Example with 6 tasks: Offline

makespan = 8 time

LScheduling on 2 processors

Greedy-online for INDEP(2)

. . 3 . .
Greedy-online is a 5 -approximation

m Proof:
m P; finishes computing at time M; (M stands for makespan)
m Letus assume M| > M, (Mgyreeqy = M)
Let 7; the last task to execute on P,
Slnce the greedy algorithm put 7; on P, then M| — a; < M,
We have M, +M2 >iai=S
Mgreeay = My = (Ml + (M1 —) + a)) < (Ml + M +a) =
3(S+a))
but M,,, > S/2 (ideal lower bound on optimal)
and M,,, > a; (at Ieast one task is executed)
m Therefore: Myeeay < (2M0,,, + M) = Mop, O

LScheduling on 2 processors

Greedy-offline for INDEP(2)

Greedy-offline is a Z-approximation

m Proof:
m If a; < 1M,,, the previous proof can be used

] Mgreedy < l(21‘40])1‘ + %ant) - %ant

m Ifa; > 1M, thenj <4
B if 7; was the 5th task, then, due to the task ordering, there
would be 5 tasks with a; > 1M,
m There would be at least 3 tasks on the same processor in
the optimal schedule
m Therefore M, > 3 x 1 M., a contradiction
m One can check all possible scenarios for 4 tasks and show
optimality O

LScheduling on 2 processors

Bounds are tight

m Greedy-online:
moa’s={1,1,2)
u Mgreedy =3 Mopl =2

W ratio = %

m Greedy-offline:
ma's=1{3322 2}
u Mgreedy =17, Mopl =6
B ratio = %

LScheduling on 2 processors

PTAS and FPTAS for INDEP(2)

There is a PTAS ((1 + €)-approximation) for INDEP(2)

m Proof Sketch:
m Classify tasks as either “small” or “large”
B Very common technique
m Replace all small tasks by same-size tasks
m Compute an optimal schedule of the modified problem in
p-time (not polynomial in 1/¢)
m Show that the cost is < 1 + € away from the optimal cost
m The proof is a couple of pages, but not terribly difficult

There is a FPTAS ((1 + €)-approx pol. in 1/¢) for INDEP(2)

LScheduling on 2 processors

We know a lot about INDEP(2)

m INDEP(2) is NP-complete

m We have simple greedy algorithms with guarantees on
result quality

m We have a simple PTAS
m We even have a (less simple) FPTAS
m INDEP(2) is basically "solved"

m Sadly, not many scheduling problems are this
well-understood...

LScheduling 0N p processors

INDEP(P) is much harder

m INDEP(P) is N'P-complete by trivial reduction to
3-PARTITION:

m Give 3n integers ay, ..., a3, and an integer B, can we
partition the 3n integers into n sets, each of sum B?
(assuming that >, a; = nB)

m 3-PARTITION is N"P-complete “in the strong sense”,
unlike 2-PARTITION

m Even when encoding the input in unary (i.e., no logarithmic
numbers of bits), one cannot find and algorithm polynomial
in the size of the input!

m Informally, a problem is N'P-complete “in the weak sense” if
it is hard only if the numbers in the input are unbounded

m INDEP(P) is thus fundamentally harder than INDEP(2)

LScheduling 0N p processors

Approximation algorithm for INDEP(P)

Greedy-online is a (2 — ll’)-approximation
m Proof (usual reasoning):
m Let Myreeqy = maxi<;<, M;, and j be such that M; = Myeeay
m Let T, be the last task assigned to processor P;
m Vi, M; > M;— a; (greedy algorithm)
u SZZfM,'ZMj—I-Z,-#M,'ZM—I—(p— (M — ar) =
pM; + (p — 1)ag

m Therefore, My.esy = M; < 15, +(1— %)ak
m But M, > ar and M,,, > S/p
m So Mgreedy < Mapt + (1 - %,Mopt) O

m This ratio is “tight” (e.g., an instance with p(p — 1) tasks of
size 1 and one task of size p has this ratio)

LScheduling 0N p processors

Approximation algorithm for INDEP(P)

Greedy-offiine is a (5 — 5;)-approximation

m The proof is more involved, but follows the spirit of the
proof for INDEP(2)

m This ratio is tight

m There is a PTAS for INDEP(P), a (1 + ¢)-approximation
(massively exponential in 1/¢)

m There is no known FPTAS, unlike for INDEP(2)

L Scheduling Task Graphs

Task dependencies

m In practice tasks often have @
dependencies

m A general model of computation is the @ Q
Acyclic Directed Graph (DAG),
G = (V,E)

m Each task has a weight (i.e., execution
time in seconds), a parent, and children o

m The first task is the source, the last task

the sink @

m Topological (partial) order of the tasks

L Scheduling Task Graphs

Critical path

m Assume that the DAG executes on p @
processors

m The longest path (in seconds) is called @ @

the critical path

m The length of the critical path (CP) is a
lower bound on M,,,;, regardless of the
number of processors 0

m In this example, the CP length is 6 (the
other path has length 4)

LScheduling Task Graphs

Complexity

m Unsurprisingly, DAG scheduling is N'P-complete
m Independent tasks is a special case of DAG scheduling
m Typical greedy algorithm skeleton:

m Maintain a list of ready tasks (with cleared dependencies)

m Greedily assign a ready task to an available processor as
early as possible (don’t leave a processor idle
unnecessarily)

m Update the list of ready tasks

m Repeat until all tasks have been scheduled

m This is called List Scheduling
m Many list scheduling algorithms are possible
m Depending on how to select the ready task to schedule next

L Scheduling Task Graphs

List scheduling example

3 Processors

Makespan = 16; CP Length = 15
Idle Time = 1+5+5+8 = 19

LScheduling Task Graphs

List scheduling

Theorem (fundamental)

List scheduling is a (2 — .)-approximation
m Doesn’t matter how the next ready task is selected

m Let’s prove this theorem informally
m Really simple proof if one doesn’t use the typical notations
for schedules
m | never use these notations in public ©®

L scheduling Task Graphs

Approximation ratio

At any point in time either a task on the red path is running
or no processor is idle

LScheduling Task Graphs

Approximation ratio

m Let L be the length of the red path (in seconds), p the
number of processors, I the total idle time, M the
makespan, and S the sum of all task weights

m/<(p—-1)L

m processors can be idle only when a red task is running
mL< M,y

m The optimal makespan is longer than any path in the DAG
u Mopt 2 S/p

m S/p is the makespan with zero idle time
BpxM=I1+S

m rectangle’s area = white boxes + non-white boxes

:>p><M<(p*1) gpz+pMopt :>M<(277) opt U

LScheduling Task Graphs

Good list scheduling?

m All list scheduling algorithms thus have the same
approximation ratio

m But there are many options for list scheduling
m Many ways of sorting the ready tasks...

m In practice, some may be better than others
m One well-known option, Critical path scheduling

LScheduling Task Graphs

Critical path scheduling

m When given a set of ready tasks, which one do we pick to
schedule?
m |dea: pick a task on the CP

m If we prioritize tasks on the CP, then the CP length is
reduced

m The CP length is a lower bound on the makespan

m So intuitively it's good for it to be low

m For each (ready) task, compute its bottom level, the length
of the path from the task to the sink

m Pick the task with the /argest bottom level

LThe great scheduling zoo

Graham’s notation

m There are SO many variations on the scheduling problem
that Graham has proposed a standard notation: «|S|y
m alpha: processors
B beta: tasks
B gamma: objective function

m Let’'s see some examples for each

LThe great scheduling zoo

Q. Processors

m 1: one processor

m Pn: nidentical processors (if n not fixed, not given)

m On: n uniform processors (if n not fixed, not given)
m Each processor has a (different) compute speed

B Rn: n unrelated processors (if n not fixed, not given)

m Each processor has a (different) compute speed for each
(different) task (e.g., P, can be faster than P, for Ty, but
slower for 73)

LThe great scheduling zoo

[tasks

m r;: tasks have release dates

m d;: tasks have deadlines

m p; = x: all tasks have weight x

m prec: general precedence constraints (DAG)
B rree: tree precedence constraints

B chains: chains precedence constraints (multiple
independent paths)
m pmm: tasks can be preempted and restarted (on other
processors)
m Makes scheduling easier, and can often be done in practice

LThe great scheduling zoo

~: objective function

B C,.c: Makespan

m) Ci: mean flow-time (completion time minus release date
if any)

m) w;C;: average weighted flow-time
B L, maximum lateness (max(0, C; — d;))
m...

LThe great scheduling zoo

Example scheduling problems

m The classification is not perfect and variations among
authors are common
m Some examples:
B P2||Cyax, Which we called INDEP(2)
B P||Cyax, Which we called INDEP(P)
m P|prec|C,.x, Which we called DAG scheduling
B R2|chains| " C;
m Two related processors, chains, minimize sum-flow
m Plrj;p; € {1,2};dj; pmin|Lyax
m Identical processors, tasks with release dates and deadlines,
task weights either 1 or 2, preemption, minimize maximum
lateness

LThe great scheduling zoo

Where to find known results

m Luckily, the body of knowledge is well-documented (and
Graham’s notation widely used)
m Several books on scheduling that list known results

m Handbook of Scheduling, Leung and Anderson

m Scheduling Algorithms, Brucker

m Scheduling: Theory, Algorithms, and Systems, Pinedo
[

m Many published survey articles

LThe great scheduling zoo

Example list of known results

m Excerpt from
Scheduling
Algorithm, P.
Brucker

P2 || Craz

* P Cmac

* P|p; = l;intree;r; | Crmac
* P|pi=1prec| Crmaz

* P2 chains | Cmas

* Q| pi =1;chains | Craz

x P|p; = 1;outtree | Lyaq
x P |pi=lyintree;r; | Y. Cs
* Plpi=Liprec| 1 C;

% P2 | chains | Y C;

* P2|r | Y C

P2 || Y wiC;

* Pl YwC

* P2|p; =1;chains | Y w;C;
* P2|p; =1;chains | > U;

* P2|p;=1;chains | 3 T;

Lenstra et al. [155]
Garey & Johnson [98]
Brucker et al. [35]
Ullman [203]

Du et al. [86]

Kubiak [129]

Brucker et al. [35]
Lenstra [150]

Lenstra & Rinnooy Kan [152]
Du et al. [86]
Single-machine problem
Bruno et al. [58]
Lenstra [150]
Timkovsky [201]
Single-machine problem

Single-machine problem

Table 5.3: N'P-hard parallel machine problems without preemption.

L Take-away

Conclusion

m Scheduling problems are diverse and often difficult
m Relevant theoretical questions:

m Isitin P?

m Is it N'P-complete?

B Are there approximation algorithms?
H Are there PTAS or FTPAS?
m Are there are least decent non-guaranteed heuristics?

m Luckily, scheduling problems have been studied a lot

m Come up with the Graham notation for your problem and
check what is known about it!

L Take-away

Sources and acknowledgments

Parallel
Algorithms

Y. Robert H. Casanova A. Benoit
F. Vivien A. Legrand Y. Robert
Y. Robert F. Vivien

	Scheduling on 2 processors
	Scheduling on p processors
	Scheduling Task Graphs
	The great scheduling zoo
	Take-away

