Computational approaches to analyze complex dynamic systems: model-checking and its applications.

Part 2: Model-checking of timed transitions systems

Morgan MAGNIN
morgan.magnin@irccyn.ec-nantes.fr
www.morganmagnin.net

NII - Inoue Laboratory
École Centrale de Nantes - IRCCyN - MeForBio team

Lecture Series - Lecture 2 / NII - 2013/04/03
1 Timed models
- Timed, Hybrid and Linear Hybrid Automata
- Time Petri nets
- Other timed models
- State space abstractions

2 Formalizing specification through timed modal logics
- Reminders about linear and branching-time logics
- Timed extensions of linear logics
- Timed extensions of branching-time logics

3 Biological application

4 An introduction to control of timed systems
- Control of discrete-events systems
- Control of timed systems
Motivations

Objective: formal verification of properties

- Model the system S:
 - Discrete models: finite state automata, Petri nets, ... \Rightarrow Lecture 1
 - Timed models:
 - timed extensions of finite state automata: timed/hybrid automata \Rightarrow Lecture 2
 - timed extensions of Petri nets: time/stopwatch Petri nets \Rightarrow Lecture 3

- Formalize the specification φ:
 - Observers
 - Temporal logics: LTL, CTL, ... \Rightarrow Lecture 1
 - Timed extensions of temporals logics: TCTL, ... \Rightarrow Lectures 2 & 3

- Does $S \models \varphi$?
Objective: formal verification of properties

- Model the system S:
 - Discrete models: finite state automata, Petri nets, \ldots \Rightarrow Lecture 1
 - Timed models:
 - timed extensions of finite state automata: timed/hybrid automata \Rightarrow Lecture 2
 - timed extensions of Petri nets: time/stopwatch Petri nets \Rightarrow Lecture 3
- Formalize the specification φ:
 - Observers
 - Temporal logics: LTL, CTL, \ldots \Rightarrow Lecture 1
 - Timed extensions of temporals logics: TCTL, \ldots \Rightarrow Lectures 2 & 3
- Does $S \models \varphi$?
Some major issues

Need for modeling tasks with suspending/resuming features

Expressivity/Decidability compromise to discuss ⇒ Lectures 2 & 3

State space combinatorial explosion

- Need for symbolic approaches ⇒ Lectures 2 & 3
- Need for new models and abstracted algorithms ⇒ Lecture 4
Some major issues

Need for modeling tasks with suspending/resuming features

Expressivity/Decidability compromise to discuss ⇒ Lectures 2 & 3

State space combinatorial explosion

- Need for symbolic approaches ⇒ Lectures 2 & 3
- Need for new models and abstracted algorithms ⇒ Lecture 4
Today’s and next week’s issue

Tricky question

Coming from France, why do I need an average 3-4 days period not to be jet-lagged anymore in Tōkyō?

Observation

- Discrete models do not encompass sufficient information to get a thorough description of the gene regulation network behind the circadian clock w.r.t. time
- Some related issues:
 - Is it possible to determine the lower limit of the day/night period cycle during which the circadian clock continues to stabilize?
 - Why does the body better support backward phase delay than advance phase delay?
- → On-going modeling project with biologists and computer scientists (CNRS PEPII funded project CirClock)
Introduction

Contribution

Scientific challenge

How can we get information about the production and degradation rates of a protein in a biological regulatory network?

Objectives of this talk and the forthcoming one

- From discrete model to timed model → emphasize on the progressive enrichment of model and its drawbacks
- Focus on the introduction of quantitative timing information
- Discuss the most appropriate time semantics adapted to the model
- Apply the general methodology to practical examples coming from biology
Contribution

Scientific challenge
How can we get information about the production and degradation rates of a protein in a biological regulatory network?

Objectives of this talk and the forthcoming one
- From discrete model to timed model → emphasize on the progressive enrichment of model and its drawbacks
- Focus on the introduction of quantitative timing information
- Discuss the most appropriate time semantics adapted to the model
- Apply the general methodology to practical examples coming from biology
Overview

1. **Timed models**
 - Timed, Hybrid and Linear Hybrid Automata
 - Time Petri nets
 - Other timed models
 - State space abstractions

2. **Formalizing specification through timed modal logics**
 - Reminders about linear and branching-time logics
 - Timed extensions of linear logics
 - Timed extensions of branching-time logics

3. **Biological application**

4. **An introduction to control of timed systems**
 - Control of discrete-events systems
 - Control of timed systems
Discrete-event systems

Focus on the sequence of *observable* events (*chronology*):

\[t_1 \quad t_2 \quad t_3 \quad t_2 \quad t_1 \quad t_1 \quad \ldots \]

Timed systems

Focus on dated *observable* events (*chronometry*):

\[(t_1, d_1) \quad (t_2, d_2) \quad (t_3, d_3) \quad (t_2, d_4) \quad (t_1, d_5) \quad (t_1, d_6) \quad (t_1, d_7) \quad \ldots \]

with:

- \(d_1\): date at which the first \(t_1\) occurs
- \(d_2\): date at which the first \(t_2\) occurs, \ldots

Remark: events are *asynchronous*, but dates \(d_i\) are authorized to be equal to 0.
Discrete-time semantics vs dense-time semantics

- **Discrete-time** semantics: events occur at integer dates only
- **Dense-time** semantics: events occur at any time

⇒ We will discuss the precise links between dense-time, discretization and discrete-time in Lecture 3.
Timed Automata

Figure: A Timed Automaton (from [CR08])

- State of a TA = (Location, clock valuations)
- The timed language $\mathcal{L}(\mathcal{A})$ of a TA \mathcal{A} is the set of all words (traces) accepted by \mathcal{A}.
- The behavioral semantics of a TA \mathcal{A} is a timed transition system $S_\mathcal{A}$
Timed Automata

A path: \((l_0, 0) \xrightarrow{0.78} (l_0, 0.78) \xrightarrow{a} (l_1, 0) \xrightarrow{1.5} (l_1, 1.5) \xrightarrow{b} (l_0, 0) \cdots\)

Figure: A Timed Automaton (from [CR08])

- State of a TA = (Location, clock valuations)
- The timed language \(\mathcal{L}(A)\) of a TA \(A\) is the set of all words (traces) accepted by \(A\).
- The behavioral semantics of a TA \(A\) is a timed transition system \(S_A\)
Timed Automata

A path: $\ell_0, 0 \xrightarrow{0.78} \ell_0, 0.78 \xrightarrow{a} (\ell_1, 0) \xrightarrow{1.5} (\ell_1, 1.5) \xrightarrow{b} (\ell_0, 0) \cdots$

Figure: A Timed Automaton (from [CR08])

- State of a TA = (Location, clock valuations)
- The timed language $\mathcal{L}(A)$ of a TA A is the set of all words (traces) accepted by A.
- The behavioral semantics of a TA A is a timed transition system S_A
Timed Automata

State of a TA = (Location, clock valuations)

The timed language $\mathcal{L}(A)$ of a TA A is the set of all words (traces) accepted by A.

The behavioral semantics of a TA A is a timed transition system S_A.

Figure: A Timed Automaton (from [CR08])
Timed Automata [AD91]

Definition

- A finite set of **locations** \(l \)
- A finite set of **clocks** \(v \) (over \(\mathbb{R} \) or \(\mathbb{N} \))
- An **invariant function**, mapping each location with a predicate over \(v \)
- A finite set of **transitions**
- A **labelling** function
- An **initial location**
Timed Automata [AD91]

About transition

A transition is composed of

- a unique **source** location
- a unique **target** location
- a **guard**, i.e. an enabling condition \((g := x \sim c | g \land g)\), where \(\sim \in \{<, \leq, =, \geq, >\}\)
- a **label** (that can be used for **synchronization**)
- a subset (potentially empty) of clocks to be **reset**
Timed Automata [AD91]

Figure: A Timed Automaton with its invariants, guards and clocks to reset.
Semantics of a timed automaton

Definition as a **timed transition system**

- An **action** transition: $(l, v) \xrightarrow{a} (l', v')$ if there exists an a-labelled transition from l to l' such that:
 - v satisfies the guard of the transition
 - $v' = v[r \leftarrow 0]$, with r the set of clocks to be reset

- A **delay** transition: $(l, v) \xrightarrow{\delta(d)} (l, v + d)$, where (l, v) is a state of the timed automaton, and d belongs to the time domain in (l, v)
Hybrid automata [ACH+95]

Key idea

Every location is mapped with a set of **ordinary differential equations** defining the evolution of the variables.

Figure: **Hybrid Automaton** describing a thermostat (from [ACH+95])
Definition

- A finite set of **locations** \(l \)
- A finite set of **variables** \(v \) over \(\mathbb{R} \)
- A finite set of **initial states** (couples \((l, v)\))
- A finite set of **transitions**
- A **flow function**, mapping each location with a predicate over \(v \) and \(\dot{v} \)
- An **invariant function**, mapping each location with a predicate over \(v \)
- A **jump condition function**, mapping each transition with a predicate over \(v \)
- An **initialization condition**, mapping the initial state with a predicate
- A finite set of **synchronization labels**
Key ideas

- The invariant, flow and jump conditions are **boolean combinations of linear equalities**.
- Every location is mapped with a **set of ordinary differential equations** $\sum \dot{x} \leq k$, with $k \in \mathbb{R}$, defining the evolution of the variables.

Figure: Linear Hybrid Automaton describing a leak in a gas-heating process (from [Hen96])
Petri net - Reminder

Figure: A Petri net

\[\{P_1, P_2, P_4\} \]
Figure: A Petri net

\[\{P_1, P_2, P_4\} \xrightarrow{t_2} \{P_1, P_3, P_4\} \xrightarrow{t_1} \ldots \]
Time Petri nets - Introduction

![Time Petri net diagram]

Figure: A time Petri net

\[
\begin{align*}
\{P_1, P_2, P_4\} & \quad \{P_1, P_2, P_4\} \\
\theta(t_1) &= 0 & \theta(t_1) &= 0.2 \\
\theta(t_2) &= 0 & \theta(t_2) &= 0.2 \\
\theta(t_4) &= 0 & \theta(t_4) &= 0.2
\end{align*}
\]
Time Petri nets - Introduction

\[\begin{array}{ccc}
\{P_1, P_2, P_4\} & \{P_1, P_2, P_4\} & \{P_1, P_3, P_4\} \\
\theta(t_1) = 0 & \theta(t_1) = 0.2 & \theta(t_1) = 0.2 \\
\theta(t_2) = 0 & \theta(t_2) = 0.2 & \theta(t_3) = 0 \\
\theta(t_4) = 0 & \theta(t_4) = 0.2 & \theta(t_4) = 0.2 \\
\end{array} \]

Figure: A time Petri net
A *Time Petri Net* (TPN) is a tuple \(T = (P, T, \cdot(), ()^*, M_0, a, b) \) where:

- \(P = \{p_1, p_2, \ldots, p_m\} \) is a non-empty finite set of *places*;
- \(T = \{t_1, t_2, \ldots, t_n\} \) is a non-empty finite set of *transitions* \((T \cap P = \emptyset)\);
- \(\cdot() \in (\mathbb{N}^P)^T \) is the *backward incidence function*; \(()^* \in (\mathbb{N}^P)^T \) is the *forward incidence function*;
- \(M_0 \in \mathbb{N}^P \) is the *initial marking* of the net;
- \(a \in (\mathbb{Q}^+)^T \) and \(b \in (\mathbb{Q}^+ \cup \{\infty\})^T \) are functions giving for each transition respectively its *earliest* and *latest* firing times \((a \leq b)\).
(Un)decidability results

Problem [JLL77]

Reachability, liveness and boundedness problems are **undecidable** for time Petri nets.

Berthomieu et al. proved [BM83]:

Theorem

Reachability and liveness problems are decidable for bounded time Petri nets.
(Un)decidability results

Problem [JLL77]

Reachability, liveness and boundedness problems are **undecidable** for time Petri nets.

Berthomieu et al. proved [BM83]:

Theorem

Reachability and liveness problems are decidable for bounded time Petri nets.
About newly enabled transitions

We fire t_1
About newly enabled transitions

We fire t_1

t_1 and t_2 are not enabled by $M - \bullet t_1$ (M represents the marking of the net)

Figure: A time Petri net
About newly enabled transitions

We fire t_1

t_1 and t_2 are not enabled by $M - \bullet t_1$

t_1 and t_2 are newly enabled
About newly enabled transitions

We fire t_1

Figure: A time Petri net
About newly enabled transitions

We fire t_1

t_1 and t_2 are enabled by $M - \bullet t_1$ but t_1 is the fired transition

Figure: A time Petri net
About newly enabled transitions

We fire t_1

t_1 and t_2 are enabled by $M - t_1$ but t_1 is the fired transition

t_2 remains enabled, t_1 is newly enabled
A large family of models

- **On the thin red line between decidability and undecidability**
- **Variants of timed automata:**
 - Stopwatch automata: clocks can be stopped in some locations
 - Updatable timed automata: not only clock resets, but also clock updates $x := c$ or $x := y + c$
 - Priced Timed Automata
- **Variants of time Petri nets:**
 - TPNs with self modification
 - Different semantics w.r.t.:
 - time elapsing: strong, weak
 - transition firing: intermediate, atomic
Need for abstractions for timed models

Problem
The state space of a timed transition system is infinite (in general)

⇒ Group states into equivalence classes (abstraction)

Major challenge
What is a relevant abstraction for the model, that preserves desired properties?

⇒ We will illustrate this abstraction-based approach on one example targeting TPNs.
Abstractions for TPNs

- **Infinite** state-space \implies Abstractions
- TPNs: Zone-based simulation graph [GRR06]
- TPNs: State class graph [BD91]
State Class

\[C = \begin{cases} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \end{cases} \]

TPNs: Zone (encoded by a Difference Bound Matrix (DBM) \([d_{ij}]_{i,j\in[0..n]}\):)
\[
\begin{cases}
-d_0i \leq \theta_i - 0 \leq d_i0, \\
\theta_i - \theta_j \leq d_{ij}
\end{cases}
\]
Basic Algorithm for state space computation

begin

Passed = ∅
Waiting = \{C_0\}

while Waiting ≠ ∅

C = pop(Waiting)
Passed = Passed ∪ C

for t firable from C

C' = AbstractSuccessor(C, t)
if C' ∉ Passed

Waiting = Waiting ∪ C'

end if

end for

end while

end
Computing the state class graph

Let $C = (M, D)$ and $D = (A.\Theta \leq B)$. We fire t_f.

- $M' = M - \cdot t_f + t_f\cdot$
- D' is computed by:
 - for all enabled transitions t_i, constrain by $\theta_f \leq \theta_i$
 - for all enabled transitions t_i, $\theta'_i = \theta_i - \theta_f$
 - eliminate variables for disabled transitions (e.g. using Fourier-Motzkin method)
 - add new variables for newly enabled transitions t_i:

$$\alpha(t_i) \leq \theta_i \leq \beta(t_i)$$
State class graph computation: an example
Overview

1. Timed models
 - Timed, Hybrid and Linear Hybrid Automata
 - Time Petri nets
 - Other timed models
 - State space abstractions

2. Formalizing specification through timed modal logics
 - Reminders about linear and branching-time logics
 - Timed extensions of linear logics
 - Timed extensions of branching-time logics

3. Biological application

4. An introduction to control of timed systems
 - Control of discrete-events systems
 - Control of timed systems
Computation paths vs computation tree - Reminder

Figure: Execution can be seen as a set of execution paths or as an execution tree.
Model-checking formal properties - Reminder

Qualitative properties

- **LTL** (linear-time properties): *on a given path*, \(X\varphi, \varphi U\psi + G\varphi, F\varphi \)
- **CTL** (branching-time properties): *in a given state*,
 - \(EX\varphi, E\varphi U\psi + EG\varphi, EF\varphi \)
 - \(AX\varphi; A\varphi U\psi + AG\varphi, AF\varphi \)
- **CTL** (superset including, but not equal, to the union of LTL and CTL)
Model-checking of LTL properties - Reminder

Figure: $s_0 \models Xp$
Model-checking of LTL properties - Reminder

Figure: $s_0 \models pUq$
Model-checking of LTL properties - Reminder

\[s_0 \models Gp \]
Model-checking of LTL properties - Reminder

Figure: \(s_0 \models Fp \)
Model-checking of CTL properties - Reminder

Figure: $s_0 \models AGp$
Model-checking of CTL properties - Reminder

Figure: $s_0 \models EGp$
Figure: \(s_0 \models EF p \)
Figure: $s_0 \models EFp$
Model-checking of CTL properties - Reminder

\[s_0 \models p \mathcal{E} U q \]

Figure: \(s_0 \models p \mathcal{E} U q \)
Model-checking of CTL properties - Reminder

\[s_0 \models p \text{AU} q \]
Need for timed extensions of modal logics

Quantitative timing properties

How can we formalize a sentence like: “any problem is followed by an alarm in at most 5 time units”?

Enrich temporal logics

- “Any problem is followed by an alarm”: $AG(\text{problem} \rightarrow AF\text{alarm})$
- Extend temporal logics:
 - Add subscripts to temporal operators, e.g. $AG(\text{problem} \rightarrow AF_{\leq 5}\text{alarm})$
 - Use real clocks to assert timed constraints, e.g.
 $AG(\text{problem} \rightarrow x \in (x \leq 5 \land AF\text{alarm}))$

\Rightarrow Timed temporal logics
Timed temporal logics: From a path point of view

Extensions of Linear Temporal Logics

- **Metric Temporal Logic** (MTL) [Koy90]
 - Add **subscripts** to temporal operators
 - Example: $G(\text{problem} \rightarrow F_{\leq 5}\text{alarm})$

- **Timed Propositional Temporal Logic** (TPTL) [AH94]
 - Add **real clocks** to formulae
 - Example: $G(\text{problem} \rightarrow x.F \in (x \leq 5 \land \text{alarm}))$, where $x.\varphi$ means that clock x is reset at the current position (i.e. before evaluating φ).

Remark: next (X) operator from LTL is **removed** (no meaning in dense-time semantics)
Model-checking of MTL properties: An example

Figure: $s_0 \models pU_{[2,4]}q$
Timed temporal logics: From a branching-time point of view [ACD93]

- **Extensions of CTL**
 - TCTL with **subscripts**, e.g. $AG(\text{problem} \rightarrow AF_{\leq 5}\text{alarm})$
 - TCTL with **explicit clocks** added to formulae, e.g. $AG(\text{problem} \rightarrow x \in (x \leq 5 \land AF\text{alarm}))$

Remark: next (X) operator from CTL is **removed** (no meaning in dense-time semantics)
Model-checking of TCTL properties: An example

Figure: $s_0 \models E(pU_{[2,4]}q)$
Timed temporal logics: Expressiveness results [BCM05]

Subscripts vs explicit clocks

- TPTL has been proven to be **strictly more expressive** than MTL (e.g. $x. F(a \land x \leq 1 \land G(x \leq 1 \Rightarrow \neg b)))$
- TCTL with explicit clocks has been proven to be **strictly more expressive** than TCTL with subscripts.
Timed temporal logics

Quantitative timing properties

A TCTL formula:

\[\varphi := \text{ap} \mid \neg \text{ap} \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid A\varphi U l \varphi \mid E\varphi U l \varphi \]

with:

- \text{ap} an atomic assertion
- \text{l} an interval from \(\mathbb{R}^+ \) with **integer bounds** s.t. \([n, m], [n, m[,]n, m],]n, m[, or [m, \infty[, n, m \in \mathbb{N} \]
Some additional TCTL examples

Bounded liveness/response [DT98]

- “Whenever a property p becomes true, q must be true within n seconds” ($n \in \mathbb{N}$)
- $AG(p \Rightarrow AF_{[0,n]}q)$
- Denoted $p \rightarrow_{[0,n]} q$ in most model-checkers
Decidability results w.r.t. model-checking [Alu99]

Following problems are **undecidable**
- Model-checking of timed automata for MTL properties
- Model-checking of TPNs for TCTL properties
- Satisfaction problem for TCTL (TA/TPN)

Following problems are **decidable**
- Model-checking of timed automata for TCTL properties
- Model-checking of **bounded** TPNs for a subset (no nesting) of TCTL with subscripts
Overview

1. Timed models
 - Timed, Hybrid and Linear Hybrid Automata
 - Time Petri nets
 - Other timed models
 - State space abstractions

2. Formalizing specification through timed modal logics
 - Reminders about linear and branching-time logics
 - Timed extensions of linear logics
 - Timed extensions of branching-time logics

3. Biological application

4. An introduction to control of timed systems
 - Control of discrete-events systems
 - Control of timed systems
Biological application (from [AR10])

Figure: Integrating delays in the modeling framework

(a) Real evolution

(b) Step-wise evolution

(c) Piece-wise linear evolution
Biological application (from [AR10])

Figure: Linear Hybrid Automaton modeling Pseudomonas Aeruginas
Aim

Identify cycles and attractors

Methodology

- Use a model-checker on hybrid automata (e.g. HyTech, PHAVer, ...)
- Interpret results thanks to a parameterized polyhedra library (e.g. PolyLib)
Overview

1. Timed models
 - Timed, Hybrid and Linear Hybrid Automata
 - Time Petri nets
 - Other timed models
 - State space abstractions

2. Formalizing specification through timed modal logics
 - Reminders about linear and branching-time logics
 - Timed extensions of linear logics
 - Timed extensions of branching-time logics

3. Biological application

4. An introduction to control of timed systems
 - Control of discrete-events systems
 - Control of timed systems
The **control** problem

Real-life system

- **Uncontrollable** events
- **Controllable** events
- To be discussed: **Observability** \Rightarrow **full** observability vs **partial** observability
The **control** problem

Control problem

Does there exist a controller C that guarantees the given properties φ such that $S \parallel C \models \varphi$?

Controller synthesis problem

Can we build a controller C that guarantees the given properties $\varphi \Rightarrow \exists C, S \parallel C \models \varphi$?

Figure: The control problem
A first approach to control problem

Figure: Branching execution of a model: blue actions stand for controllable actions; red actions stand for uncontrollable ones; B stands for bad states that should be avoided
A first approach to control problem

Figure: Blue actions = controllable ones; red actions = uncontrollable ones; B = bad states
A first approach to **control** problem

Figure: Blue actions = controllable ones; red actions = uncontrollable ones; B = bad states
A first approach to control problem

Figure: Supervisor automaton to avoid that the system reach bad states
A first approach to **control** problem

Eliminating this branch is a rough over-approximation, but...

Figure: Blue actions = controllable ones; red actions = uncontrollable ones; B = bad states
A first approach to control problem

Eliminating this branch is a rough over-approximation, but...

...here lies a sequence of two uncontrollable events leading to a bad state.

Figure: Blue actions = controllable ones; red actions = uncontrollable ones; B = bad states
Supervisory control theory

Ramadge-Wonham framework [RW89]

- Discrete-events system, modeled as a **finite** automaton with:
 - Uncontrollable events
 - Controllable events

- **Specification**
 - E.g.: Avoid any sequences leading to a state where the property **bad** is satisfied
 - ⇒ specifications as a **language**

- Principle: **Supervisor**, described as a synchronous automaton, observes the events generated by the system and might prevent it from generating a subset of the controllable events
Solving a **control** problem

Figure: System S (both a and b are controllable). We would like that only one execution $a.b$ can occur (specification φ). Does there exist a controller C such that $S \parallel C \models \varphi$?
Solving a **control** problem

Figure: System S with its supervisor C so that only one execution $a.b$ can occur.
Solving a **control** problem: key idea

Figure: Basic idea behind the notion of controllable predecessors: l_{p_1} and l_{p_2} might be in the set of controllable predecessors of l.
Solving a **control** problem: key idea

Controllable predecessors technique

Let:

- S be the “safe” states, *i.e.* the ones meeting the specification φ
- $\pi(X)$ is the set of **controllable predecessors** of a given state X

[MPS95]: $\pi(X)$ is computed as the greatest fix-point of

$$\pi(X) = \pi(X) \cap S$$

Figure: Basic idea behind the notion of controllable predecessors: l_{p_1} and l_{p_2} might be in the set of controllable predecessors of l
Solving a **control** problem: key idea

Controllable predecessors technique

Let:

- S be the “safe” states, *i.e.* the ones meeting the specification φ
- $\pi(X)$ is the set of **controllable predecessors** of a given state X

[MPS95]: $\pi(X)$ is computed as the greatest fix-point of

$$\pi(X) = \pi(X) \cap S$$

Control

If the initial state of the automaton belongs to $\pi(S)$, then there exists a supervisor satisfying the specification φ.
Solving a control problem: controllable predecessors

Theorems

- For finite automata, the semi-algorithm that computes the set of controllable predecessors **terminates** (because of the finite number of discrete states).
- For Petri nets, the semi-algorithm that computes the set of controllable predecessors **may not terminate**.

Figure: Example of Petri net for which the computation of the set of controllable predecessors will not terminate.
Control as a game (from [CM07])

Definition of the problem

- Open-system = game with two players:
 - Environment plays uncontrollable events
 - Controller plays controllable events

- **Control** objective = **Winning** condition (e.g. avoid bad states)
- Control problem: find a **strategy** (a controller) to win the game

Figure: Game between the environment and the controller: bad state must be avoided (blue actions are controllable; red ones are uncontrollable)
Control as a game (from [CM07])

<table>
<thead>
<tr>
<th>Related concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strategy: gives, for each finite run, the controllable action to perform</td>
</tr>
<tr>
<td>Winning strategy: strategy which generates only runs that leads to a set of states (S) meeting the specification (\varphi)</td>
</tr>
<tr>
<td>Winning states: set of states (s) in which there exists a winning strategy from (s) (i.e. (\pi(S)))</td>
</tr>
</tbody>
</table>

Figure: Game between the environment and the controller: bad state must be avoided (blue actions are controllable; red ones are uncontrollable)
Key issues w.r.t. control as a game problem

Criteria needed to the correct definition of the problem

- **Observability**, again: **full** observability vs **partial** observability
- **Type of games:**
 - Concurrent games: each opponent can play at any turn
 - Turn-based games: each opponent plays alternatively
Introduction to timed control

Control for timed systems
- Natural extension of the control of discrete-events systems
- A *run* = a succession of *discrete* and *time elapsing* steps
- Extension of the controllable predecessors algorithm

Application to the control problem for timed automata
Control is viewed as a *Timed Game Automaton* [AMPS98]
Control of timed automata

Principle

- **Full observability**: the controller observes both discrete and time-elapsing steps
- **Two options** for the controller:
 - Delay action
 - Perform a controllable action (among the possible ones)
- Define a **strategy**
 - “Wait as long as the system permits”
 - Build the most permissive controller (i.e. the one that restricts the behavior of the environment as little as possible)
 - Towards **optimal** control
- Extension of the controllable predecessors algorithm

Remark: the controller can prevent time to elapse by taking only controllable moves ⇒ **zeno-controlers** (which are usually excluded)
Control of timed automata

Figure: Timed automaton with controllable and uncontrollable actions
Extension of the controllable predecessors algorithm

Key ideas

- A state s_p is a time controllable predecessor of state s iff, on the time elapsing path between s_p and s, there is no uncontrollable discrete step leading to a bad state s_b.

- A **symbolic version** of $\pi(X)$, the set of controllable predecessors of a given state X, can be defined [AMPS98].

Figure: Time controllable predecessor(s)
Verification vs Optimization

Verification
- **Checks** logical properties
- Implementation: consider the whole state-space of the model

Optimization
- Find **optimal** solutions w.r.t. a set of criteria
- Implementation: cut techniques to avoid non-optimal parts of the state space

Introduction to optimal control
Given a logical property, does there exist an **optimal controller** that guarantees the property, i.e. a controller that guarantees the property and optimizes a set of criteria?
Verification vs Optimization

Verification
- **Checks** logical properties
- Implementation: consider the whole state-space of the model

Optimization
- Find **optimal** solutions w.r.t. a set of criteria
- Implementation: cut techniques to avoid non-optimal parts of the state space

Introduction to optimal control
Given a logical property, does there exist an **optimal controller** that guarantees the property, i.e., a controller that guarantees the property and optimizes a set of criteria?
Introduction to Optimal Timed Games [BCFL04]

Figure: Game between the environment and the controller: blue actions are controllable; red ones are uncontrollable
Introduction to Optimal Timed Games [BCFL04]

Principle of a reachability timed game

- Does a **best cost** *whatever the environment does* exist? If yes, what is its value?
- Is there a **strategy** to achieve this optimal cost?
- Is this strategy **computable**?

Figure: Priced timed game automaton between the environment and the controller: **blue actions** are controllable; **red ones** are uncontrollable
Optimal Timed Games [BCFL04]

Figure: **Priced timed game automaton** between the environment and the controller: blue actions are controllable; red ones are uncontrollable

Basic illustration of a reachability timed game

- **Best cost** to reach l_4 whatever the environment does:
 \[
 \inf_{0 \leq t \leq 5} \max(3t + 5(5 - t) + 6; 3t + 12(5 - t) + 1) = \frac{11}{9}, \text{ where } t \text{ represents the time to remain in } l_0
 \]

- **Strategy** to achieve this optimal cost: wait in l_0 till $t = \frac{11}{9}$, then fire a
Optimal Timed Games [BCFL04]

Problem

- **Priced Timed Game Automaton (PTGA)** = Timed Automaton + cost function which associates to each location a cost rate and to each discrete transition a cost.

- Usual assumptions on PTGA:
 - Deterministic w.r.t. controllable actions
 - Time-deterministic: let s, s_1 and s_2 be three states of a timed transition system and $d \in \mathbb{R}$. If $s \xrightarrow{d} s_1$ and $s \xrightarrow{d} s_2$, then $s_1 = s_2$.

- Link between optimal control for a PTGA and reachability control for a Linear Hybrid Game Automaton.

Application to scheduling [BLR04]

- Aircraft landing
- Job shop scheduling
Conclusion

Adding timed informations to models

Key factors

- Expressivity: **clocks** vs **stopwatches** vs **variables with more complex dynamics**
- **Asynchronous** events vs **synchronous** events
- **Zenoness**
Timed and hybrid models

Summary

- A wide range of models
- Gaining *expressively* often leads to undecidability
- But *undecidability* is not always incompatible with practical problems

Further work

- Discuss the quantitative *time semantics*
- Discuss the respective *expressivity* of models (timed extensions of automata vs timed extensions of Petri nets)
- Application to practical biological problems

Patricia Bouyer, Fabrice Chevalier, and Nicolas Markey. On the expressiveness of tptl and mtl. In *PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON FOUNDATIONS OF SOFTWARE TECHNOLOGY AND THEORETICAL COMPUTER SCIENCE (FSTTCS?05), VOLUME*
B. Berthomieu and M. Diaz.
Modeling and verification of time dependent systems using time Petri nets.

Gerd Behrmann, Kim G. Larsen, and Jacob I. Rasmussen.
Priced timed automata: Algorithms and applications.

B. Berthomieu and M. Menasche.
An enumerative approach for analyzing time Petri nets.

Patricia Bouyer, Nicolas Markey, and Ocan Sankur.
Robust reachability in timed automata: A game-based approach.

Guillaume Gardey, Olivier (H.) Roux, and Olivier (F.) Roux. State space computation and analysis of time Petri nets.
Conclusion

Thomas Henzinger.
The theory of hybrid automata.

N. D. Jones, L. H. Landweber, and Y. E. Lien.
Complexity of some problems in petri nets.

Ron Koymans.
Specifying real-time properties with metric temporal logic.

P.M. Merlin.
A study of the recoverability of computing systems.
