Emotion Recognition and Cognitive Load Measurement from Speech

Julien Epps, Fang Chen and Bo Yin

fang.chen@nicta.com.au

The material is mainly coming from the tutorial of APSIPA Annual Summit and Conference

December 14th, 2010
Overview

- Emotion and Mental State Recognition Systems
- Emotions and Cognitive Load
 - What are they and how can they be measured?
- Feature Extraction
 - Acoustic origins, methods, comparison and robustness
- Normalisation, Modelling and Classification
- Speech Databases and their Design
- Applications of Emotion Recognition and Cognitive Load Measurement
- Summary
Emotion and Mental State Recognition Systems
Emotion Recognition: Some History

• The Measurement of Emotion
 – Whately-Smith, 1922

• Emotion in speech (science)
 – Scherer, 1980s-present

• Emotion in synthetic speech
 – 1990s

• Emotion recognition
 – Dellaert et al., 1996 – prosodic features

• Applications of emotion recognition
 – Petrushin, 1999, Lee et al., 2001 – call centres

• Affective computing
 – Picard, 2000

• 2000: ~10 papers per year
Emotion Recognition: Some History

- Hidden Markov model emotion recognition
- Large review papers begin appearing
 - Cowie et al., 2003, Douglas Cowie et al., 2003
- HUMAINE
- Open source emotion recognition toolkit
- Large databases
 - LDC Emotional Prosody, AIBO Corpus, others
- Emotion recognition with large feature sets
- 2009: INTERSPEECH Emotion Challenge
- 2010: INTERSPEECH Paralinguistic Challenge
- 2010: >100 papers per year
Cognitive Load: Some History

• Working memory
 – Miller et al., 1960
 – Wickens 1980s, Baddeley 1990s onwards

• Cognitive load in learning
 – Sweller (mid 80s)

• Working memory and language
 – Gathercole, 1993

• Cognitive load in speech (science)
 – Berthold and Jameson, 1999

• Cognitive load classification from speech
 – Yin et al., 2008
• Typical acoustic based system

speech → voicing detection → feature extraction → feature normalisation

emotion modelling → classification / regression → recognized emotion
Emotion Recognition: Different Approaches

• Acoustic vs. prosodic vs. linguistic
• Detailed spectral vs. broad spectral features
• Direct vs. adapted models
• Static (utterance) vs. dynamic (frame/multi-frame)
• Categorical vs. ordinal vs. regression-based classification
• Recognition vs. detection
• Basis for emotion, mental states in physiology and hence speech production
 - Shared with expressive speech synthesis
 - Difficult to reverse-engineer spoken emotion
 - Use of wide range of physiological sensors may be helpful
 • EGG, glottal cameras, vocal tract x-ray movies etc
 • EEG, GSR, HRV, respiration
 - Complex: emotion dependency varies between different contexts (e.g. some words more emotive than others)
• Characterizing emotion, mental states using robust features
 - Lots of features in literature
 - Why should a given feature be / not be useful?
 - Are some features more sensitive to some emotions/mental states, and why?
 - How should temporal information best be used?
• Recognition of emotion in naturally occurring speech
 - Much initial work on emotion recognition done on acted speech
 - Initial work on cognitive load classification done on carefully controlled experimental data
 - Real emotions/metal states ≠ acted or experimental data
 - Taking emotion recognition from the lab to the field
• Understanding application areas
 – Lots of vision statements about affective computing
 • Detail still coming
 – Understanding likely limits of automatic approaches
 • Match approaches with suitable applications
 – Very large number of mental and cognitive states of interest in a wide range of different situations
 – New applications still emerging
Emotions and Cognitive Load
Emotions and CL: Psychology

• Psychology has much to say about emotions
 - Origins of emotion are in survival and evolution
 • Also a signalling system between people
 • Important in learning behaviours
 - Results of studies are complex to interpret as an engineer
 - There is no ‘standard’ set of emotions
 - Cultural variation exists
 - Emotions can often be discretely described only as ‘full-blown’ emotions
 • Cowie et al., 2001

• Pragmatics
 - Emotions of interest are dictated by application and availability of labelled data, usually single-culture, often fully blown.
• Emotion representations and structures
 – Affective circumplex
 - Arousal: alertness/responsiveness to stimuli
 - Valence: positive (e.g. happy) and negative (anger, fear) emotions

• Emotions are high-dimensional
 • Reducing to two dimensions can lead to different structures
 – Cowie et al., 2001
• One choice: FeelTrace
 - For real time
 - Cowie et al., 2000
• Measuring emotions
 - Self-reports of subjective experience
 • Single-item (“how happy did you feel”)
 • Check-list, e.g. mood adjective check-list
 - Real time methods
 • e.g. rotating dial / slider for single-item measure
 • e.g. arousal-affect emotion space cursor
 - Cued review
 • Subjects watch video of themselves performing the task, rate emotions experienced post-hoc
 - Observer ratings
 - Behavioural measures (this presentation)
 - Physiological measures (more later)
• Measuring CL
 - Subjective rating scales
 - NASA Task Load Index (Hart and Staveland, 1988)

source: http://humansystems.arc.nasa.gov/groups/TLX/downloads/TLXScale.pdf
Emotions and CL: Measuring CL

- Measuring CL
 - Subjective rating scales
 - Subjective workload assessment technique (Reid and Nygren, 1988)
 - Mental Effort Load
 » a. Very little conscious mental effort or concentration required. Activity is almost automatic, requiring little or no attention.
 » b. Moderate conscious mental effort or concentration required. Complexity of activity is moderately high due to uncertainty, unpredictability, or unfamiliarity. Considerable attention required.
 » c. Extensive mental effort and concentration are necessary. Very complex activity requiring total attention.
• Measuring other mental states (speech literature)
 - Stress
 - Uncertainty
 - Level of interest
 - Deceptive speech
 - Mental disorders
 - Depression, anxiety, autism
 - Behaviour (e.g. drunkenness)
 - Disfluency (indicative of some mental states)

- Note differences in temporal occurrence of mental state
Feature Extraction
• Effect of emotion on speech production
 - Scherer, 1989
Feature Extraction: Origins

- Effect of emotion/mental state on speech production
 - Larsen and Fredrickson, 2003
 - Arousal component of emotion better conveyed using vocal cues than the affective component
 - Listeners can consistently nominate vocal cues for distinguishing emotions
 - Specific acoustic cues not generally linked to any particular emotions
 - Scherer, 1986
• Effect of emotion/mental state on speech production
 - Typical general acoustic feature set (Larsen and Fredrickson, 2003)
 • Fundamental frequency F_0
 • Fluctuation in F_0 due to jitter (ΔF_0) and shimmer (ΔA_{F_0})
 • Energy
 • Speech rate
 - Stress related to (Streeter et al., 1983)
 • Increased energy
 • Increased pitch
Feature Extraction: Methods

• Voicing activity detection
 - Emotion, mental state content primarily conveyed during voiced portion of speech
 - Remove unvoiced/silence
 • Energy based methods
 • Pitch-based methods
 • VADs borrowed from other speech processing applications
 - Virtually nil additional attention

• Effect of cognitive load on speech production
 - Speech rate
 - Energy contour
 - F_0
 - Spectral parameters
 • Scherer et al., 2002
Feature Extraction: Methods

- Energy

Neutral speech

Log energy

Angry speech

Log energy
• Spectral features
 - Tilt
 • Many systems
 • ‘Broad’ spectral measure
 - Weighted frequency
 • ‘Broad’ spectral measure
 - Mel Frequency Cepstral Coefficients (MFCC)
 • Detailed spectral measure
 - Log frequency power coefficients (LFPC) (Nwe et al., 2003)
 • Detailed spectral measure
 - Group delay from all pole spectrum
 • Captures bandwidth information (Sethu et al., 2007)
 - Formant frequencies
 - Recent: Spectral Centroid features
Feature Extraction: Methods

• Glottal features
 – Glottal formants F_g, F_c from glottal flow spectrum
 • Sethu, 2009
 – Primary open quotient (OQ1), normalised amplitude quotient (NAQ), primary speed quotient (SQ1)
 • Airas and Alku, 2006, Yap et al., 2010
 – Voice quality parameters
 • Lugger and Yang, 2007
 – Glottal statistics
 • Iliev and Scordilis, 2008
 – Vocal fold opening
 • Murphy and Laukkanen, 2010
 – Glottal flow spectrum (depressed speech)
 • Ozdas et al., 2004, others
Feature Extraction: Methods

- Glottal features (example)
 - Yap et al., 2010
 - High load ↔ creaky voice quality

![Graphs showing glottal features across different load levels](image)
Feature Extraction: Empirical Comparison

- Individual features (LDC Emotional Prosody, 5-class)

<table>
<thead>
<tr>
<th>Features</th>
<th>Feature Dimension</th>
<th>Speaker Independent</th>
<th>Speaker Dependent</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFCC</td>
<td>13</td>
<td>49.7 %</td>
<td>74.8 %</td>
</tr>
<tr>
<td>Formant Frequencies (FF)</td>
<td>6</td>
<td>43.7 %</td>
<td>58.3 %</td>
</tr>
<tr>
<td>Reflection Coefficients (RC)</td>
<td>24</td>
<td>48.9 %</td>
<td>71.2 %</td>
</tr>
<tr>
<td>Pitch (P)</td>
<td>1</td>
<td>46.6 %</td>
<td>51.8 %</td>
</tr>
<tr>
<td>Intensity/Energy (E)</td>
<td>1</td>
<td>28.8 %</td>
<td>25.2 %</td>
</tr>
<tr>
<td>Energy Slope (S)</td>
<td>1</td>
<td>43.4 %</td>
<td>59.0 %</td>
</tr>
<tr>
<td>Zero Crossing Rate (Z)</td>
<td>1</td>
<td>47.1 %</td>
<td>46.8 %</td>
</tr>
<tr>
<td>Spectral Centroid (SC)</td>
<td>1</td>
<td>40.2 %</td>
<td>44.6 %</td>
</tr>
<tr>
<td>Phoneme Rate (PhR)</td>
<td>1</td>
<td>20.6 %</td>
<td>23.0 %</td>
</tr>
<tr>
<td>GFCC</td>
<td>13</td>
<td>55.6 %</td>
<td>72.6 %</td>
</tr>
<tr>
<td>LP based Group Delay (GD)</td>
<td>10</td>
<td>42.9 %</td>
<td>69.8 %</td>
</tr>
<tr>
<td>Wavelet Scale Feature (WS)</td>
<td>1</td>
<td>41.8 %</td>
<td>54.7 %</td>
</tr>
<tr>
<td>LPRCC</td>
<td>13</td>
<td>50.0 %</td>
<td>68.4 %</td>
</tr>
<tr>
<td>Frequency Modulation (FM)</td>
<td>30</td>
<td>44.4 %</td>
<td>64.0 %</td>
</tr>
<tr>
<td>FM + GFCC</td>
<td>43</td>
<td>47.1 %</td>
<td>73.4 %</td>
</tr>
<tr>
<td>Weighted Frequency (WF)</td>
<td>3</td>
<td>47.6 %</td>
<td>53.2 %</td>
</tr>
<tr>
<td>Fractal Dimension (FD)</td>
<td>1</td>
<td>46.3 %</td>
<td>41.0 %</td>
</tr>
</tbody>
</table>

Sethu, 2009
Feature Extraction: Empirical Comparison

- Top individual features (12 actors, 14 emotions)
 - Scherer, 1996
 - Pitch
 - Mean, standard deviation, 25th and 75th percentile
 - Energy – mean
 - Speech rate
 - Long-term voiced average spectrum
 - 125-200, 200-300, 500-600, 1000-1600, 5000-8000 Hz
 - Hammarberg index
 - Difference in energy maxima in 0-2 and 2-5 kHz bands (voiced)
 - Spectral slope above 1 kHz
 - Voicing energy up to 1 kHz
 - Long-term unvoiced average spectrum
 - 125-200, 5000-8000 Hz
• Individual features (LDC Emotional Prosody, 5-class)
 - Sethu, 2009

<table>
<thead>
<tr>
<th>Features</th>
<th>Speaker Dependent</th>
<th>Speaker Independent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Without Normalisation</td>
</tr>
<tr>
<td>SSC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitch + Energy (PE)</td>
<td>51.1 %</td>
<td>37.6 %</td>
</tr>
<tr>
<td>DSM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MFCC</td>
<td>74.8 %</td>
<td>48.7 %</td>
</tr>
<tr>
<td>Formant Feature (FF)</td>
<td>58.3 %</td>
<td>35.7 %</td>
</tr>
<tr>
<td>Reflection Coefficients (RC)</td>
<td>71.2 %</td>
<td>41.8 %</td>
</tr>
<tr>
<td>LP based Group Delay (GD)</td>
<td>69.8 %</td>
<td>36.0 %</td>
</tr>
<tr>
<td>BSM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy Slope + ZCR (SZ)</td>
<td>57.6 %</td>
<td>40.2 %</td>
</tr>
<tr>
<td>Weighted Frequency (WF)</td>
<td>53.2 %</td>
<td>40.7 %</td>
</tr>
</tbody>
</table>
• Shifted delta coefficients
 - Feature C_l (l = feature dimension), at time t:
 \[
 \Delta C^t_l = C^t_{l+iP+d} - C^t_{l+iP-d}
 \]
 - k: how many delta features
 - P: spacing between features
 - d: controls span of each delta

 - Important in cognitive load (Yin et al., 2008)
 - MFCC 52.2%
 - MFCC+Prosodic (Concatenated) 59.3%
 - MFCC+Prosodic, Acceleration 64.4%
 - MFCC+Prosodic, SDC 65.7%
 - Much larger performance difference in other CL research ~20-60% impr.
Feature Extraction: Temporal Information

- **Parameter Contours**
 - Pitch: Sethu, 2009
 - 5-class, LDC Emotional Prosody

<table>
<thead>
<tr>
<th>Classification Test</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human – Actual Speech</td>
<td>63.6 %</td>
</tr>
<tr>
<td>Automatic – using pitch contours (slope-bias)</td>
<td>57.1 %</td>
</tr>
<tr>
<td>Automatic – using glottal parameter contours (midpoint)</td>
<td>55.0 %</td>
</tr>
<tr>
<td>Automatic – using vocal tract parameter contours (midpoint)</td>
<td>45.0 %</td>
</tr>
<tr>
<td>Automatic – using all model parameters</td>
<td>62.6 %</td>
</tr>
</tbody>
</table>
Feature Extraction: Empirical Comparison

- **Comparison of Cognitive Load Features**
 - 3-class, Stroop Test Database

<table>
<thead>
<tr>
<th>Feature (combination)</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFCC</td>
<td>52.2%</td>
</tr>
<tr>
<td>MFCC + SDC</td>
<td>60.2%</td>
</tr>
<tr>
<td>MFCC + Pitch + Energy + SDC</td>
<td>79.2%</td>
</tr>
<tr>
<td>MFCC + Pitch + Energy + 3 Glottal features + SDC</td>
<td>84.4%</td>
</tr>
<tr>
<td>F1 + F2 + F3 + SDC</td>
<td>67.7%</td>
</tr>
<tr>
<td>SCF + SCA + SDC</td>
<td>87.2%</td>
</tr>
</tbody>
</table>
Feature Extraction: Prosodic

• Emotion
 - Duration, rate, pause, pitch, energy features
 • Based on ASR alignment
 • Ang et al., 2002
 - Pitch level and range, speech tempo, loudness
 • More details: Pitch contour slope, stressed/unstressed syllables
 • Emotional speech synthesis
 • Schröder, 2001

• Cognitive load
 - Duration
 • Speech is slower under higher cognitive load
 • Pitch, formant trajectories less variable (more monotone)
 • Yap et al., 2009
Feature Extraction: Linguistic

- Emotion
 - Fused linguistic explored in a few papers
 - e.g. 10-30% impr.
 Lee et al., 2002
 - Right: Schüller et al. 2007

<table>
<thead>
<tr>
<th>feature set</th>
<th>full</th>
<th>reduced</th>
</tr>
</thead>
<tbody>
<tr>
<td>type</td>
<td>#</td>
<td>F_{SVM}</td>
</tr>
<tr>
<td>Low Level Descriptors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>voice quality</td>
<td>153</td>
<td>51.5</td>
</tr>
<tr>
<td>F0</td>
<td>333</td>
<td>56.1</td>
</tr>
<tr>
<td>spectral/formants</td>
<td>656</td>
<td>54.4</td>
</tr>
<tr>
<td>cepstral</td>
<td>1699</td>
<td>52.7</td>
</tr>
<tr>
<td>wavelets</td>
<td>216</td>
<td>56.0</td>
</tr>
<tr>
<td>energy</td>
<td>265</td>
<td>58.5</td>
</tr>
<tr>
<td>duration</td>
<td>391</td>
<td>55.1</td>
</tr>
<tr>
<td>all acoustic</td>
<td>3713</td>
<td>57.7</td>
</tr>
<tr>
<td>disfluencies</td>
<td>4</td>
<td>26.8</td>
</tr>
<tr>
<td>non-verbals</td>
<td>8</td>
<td>24.8</td>
</tr>
<tr>
<td>part of speech</td>
<td>31</td>
<td>54.7</td>
</tr>
<tr>
<td>higher semantics</td>
<td>12</td>
<td>57.6</td>
</tr>
<tr>
<td>bag of words</td>
<td>476</td>
<td>62.6</td>
</tr>
<tr>
<td>all linguistic</td>
<td>531</td>
<td>62.6</td>
</tr>
<tr>
<td>all</td>
<td>4244</td>
<td>61.0</td>
</tr>
</tbody>
</table>

functionals (without linguistic features)

<table>
<thead>
<tr>
<th>feature set</th>
<th>full</th>
<th>reduced</th>
</tr>
</thead>
<tbody>
<tr>
<td>percentiles</td>
<td>1196</td>
<td>53.8</td>
</tr>
<tr>
<td>specific</td>
<td>153</td>
<td>54.5</td>
</tr>
<tr>
<td>extremes</td>
<td>1132</td>
<td>53.4</td>
</tr>
<tr>
<td>higher stat. mom.s</td>
<td>547</td>
<td>57.6</td>
</tr>
<tr>
<td>means</td>
<td>427</td>
<td>59.8</td>
</tr>
<tr>
<td>sequential+comb.</td>
<td>218</td>
<td>61.2</td>
</tr>
<tr>
<td>all functional</td>
<td>3673</td>
<td>57.4</td>
</tr>
</tbody>
</table>
• Higher cognitive load
 - Sentence fragments, false starts and errors increase
 - Onset latency, pauses increase
 - Articulation/speech rate decrease
 • Berthold and Jameson, 1999
 - Measures of language complexity – complexity increases for multiple measures
 - More use of plural pronouns, less of singular
 • Khawaja et al., 2009

 - Linguistic not fused with acoustic to date
• Disfluencies
 – Interruption rate
 – Proportion of the effective speech in the whole speech period
 – Keywords for correction or repeating
• Inter-sentential pausing
 – Length and frequency of big pauses
• Fragmented sentences
 – Length and frequency of small pauses
 – Length of intra-sentence segments
• Slower speech rate
 – Syllable rate
• Response Latency
 – Delay of generating speech
 – Particular hybrid prosodic pattern
Normalisation, Modelling and Classification
• Two main sources of variability:
 - Phonetic
 - Speaker identity

• Both stronger sources of variability

• Two approaches to deal with these:
 - Model it
 - e.g. UBM-GMM with many mixtures
 - Remove it
 - e.g. normalisation

• Other variability:
 - Phonetic/linguistic dependence of emotion information
 - Session
 - Age
Normalisation

- Types
 - Per utterance
 - Per speaker

Sethu et al., 2007
Modelling

- Usual considerations
 - Structure of problem and/or database
 - Amount of training data available → number of parameters to use

- Rate of classification decision
 - Often one per utterance

- Type of result needed
 - Categorical e.g. {“happiness”, ”boredom”,...}
 - Continuous e.g. [-1,1]
 - Ordinal e.g. {“low”, ”medium”, ”high”}
• Gaussian mixture model (GMM)

\[p(x) = \sum_{m=1}^{M} w_m \frac{1}{(2\pi)^{K/2}|C_m|^{1/2}} \exp\left(-\frac{1}{2}(x - \mu_m)^T C_m^{-1}(x - \mu_m)\right) \]

- \(w_m \): weight of the \(m \)'th mixture
- \(\mu_m \): mean vector of the \(m \)'th mixture
- \(C_m \): covariance matrix of the \(m \)'th mixture
• Maximum a priori GMM
 - Previously: Train each GMM separately for each target class
 - MAP-GMM begins with a single model
 • Covering wide range of conditions (emotions/CL)
 - Acoustic space of all speakers
 - Trained on very large database
 • “Universal background” model (UBM) – from speaker recognition
 - Advantages
 • Mixtures in each emotion class with same index correspond to same acoustic class
 • Fast scoring

UBM-GMM
Adapted model: happiness
Adapted model: sadness
• Hidden Markov model (HMM)
 - Can capture temporal variation
 • Main issue: what to model?
 - Schüller et al., 2003: pitch, energy contours
 - Nwe et al., 2003: LFPC features, F0, speaking rate
 - Sethu et al., 2009: pitch trajectories in utterance
 • Assumes emotions have same trajectory structure in all utterances

Nwe et al., 2003
Larger utterance variability than Schüller et al., 2003?
• Hidden Markov model (HMM)
 - Lee et al., 2004
 - Phoneme class based states
 • Vowel/glide/nasal/stop/fricative
 • Clear what a state represents, no assumptions about utterance structure
 - Adapt towards each emotion

<table>
<thead>
<tr>
<th>Classification Method</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVC with prosodic features</td>
<td>55.68</td>
</tr>
<tr>
<td>generic “emotional” HMM</td>
<td>64.77</td>
</tr>
<tr>
<td>every phoneme class</td>
<td>75.57</td>
</tr>
<tr>
<td>vowel only</td>
<td>72.16</td>
</tr>
<tr>
<td>glide only</td>
<td>54.86</td>
</tr>
<tr>
<td>nasal only</td>
<td>47.43</td>
</tr>
<tr>
<td>stop only</td>
<td>44.89</td>
</tr>
<tr>
<td>fricative only</td>
<td>55.11</td>
</tr>
<tr>
<td>Combination of prosody and phoneme-class classifier</td>
<td>76.12</td>
</tr>
</tbody>
</table>
• GMMs describe common patterns as well as class-specific patterns.
• SVM identify the boundary between classes, ignore the common distributions
Classification: Empirical Results

- LDC Emotional Prosody
- Static classifiers
- Sethu et al., 2009

<table>
<thead>
<tr>
<th>Classifier</th>
<th>P + E + WF</th>
<th>MFCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMM</td>
<td>43.1%</td>
<td>37.1%</td>
</tr>
<tr>
<td>PNN</td>
<td>44.1%</td>
<td>35.6%</td>
</tr>
<tr>
<td>SVM</td>
<td>40.5%</td>
<td>39.9%</td>
</tr>
</tbody>
</table>

- Berlin Emotional Speech Database (EMO-DB)
- Schüller et al., 2005

<table>
<thead>
<tr>
<th>Accuracy [%]</th>
<th>All 276 features included</th>
<th>Top 75 by SVM SFFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB</td>
<td>73.57</td>
<td>73.98</td>
</tr>
<tr>
<td>1NN</td>
<td>63.52</td>
<td>75.82</td>
</tr>
<tr>
<td>SVM</td>
<td>84.84</td>
<td>87.50</td>
</tr>
<tr>
<td>C4.5</td>
<td>61.07</td>
<td>61.48</td>
</tr>
<tr>
<td>Bagged C4.5</td>
<td>70.70</td>
<td>74.80</td>
</tr>
<tr>
<td>AdaBoosted C4.5</td>
<td>72.34</td>
<td>74.59</td>
</tr>
<tr>
<td>MultiBoosted C4.5</td>
<td>72.54</td>
<td>74.59</td>
</tr>
<tr>
<td>StackingC MLR NB 1NN C4.5</td>
<td>75.41</td>
<td>79.92</td>
</tr>
<tr>
<td>StackingC MLR NB 1NN SVM C4.5</td>
<td>76.23</td>
<td>80.53</td>
</tr>
</tbody>
</table>
Classification: Human Performance

• Emotion
 - Dellaert et al., 1996
 - ~17% for 7-class speaker dependent (independent: 35%)
 - Schüller et al., 2005
 - ~60% acc. for 8-class

<table>
<thead>
<tr>
<th>Category</th>
<th>happy</th>
<th>sad</th>
<th>anger</th>
<th>fear</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>happy</td>
<td>44</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3%</td>
</tr>
<tr>
<td>sad</td>
<td>1</td>
<td>40</td>
<td>3</td>
<td>6</td>
<td>5%</td>
</tr>
<tr>
<td>anger</td>
<td>2</td>
<td>0</td>
<td>48</td>
<td>0</td>
<td>1%</td>
</tr>
<tr>
<td>fear</td>
<td>8</td>
<td>7</td>
<td>3</td>
<td>32</td>
<td>9%</td>
</tr>
</tbody>
</table>

 Total error: 18%

• Cognitive load
 - Le, 2009
 - 62% acc. overall

<table>
<thead>
<tr>
<th>Recognized CL level</th>
<th>Actual CL level</th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Low</td>
<td>76</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Medium</td>
<td>2</td>
<td>60</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>10</td>
<td>23</td>
<td>55</td>
<td></td>
</tr>
</tbody>
</table>
Emotional Speech Databases and their Design
• Emotion
 - Emotions sufficiently fully blown to be distinguishable
 - Naturalness
 - Listener ratings
 - Matched to context of use

• Cognitive load
 - Multiple discrete load levels
 - Levels distinguishable by subjective ratings
 - Possibly additional sensor data (physiological)
 - No stress involved, subjects motivated

• All
 - Large, multiple speaker
 - Phonetically, linguistically diverse
Databases: Design

• Scope
 - 4/5 ‘basic’ emotions oversimplifies the problem

• Naturalness
 - Read speech vs. uncontrolled phonetic/linguistic content

• Context
 - Allow use of emotive words?

• Descriptors
 - Elicited emotions → well defined descriptors
 - Natural emotions: Use multiple levels of descriptors or Feeltrace + listener ratings
 - Douglas-Cowie et al., 2003
• AIBO Corpus
 - 9 hours, 51 children, spontaneous (WOz) speech, 11 categories
 - http://www5.informatik.uni-erlangen.de/our-team/steidl-stefan/fau-aibo-emotion-corpus/ 50€

• IEMOCAP
 - 12 hours, 10 speakers, acted speech, 9 classes + valence/activation/dominance labelling
 - http://sail.usc.edu/iemocap/

• LDC Emotional Prosody
 - ½ hour, 7 speakers, acted speech, 15 classes
 - http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2002S28 US$2500
Databases: Resources (English)

• Reading-Leeds
 - 4½ hours, unscripted TV interviews

• Cognitive Load
 - DRIVAWORK
 - 14 hours, in-car speech under varying workload, several physiological reference signals
 - SUSAS / SUSC-1
 - contains some psychological stress conditions
 - http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC99S78 US$500
 - Other databases proprietary

• More complete listing
 - See Douglas-Cowie et al., 2003; Ververidis and Kotropoulos, 2006
• Cognitive load task design: Span tests
 – Word span, digit span
 • Interleave memory tasks presentation of target words/digits with demanding secondary task
 – Conway et al., 2005
 – Reading span
 • Ability to coordinate processing and storage resources
 • Subjects must read fluently and answer comprehension questions
 – Daneman and Carpenter, 1980
 – Speaking span
 • Randomly selected words
 • Speaking span = maximum number of words for which a subject can successfully construct a grammatically correct sentence
 – Daneman, 1991
 – Others: counting, operation, reading digit
Databases: CL Examples

• Stroop test
 - Subjects presented colour words in different colours
 • Low: congruent Medium: incongruent
 - Time pressure added for high load

• Story reading
 - Story reading followed by Q&A
 - 3 different levels of text difficulty (Lexile Framework for Reading, www.lexile.com)
 - 3 stories in each of the 2 sessions (fixed order)
 • 1st session:
 - “Sleep” (900L),
 - “History of Zero” (1350L) &
 - “Milky Way Galaxy” (1400L)
 • 2nd session:
 - “Smoke Detectors” (950L),
 - “Hurricanes” (1250L) &
 - “The Sun” (1300L)
• ‘Naturally’ elicited emotion
• Larger databases
• Telephone speech
• Realistic data (i.e. without controlled lab conditions)
• Later: noise
Applications of Emotion Recognition and Cognitive Load Measurement
• Like other speech processing apps
 – Need microphone
 – Best in clean environments

• Trend towards processing power in the loop
 – VoIP
 – Mobile phone / iPhone / SmartPhone

• Trend towards user-aware interfaces
 – Affective computing

• The work overload problem
 – Mental processes play an increasing role in determining the workload in most jobs (Gaillard et al., 1993)
• Adjusting the human-computer balance for optimised task performance
 – Ideas date back to Yerkes and Dodson (1908)
 • Arousal induced using mild electric shocks
• Care needed: cognitive load $\propto 1/\text{performance}$
 - Task performance says nothing about spare mental capacity
 - Spare or residual capacity turns out to be an important practical measure
 • Parasuraman et al., 2008

 - Correlation between workload and performance is poorer in underload and overload tasks
 • Vidulich and Wickens, 1986; Yeh and Wickens, 1988

 - No studies for physiological or behavioural measures
Applications: Examples

• From the literature . . .
 - Air traffic control, vehicle handling, shipping, military, rail
 • Embrey et al., 2006
 - Learning and vigilance tasks
 • Sweller, 1988; Berka et al., 2007
 - Driving
 • Lamble et al., 1999
 - Team decision efficiency
 • Johnston et al., 2006
 - Collaboration load
 • Dillenbourg and Betrancourt, 2006
 - Augmented cognition
 • Schmorrow, 2005
Applications: Biomedical

• Brain training for ADHD
 - Improve working memory
 - www.cogmed.com
 - Supported by substantial research base

• Diagnosis/treatment of mental disorders
 - Objective measure
 - e.g. Workman et al., 2007
 - Still to be investigated

• Management of psychological stress
 - Has occupational health and safety implications
 - Still to be investigated
Cognitive Load and Emotion
Emotion Recognition – Speech Pitch Contour

Emotional Speech → Pitch Estimation → VAD → Segmented Pitch Contour

Segmental Linear Approximation

PITCH – LINEAR APPROXIMATION

\[\text{tan} \theta = \text{slope, } s \]

Segment Length, \(x \) → Initial Offset, \(b \)

Parameters – \(b, s, x \)

HMM BASED EMOTION MODELS
• Ideally, want to compare emotion recognition and CL systems on same data, but:
 – No ground truth
 • Classification becomes clustering
 – What should systems look like?
 • Could try to build a ‘common’ system, but
 – Where and how to compromise?
 – Which data?
 • Almost by definition, there is no database that contains both emotion and cognitive load that is also usefully annotated
• What we did
 – Took two near-state-of-the-art systems
 • Relative to LDC Emotional Prosody and
 • Stroop Test corpora
 – Applied each system to both corpora
 • Use closed-set training/test
 – Produced a set of emotion and cognitive load labels for each corpus
 – Compared clusterings based on labels
• Adjusted Rand Index

\[
Adjusted\ Index = \frac{Index - Expected\ Index}{Max\ Index - Expected\ Index}
\]

\[
ARI(U, V) = \frac{2(N_{00}N_{11} - N_{01}N_{10})}{(N_{00} + N_{01})(N_{01} + N_{11}) + (N_{00} + N_{10})(N_{10} + N_{11})}
\]

- Adjusts RI by subtracting expected value
- \(ARI = 1 \) means clustering identical
- \(ARI \approx 0 \) means random labeling
Emotion vs. CL: Clustering comparison

- Emotional Prosody Speech Corpus (LDC)
 - 5 emotions
 - Neutral
 - Anger
 - Sadness
 - Happiness
 - Boredom

- Stroop Test Data
 - 3 CL levels

- Results
 - LDC Emotional Prosody
 - $ARI = 0.0087$
 - Stroop Test Corpus
 - $ARI = 0.0253$
Conclusion

• Data
 - Plenty of acted, experimental databases as reference
 - Natural data are current challenge

• Features
 - Broad vs. detailed spectral features: implications for modelling
 - Temporal information needs to be captured
 - Centroid features (together) are promising

• Classification
 - Speaker variability is a very strong effect
 - Select correct classification paradigm for problem

• Applications
 - Emerging, many still to be well defined
Acknowledgements

• 8 Project staff (NICTA)
 – Prof Eliathamby Ambikairajah, Dr Fang Chen, Dr Julien Epps, Dr Bo Yin, Dr Eric Choi, Dr Ronnie Taib, Dr Natalie Ruiz, Dr Yang Wang

• 11 PhD students (UNSW/NICTA)
 – Tet Fei Yap, Phu Ngoc Le, Asif Khawaja, Vidhyasaharan Sethu, Karen Kua, Tharmarajah Thiruvaran
 – Pega Zarjam, Kun Yu, Siyuan Chen, Guanzhong Li, Sazzad Hassan

• Collaborators
 – UNSW Speech Processing Laboratory, Prof Paul Corballis (Georgia Tech, US), Prof John Sweller (UNSW)