Inductively Think about Impacts of Open Platforms on Research

オープンなプラットフォームが研究に与える影響を帰納的に考える

Department of Informatics
Kyushu University, Japan
Daisuke Ikeda
daisuke@inf.kyushu-u.ac.jp
My talk is about “What is e-Science?”

Tentative title of my talk in the proposal:

- “E-Science and research data 2
 - in case of the physics of the upper atmosphere –”
- I’m expected to talk about the following research:
 - “Forecasting Aurora Substorms from Observed Data with a Supervised Learning Algorithm”, Tanaka et al., 11th IEEE Intl. Conf. on eScience, Munich, Germany Aug 31- Sept 04, 2015

http://www.kwonochul.com/

Is this a Science?
Approach: Two Questions about e-Science

What is a difference between impacts of the 3rd and 4th pillars of Science?

Is it an e-Science if we use data analysis tools, such as machine learning?
Educational Background

Bachelor: *Dept. of Physics*, Faculty of Sciences, Kyushu Univ.

Master: Dept. of Information System, Interdisciplinary Grad. School of Engineering Sciences, Kyushu Univ.

Doctor: Dept. of Informatics, Grad. School of Information Science and Electrical Engineering, Kyushu Univ.
Job & Research Career

Kyushu Univ. Computer Center (1997.4～2004.4)
- HPC, Campus network and security
- Research: Web mining, text mining

Kyushu Univ. Library (2004.5～2006.7)
- Infrastructure of scholarly communication, such as institutional repository, and Automatic identification (e.g., bar codes, RFID, IC cards)
- Research: Text mining (information extraction from the Web, spam detection)

Dept. of Informatics, Kyushu Univ. (2006.8～)
- Research: Bioinformatics, e-Science, information retrieval, data infrastructures
Research Topics in My Lab

Data Analysis (Inductive approach):
- Mining from search histories and access logs
- Graph mining
- Finding a pure pattern in genomic sequences
- Mining from geotagged text (Tweets)
- Forecasting latent popular hashtags
- Authorship estimation from a Japanese historical texts
- Simulation for Emerging New Words (deductive)

Data Infrastructure:
- Context-aware information retrieval
 - create context vector from corpus
- Institutional Repository
- Infrastructure for Data Repository
- Database for Science
Four Pillars for Science
Traditional Pillars of Science

1. Theory

\[M \frac{d^2 x}{dt^2} = F \]

- **Deductive**
 - General models → Individual phenomena

- **Inductive**
 - Individual instances → General models

2. Experimentation

- a falling body and its mass

- distance to astral bodies vs. their recessional velocities
New Pillars of Science

1. Theory

\[M \frac{d^2 x}{dt^2} = F \]

2. Experimentation

3. Simulation

4. Data Science

High-speed network sensing technologies data analysis tools

http://www.fltechnical.net/news/7720

http://www.jamstec.go.jp/esc/gallery
Examples in 3rd and 4th Pillars

3rd Pillar (simulation):
- Computer Simulation of Typhoons
- Computer Simulation of Atomic Bombs
- Computer Simulation of Forest Fires
- Computer Simulation of Stock Markets

→ Same Research Style (closed-style) with HPC

4th Pillar (data science):
- Computer Shougi (Japanese chess) Programs
 - Machine learning with records of professional games
- Automatic Driving
 - pattern recognition, such as image recognition
- Forecasting Influenza Epidemics with Search Records

→ High accurate recognition and prediction, but without (scientific) mechanism
Impact of Open Platforms to Research
Example of e-Science: Auroral Substorms

Auroral Substorm:
 - sudden brightening and increased movement of auroral arcs
 - detailed physical models still remains a subject of dispute.

(Supervised) Machine learning from solar wind and geomagnetic field data
 - training data: data with labels, that is, data collected when the phenomena happen or not.
 - parameter tuning
 - algorithm creates a model to classify unlabeled data.

http://www.kwonochul.com/

Process of “Auroral Substorms”

0. Hearing from domain experts
 - available data and its basic characteristics

1. Find data related to auroral activities
 - all-sky images from NIPR (National Inst. of Polar Research)
 (http://polaris.nipr.ac.jp/~acaurora/aurora/Tromso/)
 - solar wind from CDAWeb (http://cdaweb.gsfc.nasa.gov/istp_public/)
 - geomagnetic field data from World Data Center for Geomagnetism, Kyoto
 (http://wdc.kugi.kyoto-u.ac.jp/)

2. Create Training Data
 - manually identify when the phenomena happened

3. Apply some machine learning algorithms
 - LibSVM (http://www.csie.ntu.edu.tw/~cjlin/libsvm/)

4. Evaluate the results with domain experts

Collaboration with unknown people
Open Software for Science

Impact for business: LAMP
- Linux (OS), Apache (Web server), MySQL (DB), PHP/Perl/Python (Programming language)
- Programming skills are necessary to use LAMP.

Impact for Science
- Programming Language (including R)
- Scientific Libraries
 - Linear Algebra
 - Fourier Transform
 - Plotter (Graphics)
 - Machine Learning
 - Data Mining
 - Statistics
 - Natural Language Processing

Easy to use state-of-the-art data analysis tool
Fine-grained Unit of Scholarly Communication

Data Journals

Ecological Researchは日本生態学会が刊行する英文誌で、水域・陸域を問わず、あらゆる生態学の領域において、生態学についての理解を本質的に発展・変化させる論文を掲載します。単純な記載論文や、既存の研究論文の単純な繰り返しや変更は査読対象となりません。出版される論文のタイプは、Original articles, Current topics in ecology (総説), Special features, Technical reports, Notes and comments, Data papers, Forumです。また、「Biodiversity in Asia—アジアにおける生物多様性」についての論文を掲載したいと計画しています。

Database/Software Papers

3. 論文の種類：本論文誌は次の3種類の論文を受け付けます。なお、いずれの論文に対しても査読が行われます。

【オリジナル論文（original paper）】
バイオ情報学に関するオリジナルな研究成果について述べた論文

【サーベイ論文（survey paper）】
バイオ情報学に関する既存研究のサーベイを行った論文。ただし、読者にとって有用性のあるサーベイである必要があります。

【データベース・ソフトウェア論文（database/software paper）】
開発し、かつ、公開したデータベースもしくはソフトウェア（Webサーバーを含む）を紹介する論文です。方式自体は既存のものを用いていても構いませんが、他のデータベースやソフトウェアと比較して有用性があることが必要です。最終フォーマットに換算して3ページ以上の長さで

Inter- & Trans-disciplinary Researches

IPSJ Trans. on Bioinformatics
The 4th Pillar for Complex Phenomena

Complex phenomena are left to be solved, such as environmental issues and geoscience.

In such a field, the approach of the 4th pillar would be useful.
 – even though it does not directly yield a mechanism of phenomena.

Habu, Yoshiharu (top professional of Shougi):
from now, human beings are tested if we can understand a move derived by a computer algorithm and we can derive the same move.
 – He said after a retired top professional took a beating in a match with a computer algorithm.
Conclusion

e-Science is important for understanding complex phenomena.

To do that, the followings are important:

– collaboration with domain experts
 • find data, creating labels, and evaluating results
– collaboration with data scientists
– open data and open software
One more thing ...

Creating a common mental model of “Data” is important.
 – mental model of “Paper” seems to be clear.

For that, keep in mind there exists two types of approach

1. DB like approach:
 – This approach requires that DB is abstracted by metadata.
 • But, “Data” is difficult to be abstracted in general.

2. IR (Information Retrieval) like approach:
 – This approach requires text index.
 – PR: KAKENHI (Grants-in-Aid for Scientific Research) project
 Project Number: 15H02787
 Basic idea: data = list of words
 data1 = [“aurora”, “substorm”, “geomagnetic”, ...]