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Spin-photon quantum interface

* GaAs based semiconductors exhibit highly
efficient spin-dependent optical transitions.

e Photonic nanostructures allow for efficient
extraction of photons (Lukin).



Resonant quantum dot Spectroscopy

ZrQ, solid immersion lens TiAu semi-transparent gate From laser
J Polarization
S filter
QD layer
" n++ GaAs To detector
(Si doped)
&
a Polarization
s, [ .
< ~ optics
O
=
<
<
x
% NA=0.65
v Spot size =1um
ﬁ' \:I
Magnet
Piezo
positioner

Liquid He




Strong spin-polarization correlations:
Faraday geometry ( B_,, = B,)
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* QD with a spin-up (down) electron only absorbs and emits o+ (o-)
photons — a recycling transition similar to that used in trapped ions.

= Spin measurement
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* QD with a spin-up (down) electron only absorbs and emits o+ (o-)
photons — a recycling transition similar to that used in trapped ions.

= Spin measurement

« An off-resonant o+ laser causes ac-Stark shift only for the |1> state,
acting as an effective magnetic field along the z-direction.



Spin rotation using off-resonant
circularly polarized lasers

External field along x (B_,, = B,): quantization axis
orthogonal to the laser-induced effective field
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Different selection rules in Voigt geometry
( Bext - BX)

Excitation of a trion state results in either emission of a H polarized red
photon to || > state or a V polarized blue photon to | *> state, with equal
probability.
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Different selection rules in Voigt geometry
( Bext - BX)

Excitation of a trion state results in either emission of a H polarized red
photon to || > state or a V polarized blue photon to | *> state, with equal
probability.
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= Spin-photon entanglement:
[/2 potentially near-determinsitic
/2 entanglement generation at
~1 GHz rate
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Similar results by Yamamoto group; earlier work by Monroe,Lukin
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Procedure for spin-photon
entanglement generation

Entanglement .
Spin measurement/preparation T generation ~ Rotation
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Time resolved resonance fluorescence (RF)

Entanglement )
Spin measurement/preparation T generation ~ Rotation
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Spin measurement and pumpmg

Spin measurement/preparatio n generatlon Rotation |

<] Repetition period = 13 ns

‘L> =» ~2 photons/pulse.

T> =» Nothing.

e The detection of a photon shows the
spin is in the state M

e At the end of the pulse, the spin is
prepared in ‘T>



Measurement of classical correlations
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Measurement of classical correlations

a_ _ | An additional m-pulse (dashed curve)
pin measuremenvpreparatlon T Entanglemem generatlon . . .
n is applied to realize a heralded
ﬂ ,’1 r measurement in the spin-up state.
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Identical (unconditional) counts for red
and blue photons confirm the
selection rules.
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Measurement of classical correlations
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An additional m-pulse (dashed curve)
is applied to realize a heralded
measurement in the spin-up state.

Identical (unconditional) counts for red
and blue photons confirm the
selection rules.

The g(2) measurement shows that for
the [1.2ns, 1.64ns] time range,
probability of two-photon emission is
negligible.



Measurement of classical correlations

a__ _ | An additional m-pulse (dashed curve)
Splﬂ measurement!preparatlon i Entanglement generatlon . . .
o is applied to realize a heralded
m ,’1 r measurement in the spin-up state.
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The g(2) measurement shows that for
the [1.2ns, 1.64ns] time range,
probability of two-photon emission is
negligible.
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A spin down (up) measurement event
ensures that the detected photon is
red (blue).
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Measurement of quantum correlations
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Measurement of quantum correlations
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An additional m/2 or 3m/2-
pulse (dashed curve) is
applied to measure the spin

in |[T>+|{>.

The data in b & c shows the
coincidence measurement
when 1/2-pulse is applied.

= Photon generation events at different times

) correspond to a measurement of the photonic

T —1 Whine

wave-function in different basis.



Measurement of quantum correlations
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Outlook

- Teleportation from a single photon to a solid-
state spin

- Spin-Spin entanglement
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