Spin-photon quantum interface in quantum dots

A. Imamoglu Quantum Photonics Group, Department of Physics ETH-Zürich

Spin-photon quantum interface

- GaAs based semiconductors exhibit highly efficient spin-dependent optical transitions.
- Photonic nanostructures allow for efficient extraction of photons (Lukin).

Resonant quantum dot Spectroscopy

Strong spin-polarization correlations: Faraday geometry ($B_{ext} = B_z$)

 Γ : spontaneous emission rate

 Ω : laser coupling (Rabi) frequency

QD with a spin-up (down) electron only absorbs and emits σ+ (σ-) photons – a recycling transition similar to that used in trapped ions.
 ⇒ Spin measurement

Strong spin-polarization correlations: Faraday geometry ($B_{ext} = B_z$)

- QD with a spin-up (down) electron only absorbs and emits σ+ (σ-) photons a recycling transition similar to that used in trapped ions.
 ⇒ Spin measurement
- An off-resonant σ + laser causes ac-Stark shift only for the $|\uparrow\rangle$ state, acting as an effective magnetic field along the z-direction.

Spin rotation using off-resonant circularly polarized lasers

 External field along x (B_{ext} = B_x): quantization axis orthogonal to the laser-induced effective field

Different selection rules in Voigt geometry ($B_{ext} = B_x$)

Excitation of a trion state results in either emission of a H polarized red photon to $|\downarrow\rangle$ state or a V polarized blue photon to $|\uparrow\rangle$ state, with equal probability.

Different selection rules in Voigt geometry ($B_{ext} = B_x$)

Excitation of a trion state results in either emission of a H polarized red photon to $|\downarrow\rangle$ state or a V polarized blue photon to $|\uparrow\rangle$ state, with equal probability.

⇒ Spin-photon entanglement:
 potentially near-determinsitic
 entanglement generation at
 ~1 GHz rate

$$\Psi\rangle = \frac{1}{\sqrt{2}}(|\downarrow\rangle|\omega_{red};H\rangle + i|\uparrow\rangle|\omega_{blue};V\rangle)$$

Similar results by Yamamoto group; earlier work by Monroe, Lukin

Procedure for spin-photon entanglement generation

Time resolved resonance fluorescence (RF) Entanglement Rotation generation Spin measurement/preparation π time t = 0 Partially suppressed **Time-resolved** Repetition period = 13 ns laser reflection counts **RF** measurements 500 x10³ T_b $|T_r\rangle$ aser counts (a.u.) res. fluor. (cts / min) 2000 4000 $\omega_{\rm blue}$ Ω_{res} 9 ω_{red} S Bx 0 0 5 10 0 5 10 0 time (ns) time (ns) 5 ns 1.2 ns spin puming 4 ps entanglement pulse

Rotation pulse

• At the end of the pulse, the spin is prepared in $\left|\uparrow\right\rangle$

An additional π -pulse (dashed curve) is applied to realize a heralded measurement in the spin-up state.

An additional π -pulse (dashed curve) is applied to realize a heralded measurement in the spin-up state.

Identical (unconditional) counts for red and blue photons confirm the selection rules.

An additional π -pulse (dashed curve) is applied to realize a heralded measurement in the spin-up state.

Identical (unconditional) counts for red and blue photons confirm the selection rules.

The g(2) measurement shows that for the [1.2ns, 1.64ns] time range, probability of two-photon emission is negligible.

An additional π -pulse (dashed curve) is applied to realize a heralded measurement in the spin-up state.

Identical (unconditional) counts for red and blue photons confirm the selection rules.

The g(2) measurement shows that for the [1.2ns, 1.64ns] time range, probability of two-photon emission is negligible.

A spin down (up) measurement event ensures that the detected photon is red (blue).

F1=0.87 ± 0.05 in the computational basis measure.ment

Measurement of quantum correlations

- An additional $\pi/2$ or $3\pi/2$ pulse (dashed curve) is applied to measure the spin in $|\uparrow\rangle \pm |\downarrow\rangle$.

Measurement of quantum correlations

- An additional $\pi/2$ or $3\pi/2$ pulse (dashed curve) is applied to measure the spin in $|\uparrow\rangle \pm |\downarrow\rangle$ >.
 - The data in b & c shows the coincidence measurement when $\pi/2$ -pulse is applied.

$$|\tilde{\Phi}\rangle = \frac{1}{\sqrt{2}} (|\omega_{red}\rangle e^{-i\omega_z(t_1 - t_g)} - i|\omega_{blue}\rangle)$$

 \Rightarrow Photon generation events at different times correspond to a measurement of the photonic wave-function in different basis.

Measurement of quantum correlations

- An additional $\pi/2$ or $3\pi/2$ pulse (dashed curve) is applied to measure the spin in $|\uparrow > \pm |\downarrow >$.
- The data in b & c shows the coincidence measurement when $\pi/2$ -pulse is applied.
- The data in d & e shows the coincidence measurement when 3 π/2-pulse is applied.
- F2=0.46 ± 0.04 in the rotated basis measurement; overall fidelity F = 0.67 ± 0.05

Outlook

- Teleportation from a single photon to a solidstate spin
- Spin-Spin entanglement

Thanks to

- Weibo Gao
- Emre Togan, Parisa Fallahi, Javier Sanchez