School US-Japan seminar 2013/4/4 @Nara

Topological quantum computation

-from topological order to fault-tolerant quantum computation-
The Hakubi Center for Advanced Research, Kyoto University
Graduate School of Informatics, Kyoto University
Keisuke Fujii

Outline

(1) Introduction: what is topological order?
condensed matter physics
(2) Majorana fermions \& 2D Kitaev model
(3) Thermal instability of topological order
(4) Error correction on (Kitaev's toric code) surface code
(5) Topological quantum computation defect qubits/ braiding /magic state distillation/ implementations
quantum information processing

What is topological order?

Topological order is..........
-a new kind of order in zero-temperature phase of matter.
-cannot be described by Landau's symmetry breaking argument.
-ground states are degenerated and it exhibits long-range quantum entanglement.
-the degenerated ground states cannot be distinguished by local operations.
-topologically ordered states are robust against local perturbations.
-related to quantum spin liquids, fractional quantum Hall effect, fault-tolerant quantum computation.

Landau's symmetry breaking argument.

Pauli operators:

$$
I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), Y=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Computational basis (qubit):

Multi-qubit system $\{|0\rangle,|1\rangle\}^{\otimes N}$:

$$
\begin{aligned}
& A_{i}=I_{1} \otimes \ldots \otimes I_{i-1} \otimes A_{i} \otimes I_{i+1} \otimes \ldots I_{N} \\
& (A=X, Y, Z) \\
& \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \quad \text { temperature । }
\end{aligned}
$$

Landau's symmetry breaking argument.

Ising model (e.g. two dimension):

$$
H=-J \sum_{\langle i j\rangle} X_{i} X_{j}
$$

The Ising Hamiltonian is invariant under spin flipping Z w.r.t. X-basis.
The ground states: $\{|++\cdots+\rangle,|--\cdots-\rangle\}$ (Z_{2} symmetry)

\rightarrow ground state degeneracy is lifted by longitudinal magnetic field.
\rightarrow ground state degeneracy is not robust against local perturbation.

Topologically ordered states

In topologically ordered system....
degenerated ground states:

Only nonlocal operators (high weight operator $A^{\otimes O(L)}$) can exchange the ground states.
\rightarrow The ground state degeneracy cannot be lifted by any local operations (energy shift is $\sim e^{-\alpha L}$).

$$
\text { e.g) } \quad \begin{aligned}
\left|\Psi_{1}\right\rangle & =(|0000\rangle+|1111\rangle) / \sqrt{2} \\
\left|\Psi_{2}\right\rangle & =(|0011\rangle+|1100\rangle) / \sqrt{2}
\end{aligned}
$$

two orthogonal state cannot be distinguished by measuring a single qubit in any basis \rightarrow second order perturbation first lifts the degeneracy

Topologically ordered states

How can we describe topologically ordered states efficiently?
\rightarrow Theory of quantum error correction is a very useful tool to describe topologically ordered system.

quantum error
code subspace

correctability against errors (k-error correction code)
stabilizer codes
(D. Gottesman PhD thesis 97)
topologically ordered system
ground state degeneracy
robustness against local perturbation (robust up to $(2 k+1)$-th order perturbation)
stabilizer Hamiltonian
locality and translation invariance

Toric code (surface code)
classical repetition code (can correct either X or Z errors)

Kitaev model
Ising model (non-topological-ordered)
\rightarrow thermal stability/ information capacity of discrete systems/ exotic topologically ordered state (fractal quantum liquid)

Outline

(1) Introduction: what is topological order?
condensed matter physics
(2) Majorana fermions \& 2D Kitaev model
(3) Thermal instability of topological order
(4) Error correction on (Kitaev's toric code) surface code
(5) Topological quantum computation defect qubits/ braiding /magic state distillation/ implementations
quantum information processing

Majorana fermions

Ising model in one dimension (Ising chain):

$$
H=-J \sum_{\langle i j\rangle} X_{i} X_{j}
$$

the Ising Hamiltonian is invariant spin flipping Z w.r.t. X-basis.
The ground states: $\{|++\cdots+\rangle,|--\cdots-\rangle\}$ (Z_{2} symmetry)

a repetition code $\left\langle X_{i} X_{i+1}\right\rangle$ cannot correct any X error, since any single bit-flip error X_{i} changes the code space non-trivially.

Majorana fermions

Let us consider a mathematically equivalent but physically different system.
Ising chain: $\quad H_{\text {Ising }}=-J \sum_{i=1}^{N-1} X_{i} X_{i+1}$
Jordan-Wigner transformation (spin \rightleftarrows fermion)

$$
\begin{aligned}
& c_{2 i-1}=Z_{1} \ldots Z_{i-1} X_{i} \\
& c_{2 i}=Z_{1} \ldots Z_{i-1} Y_{i} \\
&\left\{c_{i}, c_{j}\right\}=\delta_{i j} I, c_{i}^{\dagger}=c_{i} \\
& \text { (Majorana fermion operator) }
\end{aligned}
$$

$2 N$ spinless fermions: $H_{\mathrm{Maj}}=-J \sum_{2}^{N-1}(-i) c_{2 i} c_{2 i+1}$
superconductor, topological insulator, semiconducting heterostructure (see A. Kitaev and C. Laumann, arXiv:0904.2771 for review)

Majorana fermions

$$
H_{\mathrm{Maj}}=-J \sum_{2}^{N-1}(-i) c_{2 i} c_{2 i+1} \quad \begin{array}{cccccc}
\text { ○ } & \begin{array}{l}
\text { paired } \\
c_{1}
\end{array} c_{2} & c_{3} & c_{4}
\end{array} \quad \cdots \quad-\quad \begin{gathered}
c_{2 N-1}
\end{gathered} c_{2 N}
$$

ground states: $(-i) c_{2 i} c_{2 i+1}|\Psi\rangle=|\Psi\rangle$ for all i.
unpaired Majorana fermions O at the edges of the chain
\rightarrow "zero-energy Majorana boundary mode" $\{|\overline{0}\rangle,|\overline{1}\rangle\}$

If unpaired Majonara fermions are well
(act on the ground subspace nontrivially) separated, this operator would not act.

But! c_{1} or $C_{2 N}$ (odd weight fermionic operators) require coherent creation/ annihilation of a single fermion, which is prohibited by superselection rule.
$\rightarrow X$ errors are naturally prohibited by the fermionic superselection rule.
\rightarrow Unpaired Majorana fermion is robust against any "physical" perturbation.

Topological quantum computation

```
ARTICLES
PUBUSHED ONLINE: 13 FEBRUARY 2OII | DOL: 10.1038/NPHYS1915
```

```
nature
physics
```

Non-Abelian statistics and topological quantum information processing in 1D wire networks
Jason Alicea*, Yuval Oreg ${ }^{2}$, Gil Refael ${ }^{3}$, Felix von Oppen ${ }^{4}$ and Matthew P. A. Fisher ${ }^{3,5}$

pair creation of Majorana fermions

exchanging Majorana fermions via T-junction

Majorana fermions are nonAbelian, but do not allow universal quantum computation.

Topologically protected gates

$$
+
$$

Magic state distillation
[Bravyi-Kitaev PRA 71, 022316 (2005)]
II
Universal quantum computation

Topological quantum computation

ARTICLES

Non-Abelian statistics and topological quantum information processing in 1D wire networks

Majorana fermions are non-
Abelian, but do not allow universal quantum computation.

What if your system has no superselection rule, such as the illation fermionic parity preservation?

Universal quantum computation

[^0]exchanging Majorana
fermions via T-junction

Kitaev's honeycomb model

A. Kitaev, Ann. Phys. 321, 2 (2006)

Honeycomb model:

$$
H_{\mathrm{hc}}=-J_{x} \sum_{x \text {-link }} X_{i} X_{j}-J_{y} \sum_{y \text {-link }} Y_{i} Y_{j}-J_{z} \sum_{z \text {-link }} Z_{i} Z_{j}
$$

dimerization

$$
H_{\mathrm{eff}}=-\frac{J_{x}^{2} J_{y}^{2}}{16\left|J_{z}\right|^{3}} \sum_{p} Y_{\operatorname{left}(p)} Y_{\operatorname{right}(p)} X_{\mathrm{up}(p)} X_{\mathrm{down}(p)}
$$

Toric code Hamiltonian:

$$
H_{\mathrm{TC}}=-J \sum_{f} Z_{l(f)} Z_{r(f)} Z_{d(f)} Z_{u(f)}-J \sum_{v} X_{l(v)} X_{r(v)} X_{d(v)} X_{u(v)}
$$

A. Kitaev, Ann. Phys. 303, 2 (2003)

Kitaev's toric code model

Kitaev's toric code model is a representative example of topologically ordered system.

> face operator: $\quad A_{f}=\prod_{i \in \text { face } f} Z_{i}$
> vertex operator: $B_{v}=\prod_{i \in \text { vertex } v} X_{i}$

Toric code Hamiltonian: $H=-J \sum_{f} A_{f}-J \sum_{v} B_{v}$
Note that these operators are commutale:

The ground states are given by simultaneous eigenstate of all face \& vertex operators (gapped and frustration-free):

$$
A_{f}|\Psi\rangle=|\Psi\rangle, \quad B_{v}|\Psi\rangle=|\Psi\rangle
$$

Kitaev toric code model

Kitaev's toric code model is a rebresentative example of
ڤ Short note on the stabilizer formalism

- n-qubit Pauli group: $\{ \pm 1, \pm i\} \times\{I, X, Y, Z\}^{\otimes n}$
\bullet stabilizer group: $\mathcal{S}=\left\{S_{i}\right\}$, where $\left[S_{i}, S_{j}\right]=0$ and $S_{i}=S_{i}^{\dagger}$
(commutative) (hermitian)
- stabilizer generators: minimum independent set of stabilizer elements
- stabilizer state: $S_{i}|\Psi\rangle=|\Psi\rangle$ for all stabilizer generators S_{i}
- example: $\left\langle X_{1} X_{2}, Z_{1} Z_{2}\right\rangle \rightarrow(|00\rangle+|11\rangle) / \sqrt{2}$
- dimension of the stabilizer subspace: 2^{\wedge} (\# qubits - \# generators)

$$
A_{f}|\Psi\rangle=|\Psi\rangle, \quad B_{v}|\Psi\rangle=|\Psi\rangle
$$

Kitaev toric code model

Kitaev's toric code model is a representative example of topologically ordered system.

face operator: $\quad A_{f}=\prod_{i \in \text { face } f} Z_{i}$
\rightarrow stabilizer generators
vertex operator: $B_{v}=\prod_{i \in \text { vertex } v} X_{i}$
$\underset{\rightarrow \text { Stabilizer Hamiltonian }}{\text { Toric code Hamiltonian: } H=-J \sum_{f} A_{f}-J \sum_{v} B_{v}, ~}$
Note that these operators are commutale:

The ground states are given by simultaneous eigenstate of all face \& vertex operators (gapped and frustration-free):
\rightarrow stabilizer subspace $\quad A_{f}|\Psi\rangle=|\Psi\rangle, \quad B_{v}|\Psi\rangle=|\Psi\rangle$

Structure of grand states

Degeneracy of the ground subspace:

[Torus]

\# qubits: (edges) on $N \times N$ torus $=2 N^{2}$
\# stabilizer generators:

$$
(\text { faces }+ \text { vertexes }-2)=2 N^{2}-2
$$

\# dimension of ground subspace: $2^{2}=4$ \# logical qubits $\rightarrow 2$ (two logical qubits)
[General surface]

$$
\frac{(\text { face })+(\text { vertex })-(\text { edge })=2-2 g}{\text { Euler characteristic }} \quad g=\text { genus }
$$

\# logical qubits \rightarrow (edge)-[(face)+(vertex)-2]=2g

Structure of ground states

Degeneracy of the ground subspace:
[Torus]

$$
\begin{aligned}
& \text { \# qubits: (edges) in } N \times N \text { torus }=2 N^{2} \\
& \text { \# stabilizer generators: } \\
& \quad \text { (faces + vertexes }-2 \text {) }=2 N^{2}-2
\end{aligned}
$$

\# dimension of ground subspace: $2^{2}=4$ \# logical qubits $\rightarrow 2$ (two logical qubits)

「Ronoral cirfono1
How is the ground state degeneracy described?
\rightarrow Find a good quantum number! The operator that acts on the ground subspace nontrivially, "logical operator".

Non-trivial cycle: Logical operators

The operators on non-trivial cycles $Z\left(c_{1}^{L}\right), X\left(\bar{c}_{1}^{L}\right)$ are commutable with all face and vertex operators, but cannot given by a product of them.

$$
\left\{Z\left(c_{1}^{L}\right), X\left(\bar{c}_{1}^{L}\right)\right\}=0
$$

\rightarrow logical Pauli operators.

$$
\mathrm{g}=1 \rightarrow \text { \# of logical qubit }=2:
$$

$$
\left\{Z\left(c_{1}^{L}\right), X\left(\bar{c}_{1}^{L}\right)\right\},\left\{Z\left(c_{1}^{L^{\prime}}\right), X\left(\bar{c}_{1}^{L^{\prime}}\right)\right\}
$$

(The action of logical operators depend only on the homology class of the cycle.)

The logical operators have weight N.
$\rightarrow N$-th order perturbation shifts the ground energy.

Stability against local perturbations

$$
H=H_{\mathrm{TC}}+h_{x} \sum_{i}^{\text {local field terms }} X_{i}+h_{z} \sum_{i} Z_{i}
$$

Z2 Ising gauge model
quantum/classical mapping (dual of 3D Ising model)
topologically ordered (Higgs phase)

Stability against local perturbations

Z2 Ising gauge model
quantum/classical mapping \rightarrow (dual of 3D Ising model)
Is stability against perturbations enough for fault-tolerance?

No. Stability against thermal fluctuation is also important!

Outline

(1) Introduction: what is topological order?
condensed matter physics
(2) Majorana fermions \& 2D Kitaev model
(3) Thermal instability of topological order
(4) Error correction on (Kitaev's toric code) surface code
(5) Topological quantum computation defect qubits/ braiding /magic state distillation/ implementations
quantum information processing

Thermal instability of topological order

Majorana fermion:

Excitation (domain-wall) is a point-like object.
\rightarrow There is no large energy barrier between the degenerated ground states.

Thermal instability of topological order

Kitaev's toric code model:
anyonic excitation
(Abelian)
\rightarrow excitation is a point-like object.

Anyon can move freely without any energetic penalty.

Thermal instability of topological order

More generally...

Topological order in any local and translation invariant stabilizer Hamiltonian systems in 2D and 3D do not have thermal stability.

2D: S. Bravyi and B. Terhal, New J. Phys. 11, 043029 (2009).
3D: B. Yoshida, Ann. Phys. 326, 2566 (2011).

Thermally stable topological order (self-correcting quantum memory) in 4D by E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, J.Math.Phys. 43, 4452 (2002).
(Excitation has to be two-dimensional object for each noncommuting errors, X and Z . $\rightarrow 4 \mathrm{D}$)

Existence/non-existence of thermally stable topological order (= self-correcting quantum memory) in 3 or lower dimensions is one of the open problems in physics! (see list of unsolved problem in physics in wiki)

Non-equilibrium condition (feedback operations) is necessary to observe long-live topological order (many-body quantum coherence) at finite temperature.

Outline

(1) Introduction: what is topological order? condensed matter physics
(2) Majorana fermions \& 2D Kitaev model
(3) Thermal instability of topological order
(4) Error correction on (Kitaev's toric code) surface code
(5) Topological quantum computation defect qubits/ braiding /magic state distillation/ implementations
quantum information processing

Topological error correction

$$
\begin{aligned}
& \text { face stabilizer: } A_{f}=\prod_{i \in \text { face } f} Z_{i} \\
& \text { vertex stabilizer: } B_{v}=\prod_{i \in \text { vertex } v} X_{i} \\
& \text { Toric code Hamiltonian: } \\
& \text { 位 } A_{f}-J \sum_{v} B_{v}
\end{aligned}
$$

The code state is defied by

$$
A_{f}|\Psi\rangle=|\Psi\rangle, \quad B_{v}|\Psi\rangle=|\Psi\rangle
$$

for all face and vertex stabilizers.

Errors on the surface code

If a chain of X (bit-flip) errors occurs, the eigenvalues of the face stabilizers become -1 at the boundary of the error chain.

(In the toric code Hamiltonian, they correspond to the anyonic excitations)

Errors on the surface code

Similarly if a Z (phase-flip) error chain occurs, the eigenvalues of the vertex stabilizers become -1 at boundary of the error chian.

(that is, toric code model have two types of anyonic excitations)

For simplicity, we only consider X errors correction below.

Errors on the surface code

If a chain of X (bit-flip) errors occurs, the eigenvalues of the face stabilizers become -1 at the boundary of the error chain.

(In the toric code Hamiltonian, they correspond to the anyonic excitations)

Syndrome measurements

Measure the eigenvalues of the stabilizer operators.
Projective measurement for an operator A (hermitian \& eigenvalues ± 1)

(In the toric code Hamiltonian, the syndrome measurements correspond to measurements of the local energy.)

Topological error correction

The syndrome measurements do not tell us the actual location of errors, but boundaries of them.
(It tells location of excitations, but does not tell the trajectory of the excitaitons)

Then we have to infer a recovery chain, to recover from errors.

In the toric code Hamiltonian, this can be viewed as finding an appropriate way to annihilate pairs of anyones.

Topological error correction

If error and recovery chains result in a trivial cycle, the error correction succeeds.

Topological error correction

If the estimation of the recovery chain is bad

Topological error correction

If the estimation of the recovery chain is bad

The error and recovery chains result in a non-trivial cycle, which change the code state.

Algorithms for error correction

\rightarrow The error chain which has the highest probability conditioned on the error syndrome.
\rightarrow minimum-weight-perfect-match (MWPM) algorithm (polynomial algorithm)
Blossom 5 by V. Kolmogorov, Math. Prog. Comp. 1, 43 (2009).
[Improved algorithms]
by Duclos-Cianci \& Poulin Phys. Rev. Lett. 104, 050504 (2010).
by Fowler et al., Phys. Rev. Lett. 108, 180501 (2012).
by Wootton \& Loss, Phys. Rev. Lett. 109, 160503 (2012).
E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, J.Math. Phys. 43, 4452 (2002).

Algorithm for error correction

physical error probability
The inference problem can be mapped to a ferro-para phase transition of randombond Ising model.
E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, J.Math. Phys. 43, 4452 (2002).

Noise model and threshold values

Code performance:

Independent X and Z errors with perfect syndrome measurements.
[10.3-10.9\%]

Phenomenological noise model: Independent X and Z errors with noisy syndrome measurements.
[2.9-3.3\%]

Circuit noise model:
Errors are introduced by each elementary gate.
[0.75\%]

Dennis et al.,
J. Math. Phys. 49, 4452 (2002). M. Ohzeki,

Phys. Rev. E 79021129 (2009).

Wang-Harrington-Preskill, Ann. Phys. 303, 31 (2003).
Ohno et al.,
Nuc. Phys. B 697, 462 (2004).

Raussendorf-Harrington-Goyal, NJP 9, 199 (2007).
Raussendorf-Harrington-Goyal, Ann. Phys. 321, 2242 (2006).

Outline

(1) Introduction: what is topological order?
condensed matter physics
(2) Majorana fermions \& 2D Kitaev model
(3) Thermal instability of topological order
(4) Error correction on (Kitaev's toric code) surface code
(5) Topological quantum computation defect qubits/ braiding /magic state distillation/ implementations
quantum information processing

p-and d-type defects

too complex....

introduce "defects" on the planer surface code
too complex....

(defect = removal of the stabilizer operator from the stabilizer group, which introduce a degree of freedom)
primal defect pair
 dual defect pair

dynamics of defects

- preparation of logical qubit
\rightarrow creation of defect pair
- moving the defect

- measurement of logical qubit pair annihilation of defects

- braiding p-defect around d-defect
\rightarrow Controlled-Not gate between p-type (control) and d-type (target) qubits.

Prepare \& move the defect

Preparation of eigenstate $|+\rangle_{L}^{p}$ of L_{X}^{p} :

Moving the defect :

CNOT gate by braiding

Observe the time evolution of the logical operator under the braiding operation of the primal defect around the dual defect.

CNOT gate by braiding

Observe the time evolution of the logical operator under the braiding operation of the primal defect around the dual defect.

CNOT gate by braiding

Observe the time evolution of the logical operator under the braiding operation of the primal defect around the dual defect.

CNOT gate by braiding

Observe the time evolution of the logical operator under the braiding operation of the primal defect around the dual defect.

CNOT gate by braiding

Observe the time evolution of the logical operator under the braiding operation of the primal defect around the dual defect.

Trivial cycle is a stabilizer operator, and hence acts trivially on the code space.

CNOT gate by braiding

Observe the time evolution of the logical operator under the braiding operation of the primal defect around the dual defect.

CNOT gate by braiding

Observe the time evolution of the logical operator under the braiding operation of the primal defect around the dual defect.

Contraction does not change topology!
$L_{X}^{p} \otimes I^{d}$ is transformed into $L_{X}^{p} \otimes L_{X}^{d}$!

CNOT gate by braiding

Observe the time evolution of the logical operator under the braiding operation of the primal defect around the dual defect.

CNOT gate by braiding

Observe the time evolution of the logical operator under the braiding operation of the primal defect around the dual defect.

CNOT gate by braiding

Observe the time evolution of the logical operator under the braiding operation of the primal defect around the dual defect.

CNOT gate by braiding

Observe the time evolution of the logical operator under the braiding operation of the primal defect around the dual defect.

CNOT gate by braiding

Observe the time evolution of the logical operator under the braiding operation of the primal defect around the dual defect.

Trivial cycle is a stabilizer operator, and hence acts trivially on the code space.

CNOT gate by braiding

Observe the time evolution of the logical operator under the braiding operation of the primal defect around the dual defect.

CNOT gate by braiding

Observe the time evolution of the logical operator under the braiding operation of the primal defect around the dual defect.

$I^{p} \otimes L_{Z}^{d}$ is transformed into $L_{Z}^{p} \otimes L_{Z}^{d} \quad$!

CNOT gate by braiding

That is, the braiding operation is equivalent to the CNOT gate from the primal to the dual qubits.

CNOT gate by braiding Abelian anyon

The p-type and d-type defect qubits are always control and target, respectively.

\rightarrow The anyonic excitation in the Kitaev toric code is Abelian.

Universal quantum computation by magic state distillation

CNOT gate (Clifford gate) is not enough for universal quantum computation. (This is also the case for the Ising anyon.)

Topologically protected CNOT gate + Noisy ancilla state

$\xrightarrow[\text { Magic state distillation }]{ }$| universal quantum computation |
| :--- |
| with an arbitrary accuracy |

Bravyi-Kitaev PRA 71, 022316 (2005)

Over 90% of computational overhead is consumed for magic state distillation!
[Improved magic state distillation protocols]
Bravyi-Haah, PRA 86, 052329 (2012)
Eastin, PRA 87, 032321 (2013)
Jones, Phys. Rev. A 87, 022328 (2013)
Raussendorf-Harrington-Goyal, NJP 9, 199 (2007).

Non Clifford gates

- One-bit teleportation for non-Clifford gate

Implementations (circuit)

O data qubit which constitutes the surface code O ancilla qubit for the face syndrome measurement O ancilla qubit for the vertex syndrome measurement
qubits on the square lattice/ nearest-neighbor two-qubit gates/initialization and projective measurement of individual qubits \rightarrow fault-tolerant universal QC

[On-chip monolithic architectures]

- quantum dot: N. C. Jones et al., PRX 2, 031007 (2012).
factorization of 1024-bit composite number: $\sim 10^{8}$ qubits, gates $\sim 10[\mathrm{~ns}]$, error rate $0.1 \% \rightarrow \mathbf{1 . 8}$ day (768-bit takes 1500 CPU years with classical computer)
- superconducting qubit: J. Ghosh, A. G. Fowler, M. R. Geller, PRA 86, 062318 (2012).

[distributed architectures]

-DQC-1:Y. Li et al., PRL 105, 250502 (2010); KF \& Y. Tokunaga, PRL 105, 250503 (2010).

- DQC-3:Y. Li and S. Benjamin, NJP 14, 093008 (2012).
- DQC-4:KF et al., arXiv:1202.6588 N. H. Nickerson, Y. Li and S. C. Benjamin, arXiv:1211.2217. fidelity of quantum channel ~ 0.9, error rate of local operations $\sim 0.1 \%$
- Trapped lons: C. Monroe et al., arXiv:1208.0391.

Implementations

(time evolution) $\xrightarrow[\substack{\text { quantum } \\ \text { teleportation }}]{\longrightarrow}$

Measurement-based quantum computation (MBQC):
After generating a many-body entangled state, we only need to readout the state of the particles.

Topologically protected MBQC on thermal state:
[Thermal state of two-body Hamiltonian (no phase transition)]
spin-2 \& spin-3/2 particles: Li et al., PRL 107, 060501 (2011)
spin-3/2 particles: KF \& T. Morimae, PRA 85, 010304(R) (2012)
[Symmetry breaking thermal state (ferromagnetic phase transition)]
KF, Y. Nakata, M. Ohzeki, M. Murao , PRL 110, 120502 (2013).

3D entangled state \& measurement-based QC

Raussendorf-Harrington-
Goyal,Annals Phys. 321, 2242
(2006);NJP 9, 199 (2007).

Summary

List of my works

```
(category)
```

(MBQC)	1."Measurement-Based Quantum Computation on Symmetry Breaking Thermal States" (Editors’ suggestion) K. Fujii, Y. Nakata, M. Ohzeki, M. Murao, Phys. Rev. Lett. 110, 120502 (2013) arXiv:1209.1265
(spin glass)	2."Duality analysis on random planar lattice" M. Ohzeki and K. Fujii, Phys. Rev. E 86, 051121 (2012) arXiv:1209.3500
(Blind QC)	3."Blind topological measurement-based quantum computation" T. Morimae and K. Fuiii, Nature Communications 3, 1036 (2012). arXiv:1110.5460
(QEC code)	4."Error- and Loss-Tolerances of Surface Codes with General Lattice Structures" K. Fujiii and Y. Tokunaga, Phys. Rev. A 86, 020303(R) (2012). arXiv:1202.2743
(MBQC)	5. "Not all physical errors can be linear CPTP maps in a correlation space" T. Morimae and K. Fuiii Scientific Reports 2, 508 (2012). arXiv:1106.3720 arXiv:1110.4182(supplemental material)
(MBQC)	6. "Computational Power and Correlation in Quantum Computational Tensor Network" K. Fuiii and T. Morimae, Phys. Rev. A 85, 032338 (2012). arXiv:1106.3377

7."Topologically protected measurement-based quantum computation on the thermal state of a nearest-neighbor two-body Hamiltonian with spin-3/2 particles"
K. Fujii and T. Morimae, Phys. Rev. A 85, 010304(R) (2012) arXiv:1111.0919
8. "Robust and Scalable Scheme to Generate Large-Scale Entanglement Webs"
K. Fuiii, H. Maeda and K. Yamamoto, Phys. Rev. A 83, $050303(\mathrm{R})$ (2011) arXiv: 1102.4682
9." Fault-Tolerant Topological One-Way Quantum Computation with Probabilistic Two-Qubit Gates"
K. Fujii and Y. Tokunaga, Phys. Rev. Lett. 105, 250503 (2010). arXiv:1008.3752
10."Topological One-Way Quantum Computation on Verified Logical Cluster States"
K. Fuiii and K. Yamamoto, Phys. Rev. A 82, 060301 (R) (2010). arXiv:1008.2048
11."Anti-Zeno effect for quantum transport in disordered systems"
K. Fujii and K. Yamamoto, Phys. Rev. A 82, 042109 (2010). arXiv:1003.1804
12."Cluster-based architecture for fault-tolerant quantum computation"
K. Fuiii and K. Yamamoto, Phys. Rev. A 81, 042324 (2010). arXiv:0912.5150
13."Entanglement purification with double-selection"
K. Fujii and K. Yamamoto, Phys. Rev. A 80, 042308 (2009). arXiv:0811. 2639

[^0]: pair creation of
 Majorana fermions

