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What is topological order?

Topological order is..........
-a new kind of order in zero-temperature phase of matter.

-cannot be described by Landauʼs symmetry breaking argument.

-ground states are degenerated and it exhibits long-range 
quantum entanglement.

-the degenerated ground states cannot be distinguished by local 
operations.

-topologically ordered states are robust against local 
perturbations.

-related to quantum spin liquids, fractional quantum Hall effect, 
fault-tolerant quantum computation.



Landau’s symmetry breaking argument

Ising model (e.g. two dimension):

Magnetization (local order parameter) takes zero above the critical 
temperature (CT) and non-zero below the CT.
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Pauli operators:

Computational basis (qubit):
Z|0� = |0�, Z|1� = −|1�{|0�, |1�}→

{|+�, |−�} X|+� = |+�, X|−� = −|−�→

Multi-qubit system                  :{|0�, |1�}⊗N

Ai = I1 ⊗ ...⊗ Ii−1 ⊗Ai ⊗ Ii+1 ⊗ ...IN

(A = X, Y, Z)



Landau’s symmetry breaking argument

The ground states:                                                 
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Ising model (e.g. two dimension):

The Ising Hamiltonian is invariant under spin flipping Z w.r.t. X-basis.

H = −J
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→ground state degeneracy is lifted by longitudinal magnetic field.

→ground state degeneracy is not robust against local perturbation.



Topologically ordered states

degenerated ground states:

In topologically ordered system....

|ΨGS1� |ΨGS2�

any local 
perturbation

|Ψ1� = (|0000�+ |1111�)/
√

2

|Ψ2� = (|0011�+ |1100�)/
√

2

e.g)

two orthogonal state cannot be distinguished by measuring a single 
qubit in any basis → second order perturbation first lifts the degeneracy

Only nonlocal operators (high weight operator               ) can 
exchange the ground states.

A⊗O(L)

→ The ground state degeneracy cannot be lifted by any local 
operations (energy shift is ~           ).e−αL

well separated



quantum error correction codes

Topologically ordered states

How can we describe topologically ordered states efficiently?

topologically ordered system

code subspace ground state degeneracy

Toric code (surface code) Kitaev model

classical repetition code 
(can correct either X or Z errors)

Ising model (non-topological-ordered)

→ Theory of quantum error correction is a very useful tool to 
describe topologically ordered system.

→ thermal stability/ information capacity of discrete systems/ exotic 
topologically ordered state (fractal quantum liquid)

correctability against errors robustness against local perturbation
(k-error correction code) (robust up to (2k+1)-th order perturbation)

stabilizer codes stabilizer Hamiltonian
(D. Gottesman PhD thesis 97)

locality and translation invariance
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Majorana fermions

a repetition code                  cannot correct any X error,
since any single bit-flip error        changes the code space non-trivially.

�XiXi+1�
Xi

The ground states:                                                 
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2Nh

(Z2 symmetry){| + + · · ·+�, |−− · · ·−�}
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Ising model in one dimension (Ising chain):

the Ising Hamiltonian is invariant spin flipping Z w.r.t. X-basis.

H = −J

�

�ij�

XiXj



Majorana fermions

HIsing = −J

N−1�

i=1

XiXi+1Ising chain:

HMaj = −J

N−1�

2

(−i)c2ic2i+12N spinless fermions:

Let us consider a mathematically equivalent but physically different system.

superconductor, topological insulator, semiconducting heterostructure
(see A. Kitaev and C. Laumann, arXiv:0904.2771 for review )

Jordan-Wigner transformation
(spin ⇄ fermion)

c2i−1 = Z1 . . . Zi−1Xi

c2i = Z1 . . . Zi−1Yi

{ci, cj} = δijI, c†i = ci
(Majorana fermion operator)



・・・
c1 c2 c3 c4 c2N−1 c2N

paired

Majorana fermions

HMaj = −J

N−1�

2

(−i)c2ic2i+1

ground states: (−i)c2ic2i+1|Ψ� = |Ψ� for all i.

But!      or          (odd weight fermionic operators) require coherent creation/
annihilation of a single fermion, which is prohibited by superselection rule.

c1 c2N

→ X errors are naturally prohibited by the fermionic superselection rule.
→ Unpaired Majorana fermion is robust against any “physical” perturbation.

unpaired Majorana fermions     at the edges of the chain
→ “zero-energy Majorana boundary mode”

X1Y1Z2 . . . ZN−1YN (Z2 symmetry)
(act on the ground subspace nontrivially)

{|0̄�, |1̄�}

If unpaired Majonara fermions are well 
separated, this operator would not act. 

(−i)c1c2N |0̄� = |0̄�, (−i)c1c2N |1̄� = −|1̄�, c1|0̄� = |1̄�



Topological quantum computation

pair creation of 
Majorana fermions

exchanging Majorana 
fermions via T-junction

Majorana fermions are non-
Abelian, but do not allow universal 
quantum computation.

Magic state distillation
[Bravyi-Kitaev PRA 71, 022316 (2005)]

Universal quantum computation

Topologically protected gates
+

=



Topological quantum computation

pair creation of 
Majorana fermions

exchanging Majorana 
fermions via T-junction

Majorana fermions are non-
Abelian, but do not allow universal 
quantum computation.

Magic state distillation
[Bravyi-Kitaev PRA 71, 022316 (2005)]

Universal quantum computation

Topologically protected gates
+

=

What if your system has no 
superselection rule, such as the 
fermionic parity preservation?



Kitaev’s honeycomb model

Honeycomb model:

Jx, Jy � Jz
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dimerization
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Zl(f)Zr(f)Zd(f)Zu(f) − J
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v

Xl(v)Xr(v)Xd(v)Xu(v)

A. Kitaev, Ann. Phys. 321, 2 (2006) 

Toric code Hamiltonian:
local unitary 
transformation

A. Kitaev, Ann. Phys. 303, 2 (2003) 



Kitaev’s toric code model

Kitaevʼs toric code model is a representative example of 
topologically ordered system.

H = −J

�

f

Af − J

�

v

BvToric code Hamiltonian:

face operator: Af =
�

i∈ face f

Zi

Af

Z

Z Z

Z
vertex operator: Bv =

�

i∈ vertex v

XiBvX X

X
X

Note that these operators are commutale:

anti-commute × anti-commute 
＝ commute

even number 
crossover

The ground states are given by simultaneous eigenstate of 
all face & vertex operators (gapped and frustration-free):

Af |Ψ� = |Ψ�, Bv|Ψ� = |Ψ�



Kitaev toric code model

Kitaevʼs toric code model is a representative example of 
topologically ordered system.

H = −J

�

f
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v

BvToric code Hamiltonian:

face operator: Af =
�

i∈ face f

Zi

Af

Z

Z Z

Z
vertex operator: Bv =

�

i∈ vertex v

XiBvX X

X
X

Note that these operators are commutale:

anti-commute × anti-commute 
＝ commute

even number 
crossing

The ground states are given by simultaneous eigenstate of 
all face & vertex operators (gapped and frustration-free):

Af |Ψ� = |Ψ�, Bv|Ψ� = |Ψ�

★Short note on the stabilizer formalism
•n-qubit Pauli group:

•stabilizer group: S = {Si},where [Si, Sj ] = 0 and Si = S†
i

•stabilizer generators: minimum independent set of stabilizer elements

•stabilizer state:                      for all stabilizer generators       Si|Ψ� = |Ψ� Si

•example: �X1X2, Z1Z2� → (|00�+ |11�)/
√

2

•dimension of the stabilizer subspace: 2^(# qubits - # generators)

{±1,±i}× {I, X, Y, Z}⊗n

(commutative) (hermitian)



Kitaev toric code model

Kitaevʼs toric code model is a representative example of 
topologically ordered system.

H = −J
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BvToric code Hamiltonian:

face operator: Af =
�

i∈ face f

Zi

Af

Z

Z Z

Z
vertex operator: Bv =

�

i∈ vertex v

XiBvX X

X
X

Note that these operators are commutale:

anti-commute × anti-commute 
＝ commute

even number 
crossing

The ground states are given by simultaneous eigenstate of 
all face & vertex operators (gapped and frustration-free):

Af |Ψ� = |Ψ�, Bv|Ψ� = |Ψ�

→stabilizer Hamiltonian

→stabilizer subspace

→stabilizer generators



Degeneracy of the ground subspace:

# qubits: (edges) on N×N torus = 2N 2

# stabilizer generators: 
               (faces + vertexes - 2) = 2N 2 - 2

# logical qubits → 2 (two logical qubits)

Structure of grand states 

[Torus]

[General surface]
(face)+(vertex)-(edge)=2-2g

→ (edge)-[(face)+(vertex)-2]=2g 

g = genus

# logical qubits

Euler characteristic

Af

Z

Z Z

Z BvX X

X
X

# dimension of ground subspace: 22=4



Degeneracy of the ground subspace:

# qubits: (edges) in N×N torus = 2N 2

# stabilizer generators: 
               (faces + vertexes - 2) = 2N 2 - 2

# logical qubits → 2 (two logical qubits)

Structure of ground states

[Torus]

[General surface]
(face)+(vertex)-(edge)=2-2g

→ (edge)-[(face)+(vertex)-2]=2g 

g = genus

# logical qubits

Euler characteristic

Af

Z

Z Z

Z BvX X

X
X

# dimension of ground subspace: 22=4

How is the ground state degeneracy described?

→ Find a good quantum number! The operator that acts on 
the ground subspace nontrivially, “logical operator”.



Non-trivial cycle: Logical operators

X(c̄L�

1 )

Z(cL�

1 )

X(c̄L
1 )

Z(cL
1 )

The operators on non-trivial cycles                      are 
commutable with all face and vertex operators, but 
cannot given by a product of them.

Z(cL
1 ), X(c̄L

1 )

{Z(cL
1 ), X(c̄L

1 )} = 0

→ logical Pauli operators.

g=1 → # of logical qubit = 2: 

{Z(cL
1 ), X(c̄L

1 )}, {Z(cL�

1 ), X(c̄L�

1 )}

(The action of logical operators depend only on 
the homology class of the cycle.)

The logical operators have weight N.
→ N-th order perturbation shifts the ground energy.



Stability against local perturbations

H = HTC + hx

�

i

Xi + hz

�

i

Zi

local field terms

Tupitsyn et al., PRB 82, 085114 (2010)

topologically ordered
(Higgs phase)

quantum/classical mapping 
by Trotter-Suzuki expansion

Z2 Ising gauge model
(dual of 3D Ising model)



Stability against local perturbations

H = HTC + hx

�

i

Xi + hz

�

i

Zi

local field terms

Tupitsyn et al., PRB 82, 085114 (2010)

topologically ordered
(Higgs phase)

quantum/classical mapping 
by Trotter-Suzuki expansion

Z2 Ising gauge model
(dual of 3D Ising model)

Is stability against perturbations 
enough for fault-tolerance?

No. Stability against thermal 
fluctuation is also important!
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Thermal instability of topological order

Majorana fermion:

c2 c3

・・・
c1 c4 c2N−1 c2N

gs

・・・1st
domain growthexcitation

Excitation (domain-wall) is a point-like object.

| + + + + + + + ++� | −−−−−−−−−�

| + +−−−−+ ++� | +−−−−−−−+�

Zi = c2i−1c2i

→There is no large energy barrier 
between the degenerated ground states.

・
・
・

gs

| + + + +−+ + ++�



Thermal instability of topological order

Kitaevʼs toric code model:

gs
・・・1st

domain growthexcitation

anyonic excitation
(Abelian)

→excitation is a point-like 
object.

Anyon can move freely
without any energetic penalty.

XX XX X XX X

X

X

pair creation pair annhilation



Thermal instability of topological order

2D: S. Bravyi and B. Terhal, New J. Phys. 11, 043029 (2009).
3D: B. Yoshida, Ann. Phys. 326, 2566 (2011).

Non-equilibrium condition (feedback operations) is necessary to observe long-live 
topological order (many-body quantum coherence) at finite temperature.

Topological order in any local and translation invariant stabilizer 
Hamiltonian systems in 2D and 3D do not have thermal stability.

Thermally stable topological order (self-correcting quantum memory) in 4D
by  E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, 
J.Math.Phys. 43, 4452 (2002).

(Excitation has to be two-dimensional object for each non-
commuting errors, X and Z. →4D)

quantum error 
correction 
code theory

Existence/non-existence of thermally stable topological order (= self-correcting 
quantum memory) in 3 or lower dimensions is one of the open problems in physics!
(see list of unsolved problem in physics in wiki)

More generally...
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Topological error correction

H = −J

�

f

Af − J

�

v

BvToric code Hamiltonian:

face stabilizer: Af =
�

i∈ face f

Zi

Af

Z

Z Z

Z
vertex stabilizer: Bv =

�

i∈ vertex v

XiBv
X X

X
X

The code state is defied by
Af |Ψ� = |Ψ�, Bv|Ψ� = |Ψ�

for all face and vertex stabilizers.



Errors on the surface code

If a chain of X (bit-flip) errors occurs, the eigenvalues 
of the face stabilizers become -1 at the boundary of 
the error chain.

(In the toric code Hamiltonian, they correspond to the 
anyonic excitations)



Errors on the surface code

Similarly if a Z (phase-flip) error chain occurs, the 
eigenvalues of the vertex stabilizers become -1 at 
boundary of the error chian.

For simplicity, we only consider X errors correction below.

(that is, toric code model have two types of anyonic 
excitations)



Errors on the surface code

If a chain of X (bit-flip) errors occurs, the eigenvalues 
of the face stabilizers become -1 at the boundary of 
the error chain.

(In the toric code Hamiltonian, they correspond to the 
anyonic excitations)



Measure the eigenvalues of the stabilizer operators.

Af
BvA

|+� X
|0��0| ⊗ I + |1��1| ⊗ A

|ψ�

Projective measurement for
an operator A （hermitian & eigenvalues ±1）

|+�

X

|+�

X

Syndrome measurements

(In the toric code Hamiltonian, the syndrome measurements 
correspond to measurements of the local energy.)



Topological error correction

The syndrome measurements do not tell us the actual 
location of errors, but boundaries of them.

Then we have to infer a recovery chain, to recover 
from errors.

(It tells location of excitations, but does not tell the 
trajectory of the excitaitons)

In the toric code Hamiltonian, this can be viewed as 
finding an appropriate way to annihilate pairs of anyones.



Topological error correction

If error and recovery chains result in a trivial cycle,
the error correction succeeds.

Actual and estimated 
error locations are the 
same.

Trivial cycle =
        stabilizer element



Topological error correction

If the estimation of the recovery chain is bad ....



Topological error correction

The error and recovery chains 
result in a non-trivial cycle,
which change the code state. 

If the estimation of the recovery chain is bad ....



recovery chainsyndrome

→ minimum-weight-perfect-match (MWPM) algorithm (polynomial algorithm) 

E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, J.Math. Phys. 43, 4452 (2002).

→ The error chain which has the highest probability conditioned on 
the error syndrome.

Algorithms for error correction

Blossom 5 by V. Kolmogorov, Math. Prog. Comp. 1, 43 (2009).

by Duclos-Cianci & Poulin Phys. Rev. Lett. 104, 050504 (2010).
by Fowler et al., Phys. Rev. Lett. 108, 180501 (2012).
by Wootton & Loss, Phys. Rev. Lett. 109, 160503 (2012).

[Improved algorithms] 
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Algorithm for error correction

The inference problem can 
be mapped to a ferro-para 
phase transition of random-
bond Ising model.

— N=10
— N=20
— N=30

E. Dennis, A. Kitaev, A. Landahl, 
and J. Preskill, J.Math. Phys. 43, 
4452 (2002).

threshold 
value



Independent X and Z
errors with perfect syndrome 
measurements.

[10.3-10.9%]

Dennis et al.,
J. Math. Phys. 49, 4452 (2002).
M. Ohzeki,
Phys. Rev. E 79 021129 (2009).

Noise model and threshold values

Code performance:

|+�

X

[2.9-3.3%]

Wang-Harrington-Preskill,
Ann. Phys. 303, 31 (2003).
Ohno et al., 
Nuc. Phys. B 697, 462 (2004).

Phenomenological noise model:
Independent X and Z
errors with noisy syndrome 
measurements.

|+�

X

[0.75%]

Raussendorf-Harrington-Goyal,
NJP 9, 199 (2007).
Raussendorf-Harrington-Goyal, 
Ann. Phys. 321, 2242 (2006).

Circuit noise model:
Errors are introduced by 
each elementary gate.

|+�

X
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too complex....

p- and d-type defects

too complex....

primal defect pair 

dual defect pair

introduce “defects” on the 
planer surface code

(defect = removal of the stabilizer 
operator from the stabilizer group,
which introduce a degree of freedom)



dynamics of defects

• preparation of logical qubit
→creation of defect pair

• moving the defect

• measurement of logical qubit 
pair annihilation of defects

• braiding p-defect around d-defect

→Controlled-Not gate between p-type 
(control) and d-type (target) qubits.

d-type qubit

p-type qubit
=



XAa Ab

X basis measurement

XAa
XAc

X basis measurement

XAa
XAc

stabilizer measurement

Preparation of eigenstate           of       :|+�p
L

Lp
X

Prepare & move the defect

Moving the defect：

shrink
repeat

move the defectexpand
surface code

time

|+�p
L

primal
defect pair

primal defect pair creation

logical operator 



Observe the time evolution of the logical operator 
under the braiding operation of the primal defect around the 
dual defect.

21

CNOT gate by braiding



21

Observe the time evolution of the logical operator 
under the braiding operation of the primal defect around the 
dual defect.

CNOT gate by braiding
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Observe the time evolution of the logical operator 
under the braiding operation of the primal defect around the 
dual defect.

CNOT gate by braiding



21

Observe the time evolution of the logical operator 
under the braiding operation of the primal defect around the 
dual defect.

CNOT gate by braiding



Trivial cycle is a stabilizer operator, and hence acts trivially 
on the code space. 21

Observe the time evolution of the logical operator 
under the braiding operation of the primal defect around the 
dual defect.

CNOT gate by braiding



21

Observe the time evolution of the logical operator 
under the braiding operation of the primal defect around the 
dual defect.

CNOT gate by braiding



                           is transformed into                      !Lp
X ⊗ Id Lp

X ⊗ Ld
X

Contraction does 
not change 
topology!

21

Observe the time evolution of the logical operator 
under the braiding operation of the primal defect around the 
dual defect.

CNOT gate by braiding



21
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21

Observe the time evolution of the logical operator 
under the braiding operation of the primal defect around the 
dual defect.

CNOT gate by braiding

Trivial cycle is a stabilizer operator, and hence acts trivially 
on the code space.



21

Observe the time evolution of the logical operator 
under the braiding operation of the primal defect around the 
dual defect.

CNOT gate by braiding



                            is transformed into                      !Ip ⊗ Ld
Z Lp

Z ⊗ Ld
Z

21

Observe the time evolution of the logical operator 
under the braiding operation of the primal defect around the 
dual defect.

CNOT gate by braiding



Ip ⊗ Ld
Z Lp

Z ⊗ Ld
Z

Lp
X ⊗ Id Lp

X ⊗ Ld
X

Braiding

X

X

Z

Z

X

Z

That is, the braiding operation is equivalent to
the CNOT gate from the primal to the dual qubits.

22

CNOT gate by braiding



CNOT gate by braiding Abelian anyon

d-type qubit

p-type qubit

The p-type and d-type defect qubits are always control and target, 
respectively.

= commutable!

→The anyonic excitation in the Kitaev toric code is Abelian.

|0�d
L

|+�p
L

target in

control in

target out

control out

Z

X
p

d
=

p-type

p-type

p-type

d-type

p-type

p-type



Universal quantum computation
by magic state distillation

CNOT gate (Clifford gate) is not enough for universal quantum computation.
(This is also the case for the Ising anyon.)

Topologically protected CNOT gate + Noisy ancilla state 

Magic state distillation
universal quantum computation
with an arbitrary accuracy

Bravyi-Kitaev PRA 71, 022316 (2005)

Raussendorf-Harrington-Goyal, NJP 9, 199 (2007).

[Improved magic state distillation protocols]
Bravyi-Haah, PRA 86, 052329 (2012)
Eastin, PRA 87, 032321 (2013)
Jones, Phys. Rev. A 87, 022328 (2013)

Over 90% of computational overhead is 
consumed for magic state distillation! 
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= eiθ(|0�dL + e−i2θ|1�dL)
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L

‣State injection:
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‣One-bit teleportation for non-Clifford gate
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Implementations (circuit)
data qubit which constitutes the surface code
ancilla qubit for the face syndrome measurement
ancilla qubit for the vertex syndrome measurement

qubits on the square lattice/ nearest-neighbor two-qubit 
gates/initialization and projective measurement of 
individual qubits → fault-tolerant universal QC

|+�

X
|+�

X

[On-chip monolithic architectures]
• quantum dot: N. C. Jones et al., PRX 2, 031007 (2012).

• superconducting qubit: J. Ghosh, A. G. Fowler, M. R. Geller, PRA 86, 062318 (2012).

factorization of 1024-bit composite number: ~108 qubits, gates ~10[ns], error rate 0.1%  → 1.8 day  
(768-bit takes 1500 CPU years with classical computer)

[distributed architectures]
• DQC-1:Y. Li et al.,  PRL 105, 250502 (2010); KF & Y. Tokunaga, PRL 105, 250503 (2010).
• DQC-3:Y. Li and S. Benjamin, NJP 14, 093008 (2012).
• DQC-4:KF et al., arXiv:1202.6588 N. H. Nickerson, Y. Li and S. C. Benjamin, arXiv:1211.2217.

• Trapped Ions: C. Monroe et al., arXiv:1208.0391.
fidelity of quantum channel ~0.9, error rate of local operations ~0.1%

small local system

quantum channel



Topologically protected MBQC on thermal state:
[Thermal state of two-body Hamiltonian (no phase transition)]

[Symmetry breaking thermal state (ferromagnetic phase transition)]
KF, Y. Nakata, M. Ohzeki, M. Murao , PRL 110, 120502 (2013).

spin-2 & spin-3/2 particles: Li et al., PRL 107, 060501 (2011)
spin-3/2 particles: KF & T. Morimae, PRA 85, 010304(R) (2012)

Implementations

Raussendorf-Harrington-
Goyal,Annals Phys. 321, 2242 
(2006);NJP 9, 199 (2007).

+ (time evolution)→
3D entangled state & 
measurement-based QC

2D system

quantum 
teleportation

Measurement-based quantum computation (MBQC): 
After generating a many-body entangled state, we only 
need to readout the state of the particles.



Summary

equilibrium/ local/
translationally invariant 
(without control)

Zero 
temperature

4- or higher- 
dimension

topologically protected 
MBQC in 3D

topologically 
protected quantum 
computation in 2D

(extremely long-live quantum coherence)

Non-Abelian anyones
Ising anyon + Magic state distillation
Fibonacci anyon

non-equilibrium
(error correction by 
feedback operation)

selective addressing 
(measurement and control) of
individual particle

Abelian anyon (Kitaevʼs toric 
code model) is enough for 
universal quantum computation.

Topological QEC
by global control and 
dissipative dynamics

see poster session

no selective addressing!
no measurement!

topological order & topological 
quantum computation

Thank you for your attention!
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