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Turing’s Machine

• Alphabet Σ, state space K
• f : K×Σ → K×Σ×{←,→,?} ×{Halt,Yes,No}
• Language: L μ Σ* is decided by ML
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P  vs. NP

Polynomial Time （PTIME ）Polynomial Time （PTIME ）
L is in P if there exists a Turing Machine M which for every 
x, decides if x is in L in polynomially many steps.x, decides if x is in L in polynomially many steps.

Non-DeterministicPolynomial Time
L is in NP if there exists a Turing Machine M s.t. for every x

• If x is in L then there exists w s.t. M(x,w)→“Yes” in PTIME.
• If x is not in L then there is no such w.
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Most People in C. S. believe

Polynomial Time Turing Hypothesis:
h i l i d i bAny physical computing device can be 

simulated by a randomizing Turing machine 
that takes a number of steps that grows as at that takes a number of steps that grows as at 
most some fixed polynomial in the quantity 
T+S+E where T, A and E are the time, space , , p
and energy used by the computing device.

How about Quantum T. M. …..?
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NP-completeness

A problem P is NP-hard if every problem in NP has 
a polynomial time reduction to Pa polynomial-time reduction to P.

M l A l h d h bl i NPMoral: At least as hard as any other problem in NP

If P is in ΝP and NP-hard then P is NP-complete.

Cook’s TheoremCook s Theorem
Satisfiability (SAT) is NP-Complete
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What is SAT?
For n variable Boolean Function
f(X) = (x1 + x’2 + x3 ) (x’4 + x5 + x6 ) … (xn + x’n-2 + x1)
Find an variable assignment X=(x1, x2 , …, xn)
s. t. f(X) = 1

• There are obviously 2n possible assignments to the n
variables, so exhaustive search takes time O(2n)

s. t. f(X)  1

variables, so exhaustive search takes time O(2 )

• It’s NP-complete
–if we can solve SAT quickly, we can solve anything 
in NP quickly (Cook’s theorem, 1971)

• Many and varied applications in itself:• Many and varied applications in itself:
–theorem proving
–hardware design
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k-SAT

• If the maximum number of variables in 
each clause is k  we call the problem k-SATeach clause is k, we call the problem k-SAT

• 1-SAT is simple: f(X) = (x ) (x’ ) (x )• 1-SAT is simple: f(X) = (x1) (x 2) (xN )
–and can be solved in time O(n)

• 2-SAT is also straightforward
–can be solved in time O(n2) using a simple 
random walk algorithm  which we will see laterrandom walk algorithm, which we will see later

• 3-SAT is NP-complete3 SAT is NP complete
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Very Hard to Analyze Computational 
Complexity; Consider “Query Complexity”Complexity; Consider Query Complexity

Unstructured Search for SAT
• Don’t use any knowledge of the problem’s 
structure; just pass in an assignment and ask 
“d  thi  ti f  th  i ?”“does this satisfy the expression?”

• What we can do is only to evaluate f• What we can do is only to evaluate f

• # of such evaluations is called query • # of such evaluations is called query 
complexity

• (Usually) Computational Complexity =
# of queries * (query cost)
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Grover’s Algorithm Revisited
Find a variable assignment s  t  a function Find a variable assignment s. t. a function 
becomes 1 (among 2n possible assignments)

O(2n/2) times

|x 〉
W
Η

O(2n/2) times

|x2〉
|x1〉 Η

Η
m

e
a
s

|xn〉 Η

su
re

GI=-W I0 W If -D If

D
The computational cost = query comp = O(2n/2)
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Solving SAT based on Sampling

For N variable Boolean Function
f(X) = (x1 + x’2 + x3 ) (x’4 + x5 + x6 ) … (xN + x’N 2 + x1)f(X)  (x1 + x 2 + x3 ) (x 4 + x5 + x6 ) … (xN + x N-2 + x1)
Find a variable assignment X=(x1, x2 , …, xN)
s  t  f(X) 1

(1) Select a variable assignment x from 2n

s. t. f(X) = 1

(1) Select a variable assignment, x,  from 2
assignments randomly

(2) Check whether f(x) = 1(2) Check whether f(x)  1

Succ. Prob. = 1/2n/

（Q t l  ( /2) b  G  S ）

Succ. Prob. = const. by O(2n) samplings
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Sampling from all the possible candidates 

# of candidates is 2n

|0…00〉 |0…01〉 |1…01〉 |1…11〉… …

Succ. Prob. of one sampling is 1/2n

Cl i l S li O(2 )Classical Sampling：O(2n)

Grover Search: O(2n/2)
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(Classical) Sampling from narrowed set of candidates 

•Solution candidates (range) is known

Ch k   i  •Check an answer is easy

Then, we can do the following:

If the succ. prob. of a sampling is a, p p g ,
we can get an answer with constant 
prob. by repeating the sampling O(1/a)p y p g p g ( )
times.
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Quantum Sampling from narrowed set of candidates 

# of candidates < 2n

…

|0…00〉 |0…01〉 |1…01〉 |1…11〉… …

If the succ  prob  of a sampling is a we can get an answer If the succ. prob. of a sampling is a, we can get an answer 
with constant prob. by repeating the sampling O(1/a) times.

If we have a quantum algorithm, A,  to create 
the above superposition, O(√1/a ) repetition is enough
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(Quantum) Amplitude Amplification

:Α (Quantum) Algorithm without measurement

To boost the succ. prob. to constant, 

The prob. of getting the correct answer by measuring the result of A:a

By classical amplification

Repeat A times( )1/O a Α

( )1

By quantum amplification 

( )1/O a1
0 fQ I I−= −Α ΑRepeat                   times
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Relation to G. S. 

( )1/O a1
0 fQ I I−= −Α ΑRepeat                   times

Generalizations of G. S. 

( )f

GI=ｰW I0 W If 

•Without prior knowledgep g
→W： Generating uniform superposition

•With some knowledge concerning solutions g g
→A：Generating narrowed superposition
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Analysis of A. A. (1/2)
1

0 fQ I I−= −Α Α|ψ〉=Α|0〉= |ψ1〉 + |ψ0〉

ψ (1 2 ) ψ 2 ψQ a a=
1 1( ψ ψ )a =a: Succ. Prob. of A

1 1 0

0 1 0

ψ (1 2 ) ψ        2 ψ

ψ 2(1 ) ψ (1 2 ) ψ

Q a a

Q a a

= − −

= − + −

α1|ψ1〉 + α0|ψ0〉 −> β1|ψ1〉 + β0|ψ0〉

1 1 11 2 2
2(1 ) 1 2

a a
Q

β α α
β α α

− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞
= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠0 0 02(1 ) 1 2a aβ α α⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠
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Analysis of A. A. (2/2)

1 1 11 2 2a a
Q

β α α− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟

1 1 1

0 0 02(1 ) 1 2
Q

a a
β
β α α

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞
= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

1 0
1 1ψ sin((2 1) ) ψ cos((2 1) ) ψjQ j jθ θ= + + +1 0ψ sin((2 1) ) ψ cos((2 1) ) ψ

1a aQ j j
a a

θ θ+ + +
−

2(sin )aθ =

/ 4 (1/ )aj O aπ θ= =⎢ ⎥⎣ ⎦Set  

(sin )a aθ

Then, |ψ1〉 is measured w.p. (at least) 1-a
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Summary of A. A. 

• A. A. is a generalization of G. S. algorithm

b h b bili f• It can boost the success probability of 
randomized algorithm quadratically faster 
than classically if we have a way to verify than classically if we have a way to verify 
the solution

• Usually, we consider query complexity, 
and how to reduce it by using A. A. is one 

f h iof research topics.

20Shigeru Yamashita ger@cs.ritsumei.ac.jp 20



Today’s Talk

• IntroductionIntroduction
–Shigeru Yamashita
Topics for C  S  people (Yamashita’s Perspective)–Topics for C. S. people (Yamashita s Perspective)
•NP, Query Complexity

Amplitude Amplification and Its Applications• Amplitude Amplification and Its Applications
–Generalization of G. S. to A. A.
H   ili  A  A   –How to utilize A. A.  

• Quantum Walk and Its Applications

21Shigeru Yamashita ger@cs.ritsumei.ac.jp



How to use A. A. 
• Generally speaking, we can do 
quadratically faster than the classical 
corresponding search based on sampling

Example 1: How to use prior knowledge

Example 2: How to use A. A. 

22Shigeru Yamashita ger@cs.ritsumei.ac.jp



Example 1: How to use prior knowledge (1/3) 

For n variable Boolean Function
f(X) = (x1 + x’2 + x3 ) (x’4 + x5 + x6 ) … (xn + x’n-2 + x1)f( ) ( 1 2 3 ) ( 4 5 6 ) ( n n 2 1)
Find an variable assignment X=(x1, x2 , …, xn)
s  t  f(X) = 1

Prior knowledge: The variable assignment should have 
tl  k 1’  

s. t. f(X)  1

exactly k 1’s 
(Classical) sampling using the knowledge
1 Select a variable assignment that has exactly k 1’s 1. Select a variable assignment that has exactly k 1 s 

2n assignments randomly
2. Check whether f(x) = 12. Check whether f(x)  1

1
C ( ) ( )2n

kO C O=Succ. Prob. =
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Example 1: How to use prior knowledge (2/3) 

(Classical) sampling using the knowledge
1. Select a variable assignment that has exactly k 1’s 

2n assignments randomly
2. Check whether f(x) = 1

We need to construct a quantum algorithm A that 
generates the following states from |0…00〉generates the following states from  |0…00〉

exactly k 1’s
1

n kC

exactly k 1 s

|0 00〉 |0 11〉 |1 01〉 |1 11〉… …

n k

…
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Example 1: How to use prior knowledge (3/3) 

1 k k⎛ ⎞
−⎜ ⎟

0 0  1 k
n→ −

0α⎛ ⎞1

1

n nA
k k

⎜ ⎟
⎜ ⎟= ⊗
⎜ ⎟
⎜ ⎟⎜ ⎟

0 1  k
n

k

→0α
α

⎛ ⎞
⎜ ⎟
⎝ ⎠1

n n
− −⎜ ⎟⎜ ⎟

⎝ ⎠ 1 0  

1 1 1

k
n
k

→

0010010110

1α⎝ ⎠
1 1  - 1- k

n→0010010110

0000000000
1Q I A I A−=

2 2 11
n k k

k k O
Cn n

−
⎛ ⎞⎛ ⎞ ⎛ ⎞− ≈ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
( )n kO C

0 fQ I A I A= −
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Example 2: How to use A. A. (1/3)

Element distinctnessElement distinctness

7 9 2 1...
x1 x2 xNx3

• Numbers x1, x2, ..., xN.

• Determine if two of them are equal.q
• Classically: N queries are needed
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Example 2: How to use A. A. (2/3)
Randomized Algorithm for E. D. 

}{ .,1,2,,,numbers  Choose  1. 1 NiiN N ∈ LL }{
( ) ( ) equal, are ,, of any two If    

,, ,,,

1

1

ifif N

N

L ( )queries NO

( ) ( ) is    where  t.s. S.) G.(by    Find  2.
elements.equal twooutput the    

kifkfk j= ( ) iNO
( ) ( )

indecies.  remaining  thefromchosen     NN
j

−
( )queriesNO

( ) ( )

( ) 2. stepat  query   toneednot  do We* jif

( ) ( )
1yprobabilitsuccesstheThus1stepatchoseniswhen

succedsalgorithm the,t.s.andpair  a is thereIf

i

jfifji

≥

=
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Example 2: How to use A. A. (3/3)

Boost Succ. Prob. by A. A. 
Recall that

( )

Recall that
if the succ. Prob. =  
we can get the constant error

a

( )1/O a
g

algorithm by repeating the algorithm             times

Thus, in this case, we need to repeat

( )4/11 NOO ⎟
⎞

⎜
⎛

the algorithm                           times

The total query complexity is 

( )4/1

/1
1 NO

N
O =⎟⎟

⎠
⎜⎜
⎝

The total query complexity is 

( ) ( )4/34/1 NONNO =
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Summary of A. A. 

• A. A. is a generalization of G. S. algorithm

b h b bili f• It can boost the success probability of 
randomized algorithm quadratically faster 
than classically if we have a way to verify than classically if we have a way to verify 
the solution

• Usually, we consider query complexity, 
and how to reduce it by using A. A. is one 

f h iof research topics.
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When the succ. prob. is very high

( )
Grover’s Search

( )aO /1Repeat GI=ｰW I0 W If     times

When a=1/2
Amplitude Succ. Prob. is not raised by G. S.  
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When the succ. prob. is very high

( )
Grover’s Search

( )aO /1Repeat GI=ｰW I0 W If     times

When a=1/2
Amplitude Succ. Prob. is not raised by G. S.  

Average
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When the succ. prob. is high

( )
Grover’s Search

( )aO /1Repeat GI=ｰW I0 W If     times

When a=1/2
Amplitude Succ. Prob. is not raised by G. S.  
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Generalization of I0 and If (1/4)

When the succ. prob. is high, A. A. does not helpWhen the succ. prob. is high, A. A. does not help
→ decrease the succ. prob. purposely

Amplitude

θ π=
ie θMultiply （Inversion when           ）
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Generalization of I0 and If (2/4)

Repeat                      times( )aO /10 fQ WI WI= − ( )f

I0 …Invert |0〉0 
If … Invert  |i〉 (s.t. f(i)=1)

S0 …Multiply eiθ  to |0〉
Sf  Multiply eiθ  to |i〉     (s t   f(i)=1)Sf … Multiply e to |i〉     (s.t.  f(i) 1) 

Just apply once!0' fQ WS WS= −
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Generalization of I0 and If (3/4)

1
( ) 1

ψ 1/
f

N i= ∑
1 00 ψ ψW = +

( ) 1

0ψ 1/
f i

N i
=

= ∑
1 1( ψ ψ )a =

( ) 1f i ≠

'Q

2 2
1 0( 2 1 ( 1) ) ψ ( ( 1) ) ψi i i ie e a e e aθ θ θ θ− + − − + − − −

0ψThe Prob. of  getting (= error prob.)

2cos 2(1 cos )(1 ) )(1 )a aθ θ− − − −= (1-2
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Generalization of I0 and If (4/4)

2cos 2(1 cos )(1 ) )(1 )a aθ θ− − − −error prob ＝(1-2

2 1cos =0aθ −
→ error prob

cos 2(1 cos )(1 ) )(1 )a aθ θerror prob. (1 2

cos =0
2

1
a

θ = → error prob. 　

31cos =(1 )
2

aθ = → −error prob.　　

)( (1 )a−Classically, error prob.= )
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Outline

1. What is query complexity？

2. Amplitude Amplification and Its Algorithmic Applications

3. Quantum Walk and Its Algorithmic Applications
1. How important for computationp p
2. Intuitive difference between random and quantum walks 
3. Algorithmic Applications

1. Spatial Search
2. Element Distinctness

4. （Some of my research topics) if time permits
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What are (quantum/random) walks?

• A random walk is the simulation of the random 
movement of a particle around a graphmovement of a particle around a graph

• A quantum walk is the same – but with a quantum A quantum walk is the same but with a quantum 
particle

– not the same as running a normal random walk algorithm 
on a quantum computeron a quantum computer

• Random walks are a useful model for developing p g
classical algorithms; quantum walks provide a new 
way of developing quantum algorithms

which is particularly important because producing new – which is particularly important because producing new 
quantum algorithms is so hard
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Example: Random walk for 2-SAT (1/3)

Input: Boolean formula (conjunction of clauses 
f 2 i bl )of 2 variables)

)''()()'()'()( 31323121 xxxxxxxxXf ∨∧∨∧∨∧∨=

Question: Is the formula satisfaisable?
(ex. YES, 001 is satisfying assignment)( , y g g )

Algorithm:
1) i iti li  th  i bl   d   (  000)1) initialise the variables u.a. random  (ex. 000)
2) if all clauses satisfied – STOP, otherwise:
3) chose a non-satisfied clause  chose one of its 3) chose a non-satisfied clause, chose one of its 

two variables and flip its value; return to 2)
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Example: Random walk for 2-SAT (2/3)

)''()()'()'()( 31323121 xxxxxxxxXf ∨∧∨∧∨∧∨=

0001 1 )(
non-satisfied clause

010 001

2
1

2
1 )( 32 xx ∨

)'( 21 xx ∨ 010 001)( 21

110

2
1

)'( 2
1

110)'( 31 xx ∨

2
1

011
1

)'( 21 xx ∨

2 111
)''( 31 xx ∨

2
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001 S l i
Example: Random walk for 2-SAT (3/3)

001 0 Solution
≧1/2

Hamming 
101 000011 1

≧ 1/2 ≦1/2

g
distance

010100111 2
≦ 1/2

110 3
≧ 1/2 ≦ 1/2

After t=2n2 repetitions, the succes probability 

Random walk on a line with n+1 vertices !

After t 2n repetitions, the succes probability 
is >1/2 (if the formula is satisfiable). 
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Random walk algorithm for 3-SAT
• Schöning developed (1999) a simple 
randomised algorithm for 3-SAT:g

–start with a random assignment to all variables
–find which clauses are not satisfied by the 
assignment

–flip one of the variables which appears in that 
clauseclause

–repeat until satisfying assignment found (or 3n 
steps have elapsed)p p )

• This simple algorithm has worst-case time 
complexity of O(1.34n)

–Still exponential, but better than G. S.?
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Outline
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Physical intuition behind a classical 
random walk on a graphrandom walk on a graph

5
Time Probability at vertex

1 2 3 4 5 6

2 4 6

5 1 2 3 4 5 6
0 1

2 4 6 1
2

½½

1 3

2
3 1 ½½

After 3 steps we are in position “5” or “6” 
with equal probability
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Physical intuition behind a quantum y q
walk on a graph

Light detectorsLight detectors

Mirror 5

22
4 6

1
3

Half-silvered
mirrormirror
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Physical intuition behind a quantum 
walk on a graphg p

Time Amplitude at pointTime Amplitude at point

1 2 3 4 5 6
0 1

5

2
4

0 1
16

1
3

2
3 1

After 3 steps we are guaranteed to be in 

3 3

After 3 steps we are guaranteed to be in 
detector “6” – this is caused by quantum 
interference.
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Mathematical definition of a random walkMathematical definition of a random walk

• Express a classical random walk as a Express a classical random walk as a 
matrix W of transition probabilities

– where the entries in each column sum to 1

2 4

• Express a position as a column vector v 1 3

• Performing a step of the walk 
corresponds to pre-multiplying v by W

=

corresponds to pre-multiplying v by W

• Performing n steps of the walk Performing n steps of the walk 
corresponds to pre-multiplying v by Wn
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Mathematical definition of a quantum walk
V  i il  b t• Very similar, but:

– probabilities combine differently (sum 
of the amplitudes squared must be 1) 2 4– the transition matrix must be unitary
(ie. send unit vectors to unit vectors)

Thi  ill t i  l b  th  

2 4

• This will not in general be the 
case, so we may need to modify 
the structure of the graph – for 

l  b  ddi   i  

1 3

 (e g )example, by adding a coin space = (e.g.)
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Classical random walk on the line
Consider a walk on the following simple 
infinite graph:

• Useful models for many random processes• Useful models for many random processes

• When the walker has equal probability to move left When the walker has equal probability to move left 
or right, average distance from the start position 
after time n is n

• This is not reversible, so we cannot simply do this in 
quantumlyquantumly.
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Quantum walk on the line
W  h  t  t  i t  • We have two quantum registers: 

– a coin register holding |L〉 or |R〉
– a position register |p〉

• One step of the walk
coin flip: |L〉 → |L〉 + i|R〉 ⎟

⎠
⎞⎜

⎝
⎛

1
11
i

i
– coin flip: |L〉 → |L〉 + i|R〉,

|R〉 → i|L〉 + |R〉

shift: |L〉|p〉 → |L〉|p 1〉 unitary

⎟
⎠

⎜
⎝ 12 i

– shift: |L〉|p〉 → |L〉|p-1〉
|R〉|p〉 → |R〉|p+1〉

Wh  th  lk  h  l b bilit  t   

unitary

• When the walker has equal probability to move 
left or right, average distance from the start 
position after time n is np

Any unitary operator can be used. E. g., ⎟
⎠
⎞⎜

⎝
⎛

−11
11

2
1
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Quantum walk on the line 
0    start → |R〉|0〉0.   start → |R〉|0〉
1. coin → (i|L〉 + |R〉)|0〉

shift → i|L〉|-1〉 + |R〉|1〉
|L〉 → |L〉 + i|R〉
|R〉 → i|L〉 + |R〉| 〉| 〉 | 〉| 〉

2. coin → (i|L〉 - |R〉)|-1〉 + (i|L〉 + |R〉)|1〉
shift → i|L〉|-2〉 - |R〉|0〉 + i|L〉|0〉 + |R〉|2〉

3 coin → (i|L〉 |R〉)| 2〉 |R〉|0〉 + (i|L〉 + |R〉)|2〉3. coin → (i|L〉 - |R〉)|-2〉 - |R〉|0〉 + (i|L〉 + |R〉)|2〉
shift → i|L〉|-3〉 - |R〉|-1〉 - |R〉|1〉 + i|L〉|1〉 + |R〉|3〉

Time Probability at vertex

-3 -2 -1 0 1 2 3
0 1
1 2

1
2
11

2
3

2 2

4
1

4
1

2
1

1 11 5
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Random walk on the line 
Time Probability at vertex

-3 -2 -1 0 1 2 33 2 1 0 1 2 3
0 1
1 1 11
2

2
1

2
1

4
1

4
1

2
1

3 8
1

8
3

8
3

8
1
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Random vs. quantum walk on the line

Probability distribution by random walk
after t stepsafter t steps

position

( )to
P b bilit  di t ib ti  b  t  lk

( )
Probability distribution by quantum walk
after t steps

Th  k  d t h  i  The peaks and troughs in 
this graph are caused by 
quantum interference. ( )position
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Outline

1. What is query complexity？

2. Amplitude Amplification and Its Algorithmic Applications

3. Quantum Walk and Its Algorithmic Applications
1. How important for computationp p
2. Intuitive difference between random and quantum walks 
3. Algorithmic Applications

1. Spatial Search
2. Element Distinctness

4. （Some of my research topics) if time permits
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Quantum search on grids 

NNN =× nodes

• Find a marked node

• Grover’s algorithm takes
( ) ( ) steps.( ) ( ) ( )NONONO =×

No quantum speedup.
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Quantum walk on gridQuantum walk on grid

• Basis states 
|x,y,←〉, |x, y, →〉,  |x, y, ↑〉, |x, y, ↓〉.

• Coin flip on direction: ⎞⎛ 1111• Coin flip on direction:

⎟
⎟
⎟
⎟
⎞

⎜
⎜
⎜
⎜
⎛

−

−

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

⎟
⎟
⎟
⎟
⎟

⎜
⎜
⎜
⎜
⎜

−

1111
2
1

2
1

2
1

2
1

2222

• Shift:
⎟⎟
⎠

⎜⎜
⎝

−
2
1

2
1

2
1

2
1

– |x, y, ←〉 ⇒    |x-1, y, →〉
– |x, y, →〉 ⇒    |x+1, y, ←〉
– |x, y, ↑〉 ⇒     |x, y-1, ↓〉
– |x, y, ↓〉 ⇒    |x, y+1, ↑〉
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Search by quantum walk y q

• Perform a quantum walk  with “coin flip”:Perform a quantum walk  with coin flip :
–C in unmarked locations; 
–-I in marked locations. I in marked locations. 

• After steps, measure the state.
• Gives marked |x  y  d〉 with prob  1/log N

( )  log NNO

• Gives marked |x, y, d〉 with prob. 1/log N

( )• By using A. A., total cost becomes ( )NNO  log
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Outline

1. What is query complexity？

2. Amplitude Amplification and Its Algorithmic Applications

3. Quantum Walk and Its Algorithmic Applications
1. How important for computationp p
2. Intuitive difference between random and quantum walks 
3. Algorithmic Applications

1. Spatial Search
2. Element Distinctness

4. （Some of my research topics) if time permits

59Shigeru Yamashita ger@cs.ritsumei.ac.jp 59



Element distinctness

7 9 2 1...
x1 x2 xNx3

• Numbers x1, x2, ..., xN.

• Determine if two of them are equal.q
• Well studied problem in classical CS.
• Classically: N steps• Classically: N steps.
• Quantumly, O(N2/3) steps.
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Quantum walk algorithm for E. D. (1/2)

• We use a quantum walk on a 
graph where the vertices are 

{1, 1, 2, 3}
graph where the vertices are 
subsets of S containing either 
M or M + 1 elements for some 

11,12
11,12,2

M < N

T  ti   t d if 

11,2

1 3 11,12,3• Two vertices are connected if 
they differ in exactly one 
element

11,3

12,2 11,2,3

1, 2,3

element

• The graph on the right 

12,2

12,3 1 2 3

11,2,3

g p g
encodes the set {1, 1, 2, 3} 
for M = 2 2,3

12,2,3
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Quantum walk algorithm for E. D. (2/2)

• Basic walk algorithm:
1.start with some subset S’ ⊆ S (where |S’| = M)
2.check whether S’ contains any duplicates 
(needs O(M) queries)(needs O(M) queries)

3.if not, change to a different subset S’’ that 
differs in exactly one elementdiffers in exactly one element

4.check S’’ for duplicates (needs 1 query)
5.repeat steps 3 and 4 until a duplicate is foundp p p

• Because this is a quantum walk  we can Because this is a quantum walk, we can 
start with a superposition of all M-subsets
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Analysis of the quantum walk

• In total, we need (M + r) queries, where
– M is the number of elements in the initial subset
– r is the number of steps of the quantum walk

When M  N2/3 and   N1/3  a sol tion can be • When M = N2/3 and r = N1/3, a solution can be 
found with high probability.
Thus the query comp. = O(N2/3)Thus the query comp.  O(N )
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Summary

• IntroductionIntroduction
–Shigeru Yamashita
Topics for C  S  people (Yamashita’s Perspective)–Topics for C. S. people (Yamashita s Perspective)
•NP, Query Complexity 

Amplitude Amplification and Its Applications• Amplitude Amplification and Its Applications
• Quantum Walk and Its Applications

*You can just Google to find papers You can just Google to find papers 
concerning these topics.
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