6. Quantum error correcting codes

Error correcting codes (A classical repetition code) Preserving the superposition Parity check Phase errors CSS 7-qubit code (Steane code) Too many error patterns?

Syndrome measurement digitizes the error Description of encoded states

Similarity to classical repetition codes

Error correcting codes (Classical)

Error model: Bit error $0 \leftarrow 1$ Error propability: ϵ Independent for each bit

$(1-\epsilon)^3$
$(1-\epsilon)^2$
$2(1-\epsilon)$
ϵ^3

Error rate after the correction $\sim 3\epsilon^2$

Problems:

- If we measure the system for the correction, the superposition may collapse.
- Can we correct the phase error?
 Free Error Er
- Error in observable $\hat{\sigma}_x$ Error caused by unitary $\hat{\sigma}_z$
- There are infinite number of error patterns. Can we handle all of them?

Does the majority vote work?

•If we measure the system for the correction, the superposition may collapse.

States such as $|000\rangle + |111\rangle$ and $|000\rangle - |111\rangle$ will collapse. (Classical mixture of state $|000\rangle$ and $|111\rangle$)

Parity check

Parity check matrix

Parity of a subset of bits \nearrow^{XOR} $s_1 = b_1 \oplus b_2$ $s_2 = b_2 \oplus b_3$ $\begin{pmatrix} s_1 \\ s_2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$

Codewords: All the syndrome bits are zero. $(s_1 = s_2 = 0)$

	No error	1st bit	2nd bit	3rd bit
	000	100	010	001
	111	011	101	110
$s_{1}s_{2}$	00	10	11	01

(syndrome)

Distinguish the columns

Correction
operation $\oplus 000$ $\oplus 100$ $\oplus 010$ $\oplus 001$

$$\begin{split} & \underbrace{\text{Measurement of a syndrome bit}}_{s_1 \equiv b_1 \oplus b_2} \hat{\sigma}_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = |0\rangle \langle 0| - |1\rangle \langle 1| \\ & s_1 = 0: \ |0\rangle_1 |0\rangle_2 & (\hat{\sigma}_z^{[1]} \otimes \hat{\sigma}_z^{[2]}) |0\rangle_1 |0\rangle_2 = (1 \times 1) |0\rangle_1 |0\rangle_2 \\ & |1\rangle_1 |1\rangle_2 & (\hat{\sigma}_z^{[1]} \otimes \hat{\sigma}_z^{[2]}) |1\rangle_1 |1\rangle_2 = (-1 \times -1) |1\rangle_1 |1\rangle_2 \\ & \text{Eigenspace of} \quad \hat{\sigma}_z^{[1]} \hat{\sigma}_z^{[2]} \text{ with eigenvalue } 1 \\ & s_1 = 1: \ |0\rangle_1 |1\rangle_2 & (\hat{\sigma}_z^{[1]} \otimes \hat{\sigma}_z^{[2]}) |0\rangle_1 |1\rangle_2 = (-1 \times -1) |0\rangle_1 |1\rangle_2 \\ & |1\rangle_1 |0\rangle_2 & (\hat{\sigma}_z^{[1]} \otimes \hat{\sigma}_z^{[2]}) |1\rangle_1 |0\rangle_2 = (-1 \times 1) |1\rangle_1 |0\rangle_2 \\ & \text{Eigenspace of} \quad \hat{\sigma}_z^{[1]} \hat{\sigma}_z^{[2]} \text{ with eigenvalue } 1 \end{split}$$

Measurement of $s_1 \equiv b_1 \oplus b_2$

= Measurement of observable $\hat{\sigma}_z^{[1]} \hat{\sigma}_z^{[2]}$

Codeword state: $s_1 = 0$

It should be in the eigenspace of $\hat{\sigma}_z^{[1]}\hat{\sigma}_z^{[2]}=1$

Measurement of a syndrome bit

We want to learn s_1 , but not the value of each bit b_1, b_2

Measurement of a syndrome bit

Any single bit error can be corrected.

Can we correct the phase error?

Problems:

• If we measure the system for the correction, the superposition may collapse. OK

• Can we correct the phase error? $\begin{array}{c} |0\rangle + |1\rangle \leftrightarrow |0\rangle - |1\rangle \\ \hat{\sigma}_z \end{array}$

• There are infinite number of error patterns. Can we handle all of them?

Dimension:

8 in total.

2 for data.

4 different bit-error patterns.

We need more space to correct other errors.

7-bit code

 $\begin{pmatrix} s_{1} \\ s_{2} \\ s_{3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} b_{1} \\ b_{2} \\ b_{3} \\ b_{4} \\ b_{5} \\ b_{6} \\ b_{7} \end{pmatrix} \qquad \hat{\sigma}_{z}^{[1]} \hat{1}^{[2]} \hat{\sigma}_{z}^{[3]} \hat{1}^{[4]} \hat{\sigma}_{z}^{[5]} \hat{1}^{[6]} \hat{\sigma}_{z}^{[7]} \\ \hat{1}^{[1]} \hat{\sigma}_{z}^{[2]} \hat{\sigma}_{z}^{[3]} \hat{1}^{[4]} \hat{1}^{[5]} \hat{\sigma}_{z}^{[6]} \hat{\sigma}_{z}^{[7]} \\ \hat{1}^{[1]} \hat{1}^{[2]} \hat{1}^{[3]} \hat{\sigma}_{z}^{[4]} \hat{\sigma}_{z}^{[5]} \hat{\sigma}_{z}^{[6]} \hat{\sigma}_{z}^{[7]} \end{pmatrix}$

Dimension: $2^7 = 128$ in total.

8 different bit-error patterns.

$$128/8 = 16 = 2^4$$

We can encode 4 qubits of data if only the bit errors occur.

If we use only one qubit of data, we can accommodate 8 more errors.

$$\begin{pmatrix} s_{4} \\ s_{5} \\ s_{6} \end{pmatrix} \qquad \hat{\sigma}_{x}^{[1]} \hat{1}^{[2]} \hat{\sigma}_{x}^{[3]} \hat{1}^{[4]} \hat{\sigma}_{x}^{[5]} \hat{1}^{[6]} \hat{\sigma}_{x}^{[7]} \\ \hat{1}^{[1]} \hat{\sigma}_{x}^{[2]} \hat{\sigma}_{x}^{[3]} \hat{1}^{[4]} \hat{1}^{[5]} \hat{\sigma}_{x}^{[6]} \hat{\sigma}_{x}^{[7]} \\ \hat{1}^{[1]} \hat{1}^{[2]} \hat{1}^{[3]} \hat{\sigma}_{x}^{[4]} \hat{\sigma}_{x}^{[5]} \hat{\sigma}_{x}^{[6]} \hat{\sigma}_{x}^{[7]} \end{pmatrix}$$

$$12$$

<u>CSS 7-qubit code (Steane code)</u>

 $\hat{\sigma}_z^{[1]} \hat{1}^{[2]} \hat{\sigma}_z^{[3]} \hat{1}^{[4]} \hat{\sigma}_z^{[5]} \hat{1}^{[6]} \hat{\sigma}_z^{[7]} \texttt{=} \texttt{1}$ $\hat{1}^{[1]} \hat{\sigma}_{z}^{[2]} \hat{\sigma}_{z}^{[3]} \hat{1}^{[4]} \hat{1}^{[5]} \hat{\sigma}_{z}^{[6]} \hat{\sigma}_{z}^{[7]} = \mathbf{1}$ $\hat{1}^{[1]}\hat{1}^{[2]}\hat{1}^{[3]}\hat{\sigma}_{z}^{[4]}\hat{\sigma}_{z}^{[5]}\hat{\sigma}_{z}^{[6]}\hat{\sigma}_{z}^{[7]}$ =1

 $\hat{\sigma}_x \hat{\sigma}_z = (-1) \hat{\sigma}_z \hat{\sigma}_x$

 $\hat{\sigma}_{r}^{[1]} \hat{1}^{[2]} \hat{\sigma}_{r}^{[3]} \hat{1}^{[4]} \hat{\sigma}_{r}^{[5]} \hat{1}^{[6]} \hat{\sigma}_{r}^{[7]}$ =1 $\hat{1}^{[1]} \hat{\sigma}_{x}^{[2]} \hat{\sigma}_{x}^{[3]} \hat{1}^{[4]} \hat{1}^{[5]} \hat{\sigma}_{x}^{[6]} \hat{\sigma}_{x}^{[7]} = 1$ $\hat{1}^{[1]}\hat{1}^{[2]}\hat{1}^{[3]}\hat{\sigma}_{r}^{[4]}\hat{\sigma}_{r}^{[5]}\hat{\sigma}_{r}^{[6]}\hat{\sigma}_{r}^{[7]}$ =1

Dimension: $2^7 = 128$ in total.

Any single bit error, plus any single phase error can be corrected.

Too many error patterns?

Problems:

• If we measure the system for the correction, the OK superposition may collapse.

- Can we correct the phase error?
 OK
- <u>There are infinite number of error patterns</u>. Can we <u>handle all of them?</u>

General errors on a single qubit

 $\hat{U}(|a
angle\otimes|0
angle_{E})$

Interaction with environment

General errors

Any scheme that can correct bit and phase errors

Any error should be corrected. ¹⁵

Too many error patterns?

Problems:

- If we measure the system for the correction, the OK superposition may collapse.
- Can we correct the phase error? σ_z OK
- <u>There are infinite number of error patterns. Can we</u> handle all of them? OK

Correcting bit and phase errors is enough.

Syndrome measurement projects general errors onto one of these errors.

Syndrome measurement digitizes the error

 $\hat{\sigma}_{z}^{[1]} \hat{1}^{[2]} \hat{\sigma}_{z}^{[3]} \hat{1}^{[4]} \hat{\sigma}_{z}^{[5]} \hat{1}^{[6]} \hat{\sigma}_{z}^{[7]} \\ \hat{1}^{[1]} \hat{\sigma}_{z}^{[2]} \hat{\sigma}_{z}^{[3]} \hat{1}^{[4]} \hat{1}^{[5]} \hat{\sigma}_{z}^{[6]} \hat{\sigma}_{z}^{[7]} \\ \hat{1}^{[1]} \hat{1}^{[2]} \hat{1}^{[3]} \hat{\sigma}_{z}^{[4]} \hat{\sigma}_{z}^{[5]} \hat{\sigma}_{z}^{[6]} \hat{\sigma}_{z}^{[7]}$

 $\hat{\sigma}_{x}^{[1]} \hat{1}^{[2]} \hat{\sigma}_{x}^{[3]} \hat{1}^{[4]} \hat{\sigma}_{x}^{[5]} \hat{1}^{[6]} \hat{\sigma}_{x}^{[7]} \\ \hat{1}^{[1]} \hat{\sigma}_{x}^{[2]} \hat{\sigma}_{x}^{[3]} \hat{1}^{[4]} \hat{1}^{[5]} \hat{\sigma}_{x}^{[6]} \hat{\sigma}_{x}^{[7]} \\ \hat{1}^{[1]} \hat{1}^{[2]} \hat{1}^{[3]} \hat{\sigma}_{x}^{[4]} \hat{\sigma}_{x}^{[5]} \hat{\sigma}_{x}^{[6]} \hat{\sigma}_{x}^{[7]}$

Any error on a single qubit can be corrected.

CSS QECC

Calderbank & Shor (1996) Steane (1996) 17

Quantum error correcting codes

Special state with quantum correlation

Do not touch!

can keep track of them.

Measurement is OK.

It makes infinite error patterns shrink to finite ones.

Codeword states

A logical qubit should be encoded onto the 2-dimensional eigenspace with the 6 eigenvalues all 1.

 $\hat{\sigma}_z^{[1]} \hat{1}^{[2]} \hat{\sigma}_z^{[3]} \hat{1}^{[4]} \hat{\sigma}_z^{[5]} \hat{1}^{[6]} \hat{\sigma}_z^{[7]} = \mathbf{1}$ $\hat{1}^{[1]} \hat{\sigma}_{z}^{[2]} \hat{\sigma}_{z}^{[3]} \hat{1}^{[4]} \hat{1}^{[5]} \hat{\sigma}_{z}^{[6]} \hat{\sigma}_{z}^{[7]} = \mathbf{1}$ $\hat{1}^{[1]}\hat{1}^{[2]}\hat{1}^{[3]}\hat{\sigma}_{z}^{[4]}\hat{\sigma}_{z}^{[5]}\hat{\sigma}_{z}^{[6]}\hat{\sigma}_{z}^{[7]}$ =1

 $\hat{\sigma}_{x}^{[1]} \hat{1}^{[2]} \hat{\sigma}_{x}^{[3]} \hat{1}^{[4]} \hat{\sigma}_{x}^{[5]} \hat{1}^{[6]} \hat{\sigma}_{x}^{[7]}$ =1 $\hat{1}^{[1]} \hat{\sigma}_x^{[2]} \hat{\sigma}_x^{[3]} \hat{1}^{[4]} \hat{1}^{[5]} \hat{\sigma}_x^{[6]} \hat{\sigma}_x^{[7]} = 1$ $\hat{1}^{[1]}\hat{1}^{[2]}\hat{1}^{[3]}\hat{\sigma}_x^{[4]}\hat{\sigma}_x^{[5]}\hat{\sigma}_x^{[6]}\hat{\sigma}_x^{[7]}$ =1

 $\begin{aligned} |\mathbf{0}\rangle &= |0000000\rangle + |1010101\rangle + |0110011\rangle + |1100110\rangle \\ &+ |0001111\rangle + |1011010\rangle + |0111100\rangle + |1101001\rangle \end{aligned}$

$$\hat{\Sigma}_{z} \equiv \hat{\sigma}_{z}^{[1]} \hat{\sigma}_{z}^{[2]} \hat{\sigma}_{z}^{[3]} \hat{\sigma}_{z}^{[4]} \hat{\sigma}_{z}^{[5]} \hat{\sigma}_{z}^{[6]} \hat{\sigma}_{z}^{[7]} = 1$$

$$|0000000\rangle \quad (\text{All } \sigma_{z}^{[j]} = 1)$$

$$|0000000\rangle + |1010101\rangle$$

$$|0000000\rangle + |1010101\rangle + |0110011\rangle + |1100110\rangle$$

There should be a single eigenstate for which the 7 eigenvalues are all 1.

$$\hat{\sigma}_{z}^{[1]} \hat{1}^{[2]} \hat{\sigma}_{z}^{[3]} \hat{1}^{[4]} \hat{\sigma}_{z}^{[5]} \hat{1}^{[6]} \hat{\sigma}_{z}^{[7]} = 1$$

$$\hat{\sigma}_{z}^{[1]} \hat{1}^{[2]} \hat{\sigma}_{z}^{[3]} \hat{1}^{[4]} \hat{1}^{[5]} \hat{\sigma}_{z}^{[6]} \hat{\sigma}_{z}^{[7]} = 1$$

$$\hat{1}^{[1]} \hat{\sigma}_{z}^{[2]} \hat{\sigma}_{z}^{[3]} \hat{1}^{[4]} \hat{1}^{[5]} \hat{\sigma}_{z}^{[6]} \hat{\sigma}_{z}^{[7]} = 1$$

$$\hat{1}^{[1]} \hat{1}^{[2]} \hat{1}^{[3]} \hat{\sigma}_{z}^{[4]} \hat{\sigma}_{z}^{[5]} \hat{\sigma}_{z}^{[6]} \hat{\sigma}_{z}^{[7]} = 1$$

$$\hat{1}^{[1]} \hat{1}^{[2]} \hat{1}^{[3]} \hat{\sigma}_{x}^{[4]} \hat{\sigma}_{z}^{[5]} \hat{\sigma}_{z}^{[6]} \hat{\sigma}_{z}^{[7]} = 1$$

Codeword states

=1

=1

=1

Codeword states

Find a codeword state that is orthogonal to |0
angle

21

Description of the encoded states

 $\begin{aligned} |\psi_{\text{logical}}\rangle &= \alpha |0\rangle + \beta |1\rangle \longrightarrow |\psi_{\text{physical}}\rangle = \alpha |0\rangle + \beta |1\rangle \\ \text{where} \quad |0\rangle &= |0000000\rangle + |1010101\rangle + |0110011\rangle + |1100110\rangle \\ &+ |0001111\rangle + |1011010\rangle + |0111100\rangle + |1101001\rangle \\ &|1\rangle &= |111111\rangle + |0101010\rangle + |1001100\rangle + |0011001\rangle \\ &+ |1110000\rangle + |0100101\rangle + |1000011\rangle + |0010110\rangle \end{aligned}$

Do we have to use these complicated descriptions of states? Not necessarily, if the state is already assured to be in the code space.

Matrix representation on the basis $\{|\mathbf{0}
angle, |\mathbf{1}
angle\}$

$$\hat{\Sigma}_{z} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\hat{\Sigma}_{z} = \hat{\sigma}_{z}^{[1]} \hat{\sigma}_{z}^{[2]} \hat{\sigma}_{z}^{[3]} \hat{\sigma}_{z}^{[4]} \hat{\sigma}_{z}^{[5]} \hat{\sigma}_{z}^{[6]} \hat{\sigma}_{z}^{[7]}$$

$$\hat{\Sigma}_{x} = \begin{pmatrix} \langle \mathbf{0} | \hat{\Sigma}_{x} | \mathbf{0} \rangle & \langle \mathbf{0} | \hat{\Sigma}_{x} | \mathbf{1} \rangle \\ \langle \mathbf{1} | \hat{\Sigma}_{x} | \mathbf{0} \rangle & \langle \mathbf{1} | \hat{\Sigma}_{x} | \mathbf{1} \rangle \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\hat{\Sigma}_{x} \equiv \hat{\sigma}_{x}^{[1]} \hat{\sigma}_{x}^{[2]} \hat{\sigma}_{x}^{[3]} \hat{\sigma}_{x}^{[4]} \hat{\sigma}_{x}^{[5]} \hat{\sigma}_{x}^{[6]} \hat{\sigma}_{x}^{[7]}$$

$$\hat{\Sigma}_{z} \hat{\Sigma}_{x} = -\hat{\Sigma}_{x} \hat{\Sigma}_{z}$$

$$\hat{\Sigma}_{z}^{2} = \hat{\Sigma}_{z}^{2} = 1$$

$$\hat{\Sigma}_{y} \equiv i \hat{\Sigma}_{x} \hat{\Sigma}_{z} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

$$\hat{\Sigma}_{y} = -\hat{\sigma}_{y}^{[1]} \hat{\sigma}_{y}^{[2]} \hat{\sigma}_{y}^{[3]} \hat{\sigma}_{y}^{[4]} \hat{\sigma}_{y}^{[5]} \hat{\sigma}_{y}^{[6]} \hat{\sigma}_{y}^{[7]}$$

$$\hat{\Sigma}_{z} | \mathbf{0} \rangle = | \mathbf{0} \rangle$$

$$\hat{\Sigma} \equiv (\hat{\Sigma}_{x}, \hat{\Sigma}_{y}, \hat{\Sigma}_{z})$$

$$\hat{\Gamma}_{z} = -i$$

$$\hat{\Gamma}_{z} | \mathbf{1} + \mathbf{P} \cdot \hat{\sigma}) \longrightarrow \hat{\rho}_{physical} = \frac{1}{2} (\hat{1} + \mathbf{P} \cdot \hat{\Sigma})$$

$$22$$

What happens if we are careless?

A single error in this interval is fatal. 23

Fault-tolerant scheme

Tolerance against a single error at any place.

We should not decode. Operate on the encoded data.

A single error should not spread over many physical bits.

Classical repetition cord A solution:

This looks trivial because this is just a simple repetition code.

Can we do the same thing with more complex quantum codes?

YES, at least for a special set of gates.

Clifford group

Pauli group: $V \equiv \{\pm 1, \pm i\} \times \{\hat{1}, \hat{\sigma}_z, \hat{\sigma}_x, \hat{\sigma}_z \hat{\sigma}_x\}$

 $\hat{G}\hat{v}\hat{G}^{\dagger} \in V$ for all $\hat{v} \in V$ (Elements of Clifford group)

Elements of the Pauli group belongs to the Clifford group

Hadamard gate	$\hat{\sigma}_z \mapsto \hat{\sigma}_x$
$H\equiv {1\over \sqrt{2}}\left(egin{array}{cc} 1 & 1\ 1 & -1 \end{array} ight)$	$\begin{cases} \hat{\sigma}_x \mapsto \hat{\sigma}_z \\ \hat{\sigma}_y \mapsto -\hat{\sigma}_y \end{cases}$
Phase gate	<u> </u>
$S \equiv \left(egin{array}{cc} 1 & 0 \\ 0 & i \end{array} ight)$	$\begin{cases} \hat{\sigma}_z \mapsto \hat{\sigma}_z \\ \hat{\sigma}_x \mapsto \hat{\sigma}_y \\ \hat{\sigma}_y \mapsto -\hat{\sigma}_x \end{cases}$
-qubit gates	

Two-qubit gates

 $\hat{G}(\hat{v}\otimes\hat{v}')\hat{G}^{\dagger}\in V\otimes V$ for all $\hat{v},\hat{v}'\in V$

Controlled-NOT gate: $|0\rangle\langle 0|\otimes 1+|1\rangle\langle 1|\otimes \sigma_x$

$$\begin{cases} \hat{\sigma}_x \otimes \hat{1} \mapsto \hat{\sigma}_x \otimes \hat{\sigma}_x \\ \hat{1} \otimes \hat{\sigma}_x \mapsto \hat{1} \otimes \hat{\sigma}_x \\ \hat{\sigma}_z \otimes \hat{1} \mapsto \hat{\sigma}_z \otimes \hat{1} \\ \hat{1} \otimes \hat{\sigma}_z \mapsto \hat{\sigma}_z \otimes \hat{\sigma}_z \end{cases}$$

