6. Quantum error correcting codes

Error correcting codes (A classical repetition code)
Preserving the superposition
Parity check
Phase errors
CSS 7-qubit code (Steane code)
Too many error patterns?
Syndrome measurement digitizes the error
Description of encoded states
Similarity to classical repetition codes

Fighting against noises

Error correcting codes

Correct state

noises

time

Fault-tolerant computation

time

Error correcting codes (Classical)

3-bit repetition code

bit value	codeword
0	000
$1 \longrightarrow$	111

Error model:
Bit error $0 \longleftrightarrow 1$ Error propability: ϵ Independent for each bit

No error	1st bit	2nd bit	3rd bit
000	100	010	001
111	011	101	110

000
111

correctible

No flips	$(1-\epsilon)^{3}$
1 bit	$3 \epsilon(1-\epsilon)^{2}$
2 bits	$3 \epsilon^{2}(1-\epsilon)$
3 bits	ϵ^{3}

Error rate after the correction
$\sim 3 \epsilon^{2}$

Problems:

"Bit error"

$$
|0\rangle \underset{\hat{\sigma}_{x}}{\longleftrightarrow}|1\rangle
$$

> Error in observable $\hat{\sigma}_{z}$
> Error caused by unitary $\hat{\sigma}_{x}$

- If we measure the system for the correction, the superposition may collapse.
- Can we correct the phase error?

Error in observable $\hat{\sigma}_{x}$ Error caused by unitary $\hat{\sigma}_{z}$

- There are infinite number of error patterns. Can we handle all of them?

Does the majority vote work?

-If we measure the system for the correction, the superposition may collapse.

No error	1st bit	2nd bit	3rd bit		
000	100	010	001		
111	011	101	110	\quad	Distinguish
:---					
here					

States such as $|000\rangle+|111\rangle$ and $|000\rangle-|111\rangle$ will collapse. (Classical mixture of state $|000\rangle$ and $|111\rangle$)

Parity check

Parity check matrix

Parity of a subset of bits ${ }^{\text {XOR }}$

$$
\binom{s_{1}}{s_{2}}=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)
$$

Codewords: All the syndrome bits are zero. $\left(s_{1}=s_{2}=0\right)$

(syndrome)

Distinguish the columns
Correction operation
$\begin{aligned} & \text { Measurement of a syndrome bit } \\ & s_{1} \equiv b_{1} \oplus b_{2} \\ & (\mathbb{1}(\mathbb{1}(1)\end{aligned} \hat{\sigma}_{z}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)=|0\rangle\langle 0|-|1\rangle\langle 1|$

$$
\begin{aligned}
& s_{1}=0:|0\rangle_{1}|0\rangle_{2} \quad\left(\hat{\sigma}_{z}^{[1]} \otimes \hat{\sigma}_{z}^{[2]}\right)|0\rangle_{1}|0\rangle_{2}=(1 \times 1)|0\rangle_{1}|0\rangle_{2} \\
& |1\rangle_{1}|1\rangle_{2} \quad\left(\hat{\sigma}_{z}^{[1]} \otimes \hat{\sigma}_{z}^{[2]}\right)|1\rangle_{1}|1\rangle_{2}=(-1 \times-1)|1\rangle_{1}|1\rangle_{2}
\end{aligned}
$$

Eigenspace of $\hat{\sigma}_{z}^{[1]} \hat{\sigma}_{z}^{[2]}$ with eigenvalue 1

$$
\begin{array}{rll}
s_{1}=1: & |0\rangle_{1}|1\rangle_{2} & \left(\hat{\sigma}_{z}^{[1]} \otimes \hat{\sigma}_{z}^{[2]}\right)|0\rangle_{1}|1\rangle_{2}
\end{array}=(1 \times-1)|0\rangle_{1}|1\rangle_{2},
$$

Eigenspace of $\hat{\sigma}_{z}^{[1]} \hat{\sigma}_{z}^{[2]}$ with eigenvalue -1

Measurement of $s_{1} \equiv b_{1} \oplus b_{2}$
$=$ Measurement of observable $\hat{\sigma}_{z}^{[1]} \hat{\sigma}_{z}^{[2]}$
Codeword state: $s_{1}=0$
It should be in the eigenspace of $\hat{\sigma}_{z}^{[1]} \hat{\sigma}_{z}^{[2]}=1$

Measurement of a syndrome bit

We want to learn s_{1}, but not the value of each bit b_{1}, b_{2}

$$
s_{1} \equiv b_{1} \oplus b_{2}
$$

$$
\begin{aligned}
& s_{1}=0:|0\rangle_{1}|0\rangle_{2} \\
&|1\rangle_{1}|1\rangle_{2}
\end{aligned} \quad s_{1}=1:|0\rangle_{1}|1\rangle_{2},|1\rangle_{1}|0\rangle_{2}
$$

$$
\begin{aligned}
p_{j} \hat{\rho}_{\text {out }}^{(j)} & ={ }_{E}\langle j| \widehat{U}\left(\hat{\rho} \otimes|0\rangle_{E E}\langle 0|\right) \widehat{U}^{\dagger}|j\rangle_{E} \\
& =\hat{M}^{(j)} \hat{\rho} \hat{M}^{(j) \dagger} \\
\hat{M}^{(j)} & \equiv{ }_{E}\langle j| \widehat{U}|0\rangle_{E}
\end{aligned} \quad \begin{aligned}
& \hat{M}^{(0)}=|00\rangle\langle 00|+|11\rangle\langle 11| \\
& \hat{M}^{(1)}=|01\rangle\langle 01|+|10\rangle\langle 10|
\end{aligned}
$$

Measurement of a syndrome bit

We want to learn s_{1}, but not the value of each bit b_{1}, b_{2}

$$
\begin{aligned}
& \hat{M}^{(0)}=|00\rangle\langle 00|+|11\rangle\langle 11|={ }_{E}\langle 0| \hat{U}|0\rangle_{E} \\
& \hat{M}^{(1)}=|01\rangle\langle 01|+|10\rangle\langle 10|={ }_{E}\langle 1| \hat{U}|0\rangle_{E} \\
& \qquad \begin{aligned}
\hat{U} & = \\
& |0\rangle_{E E}\langle 0| \otimes(|00\rangle\langle 00|+|11\rangle\langle 11|) \\
& +|1\rangle_{E E}\langle 0| \otimes(|01\rangle\langle 01|+|10\rangle\langle 10|)+(\cdots)_{E}\langle 1|
\end{aligned}
\end{aligned}
$$

Superposition will survive

$|000\rangle+|111\rangle$

Encode the logical quit on the eigenspace of

$$
\begin{aligned}
& \hat{\sigma}_{Z}^{[1]} \hat{\sigma}_{Z}^{[2]}=1 \\
& \hat{\sigma}_{z}^{[2]} \hat{\sigma}_{z}^{[3]}=1
\end{aligned}
$$

diagnose the error pattern without seeing the contents.

$$
\begin{aligned}
& 000 \rightarrow \hat{1}^{[1]} \hat{1}^{[2]} \hat{1}^{[3]} \\
& 100 \\
& 011 \rightarrow \hat{\sigma}_{x}^{[1]} \hat{1}^{[2]} \hat{1}^{[3]} \\
& 010 \\
& 101 \rightarrow \hat{1}^{[1]} \hat{\sigma}_{x}^{[2]} \hat{1}^{[3]} \\
& 001 \rightarrow \hat{1}^{[1]} \hat{1}^{[2]} \hat{\sigma}_{x}^{[3]} \\
& 110
\end{aligned}
$$

Can we correct the phase error?

Problems:

- If we measure the system for the correction, the superposition may collapse.
- Can we correct the phase error? $|0\rangle+|1\rangle \stackrel{\hat{\sigma}_{z}}{|0\rangle-|1\rangle}$
- There are infinite number of error patterns. Can we handle all of them?

		Dimension:
$\|0\rangle \longrightarrow\|000\rangle$	$(\mathbb{1}(\mathbb{1})(\mathbb{1})$	8 in total.
$\|1\rangle \longrightarrow\|111\rangle$	$(\mathbb{D}(\mathbb{D}(\mathbb{D})$	2 for data.
		4 different bit-error patterns.

We need more space to correct other errors.

7-bit code

$$
\begin{aligned}
& \left(\begin{array}{l}
s_{1} \\
s_{2} \\
s_{3}
\end{array}\right)=\left(\begin{array}{lllllll}
1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4} \\
b_{5} \\
b_{6} \\
b_{7}
\end{array}\right) \\
& \begin{array}{l}
\hat{\sigma}_{z}^{[1]} \hat{1}^{[2]} \hat{\sigma}_{z}^{[3]} \hat{1}^{[4]} \hat{\sigma}_{z}^{[5]} \hat{1}^{[6]} \hat{\sigma}_{z}^{[7]} \\
\hat{1}^{[1]} \hat{\sigma}_{z}^{[2]} \hat{\sigma}_{z}^{[3]} \hat{1}^{[4]} \hat{1}^{[5]} \hat{\sigma}_{z}^{[6]} \hat{\sigma}_{z}^{[7]} \\
\hat{1}^{[1]} \hat{1}^{[2]} \hat{1} \hat{1}{ }^{[3]} \hat{\sigma}_{z}^{[4]} \hat{\sigma}_{z}^{[5]} \hat{\sigma}_{z}^{[6]} \hat{\sigma}_{z}^{[7]}
\end{array}
\end{aligned}
$$

Dimension: $\quad 2^{7}=128$ in total.
8 different bit-error patterns.

$$
128 / 8=16=2^{4}
$$

We can encode 4 qubits of data if only the bit errors occur.
If we use only one qubit of data, we can accommodate 8 more errors.

$$
\left.\left(\begin{array}{ll}
s_{4} \\
s_{5} \\
s_{6}
\end{array}\right) \quad \hat{\sigma}_{x}^{[1]} \hat{1}^{[2]} \hat{\sigma}_{x}^{[3]} \hat{1}^{[4]} \hat{\sigma}_{x}^{[5]} \hat{1}^{[6]} \hat{\sigma}_{x}^{[7]}\right) \quad \hat{1}^{[1]} \hat{\sigma}_{x}^{[2]} \hat{\sigma}_{x}^{[3]} \hat{1}^{[4]} \hat{1}^{[5]} \hat{\sigma}_{x}^{[6]} \hat{\sigma}_{x}^{[7]} .
$$

CSS 7-qubit code (Steane code)

$$
\hat{\sigma}_{x} \hat{\sigma}_{z}=(-1) \hat{\sigma}_{z} \hat{\sigma}_{x}
$$

$\hat{\sigma}_{z}^{[1]} \hat{1}^{[2]} \hat{\sigma}_{z}^{[3]} \hat{1}^{[4]} \hat{\sigma}_{z}^{[5]} \hat{1}{ }^{[6]} \hat{\sigma}_{z}^{[7]}=1 \quad$ commute $\quad \hat{\sigma}_{x}^{[1]} \hat{1}^{[2]} \hat{\sigma}_{x}^{[3]} \hat{1}^{[4]} \hat{\sigma}_{x}^{[5]} \hat{1} \hat{y}^{[6]} \hat{\sigma}_{x}^{[7]}=1$
$\hat{1}^{[1]} \hat{\sigma}_{z}^{[2]} \hat{\sigma}_{z}^{[3]} \hat{1}^{[4]} \hat{1}^{[5]} \hat{\sigma}_{z}^{[6]} \hat{\sigma}_{z}^{[7]}=1$
$\hat{1}^{[1]} \hat{1}^{[2]} \hat{1}^{[3]} \hat{\sigma}_{z}^{[4]} \hat{\sigma}_{z}^{[5]} \hat{\sigma}_{z}^{[6]} \hat{\sigma}_{z}^{[7]}=1$
$\hat{1}^{[1]} \hat{\sigma}_{x}^{[2]} \hat{\sigma}_{x}^{[3]} \hat{1}^{[4]} \hat{1}^{[5]} \hat{\sigma}_{x}^{[6]} \hat{\sigma}_{x}^{[7]}=1$
$\hat{1}^{[1]} \hat{1}^{[2]} \hat{\mathrm{1}}^{[3]} \hat{\sigma}_{x}^{[4]} \hat{\sigma}_{x}^{[5]} \hat{\sigma}_{x}^{[6]} \hat{\sigma}_{x}^{[7]}=1$
Dimension: $2^{7}=\begin{gathered}128 \\ \text { in total. } \\ \text {. }\end{gathered}$

6 observables (binary) $2^{6}=64$ patterns

Each eigenspace has dimension 2.

Any single bit error, plus any single phase error can be corrected.

Too many error patterns?

Problems:

- If we measure the system for the correction, the superposition may collapse.
- Can we correct the phase error?
- There are infinite number of error patterns. Can we handle all of them?

General errors on a single qubit

$\hat{U}\left(|a\rangle \otimes|0\rangle_{E}\right)$

Interaction with environment

General errors

$$
\begin{aligned}
& \hat{U}\left(|a\rangle \otimes|0\rangle_{E}\right) \\
& =\sum_{j}|j\rangle_{E E}\langle j| \hat{U}\left(|a\rangle \otimes|0\rangle_{E}\right) \\
& =\sum_{j} \hat{M}^{(j)}\left(|a\rangle \otimes|j\rangle_{E}\right)
\end{aligned}
$$

$$
=|a\rangle \otimes\left|u_{0}\right\rangle_{E}+\hat{\sigma}_{x}|a\rangle \otimes\left|u_{1}\right\rangle_{E}
$$

$$
+\hat{\sigma}_{z}|a\rangle \otimes\left|u_{2}\right\rangle_{E}+\hat{\sigma}_{x} \hat{\sigma}_{z}|a\rangle \otimes\left|u_{3}\right\rangle_{E}
$$

$$
\left|u_{i}\right\rangle_{E} \equiv \sum_{j} c_{i}^{(j)}|j\rangle_{E} \text { :unnormalized, nonorthogonal }
$$

$$
\begin{array}{r}
|a\rangle-\sqrt{\text { none }} \longrightarrow|a\rangle \\
\hat{\sigma}_{x}|a\rangle-\mathrm{x} \longrightarrow|a\rangle \\
\hat{\sigma}_{z}|a\rangle-\mathrm{z} \longrightarrow|a\rangle \\
\hat{\sigma}_{x} \hat{\sigma}_{z}|a\rangle-\mathrm{xz} \longrightarrow|a\rangle
\end{array}
$$

Any scheme that can correct bit and phase errors

Any error should be corrected.

Too many error patterns?

Problems:

- If we measure the system for the correction, the superposition may collapse.
- Can we correct the phase error? σ_{z}
- There are infinite number of error patterns. Can we handle all of them?

Correcting bit and phase errors is enough.
Syndrome measurement projects general errors onto one of these errors.

Syndrome measurement digitizes the error

$\hat{\sigma}_{z}^{[1]} \hat{1}^{[2]} \hat{\sigma}_{z}^{[3]} \hat{1}^{[4]} \hat{\sigma}_{z}^{[5]} \hat{1}^{[6]} \hat{\sigma}_{z}^{[7]}$
$\hat{1}^{[1]} \hat{\sigma}_{z}^{[2]} \hat{\sigma}_{z}^{[3]} \hat{1}^{[4]} \hat{1}^{[5]} \hat{\sigma}_{z}^{[6]} \hat{\sigma}_{z}^{[7]}$
$\hat{1}^{[1]} \hat{1}^{[2]} \hat{1}^{[3]} \hat{\sigma}_{z}^{[4]} \hat{\sigma}_{z}^{[5]} \hat{\sigma}_{z}^{[6]} \hat{\sigma}_{z}^{[7]}$
commute

$\hat{\sigma}_{x}^{[1]} \hat{1}^{[2]} \hat{\sigma}_{x}^{[3]} \hat{1}^{[4]} \hat{\sigma}_{x}^{[5]} \hat{1}{ }^{[6]} \hat{\sigma}_{x}^{[7]}$
$\hat{1}^{[1]} \hat{\sigma}_{x}^{[2]} \hat{\sigma}_{x}^{[3]} \hat{1}^{[4]} \hat{1}^{[5]} \hat{\sigma}_{x}^{[6]} \hat{\sigma}_{x}^{[7]}$
$\hat{1}^{[1]} \hat{1}^{[2]} \hat{1}^{[3]} \hat{\sigma}_{x}^{[4]} \hat{\sigma}_{x}^{[5]} \hat{\sigma}_{x}^{[6]} \hat{\sigma}_{x}^{[7]}$

Any error on a single qubit can be corrected.

CSS QECC

Calderbank \& Shor (1996) Steane (1996)

Quantum error correcting codes

Special state with quantum correlation

Data

Quantum
Do not touch!

Error patterns

Changes are allowed, as long as we can keep track of them.

Measurement is OK.
It makes infinite error patterns shrink to finite ones.

Codeword states

A logical qubit should be encoded onto the 2-dimensional eigenspace with the 6 eigenvalues all 1.

$$
\begin{aligned}
& \hat{\sigma}_{z}^{[1]} \hat{1}^{[2]} \hat{\sigma}_{z}^{[3]} \hat{1}^{[4]} \hat{\sigma}_{z}^{[5]} \hat{1}^{[6]} \hat{\sigma}_{z}^{[7]}=1 \\
& \hat{1}^{[1]} \hat{\sigma}_{z}^{[2]}{ }_{z}^{33]} \hat{1}^{[4]} \hat{1}^{[5]} \hat{\sigma}_{z}^{[6]} \hat{\sigma}_{z}^{[7]}=1 \\
& \hat{1}^{[1]} \hat{1}^{[2]} \hat{1}^{[3]} \hat{\sigma}_{z}^{[4]} \hat{\sigma}_{z}^{[5]} \hat{\sigma}_{z}^{[6]} \hat{\sigma}_{z}^{[7]}=1
\end{aligned} \underbrace{\text { commute }} \begin{aligned}
& \hat{\sigma}_{x}^{[1]} \hat{1}^{[2]} \hat{\sigma}_{x}^{[3]} \hat{1}^{[4]} \hat{\sigma}_{x}^{[5]} \hat{1}^{[6]} \hat{\sigma}_{x}^{[7]}=1 \\
& \hat{1}^{[1]} \hat{\sigma}_{x}^{[2]} \hat{\sigma}_{x}^{[3]} \hat{1}^{[4]} \hat{1}^{[5]} \hat{\sigma}_{x}^{[3]} \hat{\sigma}_{x}^{[7]}=1 \\
& \hat{\sigma}_{x}^{[4]} \hat{\sigma}_{x}^{[5]} \hat{\sigma}_{x}^{[6]} \hat{\sigma}_{x}^{[7]}=1
\end{aligned}
$$

Codeword states

There should be a single eigenstate for which the 7 eigenvalues are all 1.

$$
\begin{aligned}
& \hat{\sigma}_{z}^{[1]} \hat{1}^{[2]} \hat{\sigma}_{z}^{[3]} \hat{1}^{[4]} \hat{\sigma}_{z}^{[5]} \hat{1}^{[6]} \hat{\sigma}_{z}^{[7]}=1 \quad \text { commute } \quad \hat{\sigma}_{x}^{[1]} \hat{1}^{[2]} \hat{\sigma}_{x}^{[3]} \hat{1}^{[4]} \hat{\sigma}_{x}^{[5]} \hat{1}^{[6]} \hat{\sigma}_{x}^{[7]}=1 \\
& \hat{1}^{[1]} \hat{\sigma}_{z}^{[2]} \hat{\sigma}_{z}^{[3]} \hat{1}^{[4]} \hat{1}^{[5]} \hat{\sigma}_{z}^{[6]} \hat{\sigma}_{z}^{[7]}=1 \\
& \hat{1}^{[1]} \hat{1}^{[2]} \hat{1}^{[3]} \hat{\sigma}_{z}^{[4]} \hat{\sigma}_{z}^{[5]} \hat{\sigma}_{z}^{[6]} \hat{\sigma}_{z}^{[7]}=1 \\
& \text { Tindependent } \\
& \hat{\Sigma}_{z} \equiv \hat{\sigma}_{z}^{[1]} \hat{\sigma}_{z}^{[2]} \hat{\sigma}_{z}^{[3]} \hat{\sigma}_{z}^{[4]} \hat{\sigma}_{z}^{[5]} \hat{\sigma}_{z}^{[6]} \hat{\sigma}_{z}^{[7]}=1 \\
& |0000000\rangle \quad\left(\text { All } \sigma_{z}^{[j]}=1\right) \\
& |0000000\rangle+|1010101\rangle \\
& \text { When } \hat{A}^{2}=\hat{1} \\
& \hat{A}(|u\rangle+\hat{A}|u\rangle)=\hat{A}|u\rangle+\hat{A}^{2}|u\rangle \\
& =|u\rangle+\hat{A}|u\rangle \\
& |0000000\rangle+|1010101\rangle+|0110011\rangle+|1100110\rangle \\
& |\mathbf{0}\rangle=|0000000\rangle+|1010101\rangle+|0110011\rangle+|1100110\rangle \\
& +|0001111\rangle+|1011010\rangle+|0111100\rangle+|1101001\rangle
\end{aligned}
$$

Codeword states

Find a codeword state that is orthogonal to $|\mathbf{0}\rangle$

$$
\begin{aligned}
& \hat{\sigma}_{z}^{[1]} \hat{1}^{[2]} \hat{\sigma}_{z}^{[3]} \hat{1}^{[4]} \hat{\sigma}_{z}^{[5]} \hat{1}^{[6]} \hat{\sigma}_{z}^{[7]}=1 \quad \text { commute } \quad \hat{\sigma}_{x}^{[1]} \hat{1}^{[2]} \hat{\sigma}_{x}^{[3]} \hat{1}^{[4]} \hat{\sigma}_{x}^{[5]}{ }^{[6]} \hat{\sigma}_{x}^{[7]}=1 \\
& \hat{1}^{[1]} \hat{\sigma}_{z}^{[2]} \hat{\sigma}_{z}^{[3]} \hat{1}^{[4]} \hat{1}^{[5]} \hat{\sigma}_{z}^{[6]} \hat{\sigma}_{z}^{[7]}=1 \\
& \hat{1}^{[1]} \hat{1}^{[2]} \hat{1}^{[3]} \hat{\sigma}_{z}^{[4]} \hat{\sigma}_{z}^{[5]} \hat{\sigma}_{z}^{[6]} \hat{\sigma}_{z}^{[7]}=1 \\
& \hat{1}^{[1]} \hat{\sigma}_{x}^{[2]} \hat{\sigma}_{x}^{[3]} \hat{1}^{[4]} \hat{1}^{[5]} \hat{\sigma}_{x}^{[6]} \hat{\sigma}_{x}^{[7]}=1 \\
& \hat{1}^{[1]} \hat{1}^{[2]}{ }_{1}{ }^{[3]} \hat{\sigma}_{x}^{[4]} \hat{\sigma}_{x}^{[5]} \hat{\sigma}_{x}^{[6]} \hat{\sigma}_{x}^{[7]}=1 \\
& \hat{\Sigma}_{z} \equiv \hat{\sigma}_{z}^{[1]} \hat{\sigma}_{z}^{[2]} \hat{\sigma}_{z}^{[3]} \hat{\sigma}_{z}^{[4]} \hat{\sigma}_{z}^{[5]} \hat{\sigma}_{z}^{[6]} \hat{\sigma}_{z}^{[7]}=-1 \longleftrightarrow \hat{\Sigma}_{x} \equiv \hat{\sigma}_{x}^{[1]} \hat{\sigma}_{x}^{[2]} \hat{\sigma}_{x}^{[3]} \hat{\sigma}_{x}^{[4]} \hat{\sigma}_{x}^{[5]} \hat{\sigma}_{x}^{[6]} \hat{\sigma}_{x}^{[7]} \\
& \text { Anti-commute } \\
& \hat{\Sigma}_{z} \hat{\Sigma}_{x}=-\hat{\Sigma}_{x} \hat{\Sigma}_{z} \\
& \hat{\Sigma}_{z} \hat{\Sigma}_{x}|\mathbf{0}\rangle=-\hat{\Sigma}_{x} \hat{\Sigma}_{z}|\mathbf{0}\rangle=-\hat{\Sigma}_{x}|\mathbf{0}\rangle \\
& |\mathbf{1}\rangle \equiv \hat{\Sigma}_{x}|\mathbf{0}\rangle=|1111111\rangle+|0101010\rangle+|1001100\rangle+|0011001\rangle \\
& +|1110000\rangle+|0100101\rangle+|1000011\rangle+|0010110\rangle
\end{aligned}
$$

Description of the encoded states

$$
\begin{array}{r}
\left|\psi_{\text {logical }}\right\rangle=\alpha|0\rangle+\beta|1\rangle \longrightarrow\left|\psi_{\text {physical }}\right\rangle=\alpha|\mathbf{0}\rangle+\beta|\mathbf{1}\rangle \\
\text { where }|\mathbf{0}\rangle=|0000000\rangle+|1010101\rangle+|0110011\rangle+|1100110\rangle \\
\quad+|0001111\rangle+|1011010\rangle+|0111100\rangle+|1101001\rangle \\
|\mathbf{1}\rangle=|1111111\rangle+|0101010\rangle+|1001100\rangle+|0011001\rangle \\
\quad+|1110000\rangle+|0100101\rangle+|1000011\rangle+|0010110\rangle
\end{array}
$$

Do we have to use these complicated descriptions of states?
Not necessarily, if the state is already assured to be in the code space.
Matrix representation on the basis $\{|\mathbf{0}\rangle,|\mathbf{1}\rangle\}$

$$
\begin{aligned}
& \hat{\Sigma}_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
& \hat{\Sigma}_{x}=\left(\begin{array}{ll}
\langle\mathbf{0}| \hat{\Sigma}_{x}|\mathbf{0}\rangle & \langle\mathbf{0}| \hat{\Sigma}_{x}|\mathbf{1}\rangle \\
\langle\mathbf{1}| \hat{\Sigma}_{x}|\mathbf{0}\rangle & \langle\mathbf{1}| \hat{\Sigma}_{x}|\mathbf{1}\rangle
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
& \hat{\Sigma}_{y} \equiv i \hat{\Sigma}_{x} \hat{\Sigma}_{z}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \\
& \hat{\boldsymbol{\Sigma}} \equiv\left(\hat{\Sigma}_{x}, \hat{\Sigma}_{y}, \hat{\Sigma}_{z}\right) \\
& \hat{\rho}_{\text {logical }}=\frac{1}{2}(\hat{1}+\boldsymbol{P} \cdot \hat{\boldsymbol{\sigma}}) \longrightarrow \hat{\rho}_{\text {physical }}=\frac{1}{2}(\hat{1}+\boldsymbol{P} \cdot \hat{\boldsymbol{\Sigma}}) \\
& \hat{\Sigma}_{z} \equiv \hat{\sigma}_{z}^{[1]} \hat{\sigma}_{z}^{[2]} \hat{\sigma}_{z}^{[3]} \hat{\sigma}_{z}^{[4]} \hat{\sigma}_{z}^{[5]} \hat{\sigma}_{z}^{[6]} \hat{\sigma}_{z}^{[7]} \\
& \hat{\Sigma}_{x} \equiv \hat{\sigma}_{x}^{[1]} \hat{\sigma}_{x}^{[2]} \hat{\sigma}_{x}^{[3]} \hat{\sigma}_{x}^{[4]} \hat{\sigma}_{x}^{[5]} \hat{\sigma}_{x}^{[6]} \hat{\sigma}_{x}^{[7]} \\
& \hat{\Sigma}_{z} \hat{\Sigma}_{x}=-\hat{\Sigma}_{x} \hat{\Sigma}_{z} \\
& \hat{\Sigma}_{z}^{2}=\hat{\Sigma}_{x}^{2}=1 \\
& \hat{\Sigma}_{z}|\mathbf{0}\rangle=|\mathbf{0}\rangle \\
& |\mathbf{1}\rangle \equiv \hat{\Sigma}_{x}|\mathbf{0}\rangle \\
& \hat{\Sigma}_{z}|\mathbf{1}\rangle=-|\mathbf{1}\rangle
\end{aligned}
$$

What happens if we are careless?

Classical repetition cord

We want to apply a two-bit gate

A single error in this interval is fatal.

Fault-tolerant scheme

Tolerance against a single error at any place.
We should not decode. Operate on the encoded data.
A single error should not spread over many physical bits.
Classical repetition cord
A solution:

This looks trivial because this is just a simple repetition code.

Can we do the same thing with more complex quantum codes?

Similarity to the classical repetition codes

$$
\begin{aligned}
& \hat{\Sigma}_{z} \equiv \hat{\sigma}_{z}^{[1]} \hat{\sigma}_{z}^{[2]} \hat{\sigma}_{z}^{[3]} \hat{\sigma}_{z}^{[4]} \hat{\sigma}_{z}^{[5]} \hat{\sigma}_{z}^{[6]} \hat{\sigma}_{z}^{[7]} \\
& \hat{\Sigma}_{x} \equiv \hat{\sigma}_{x}^{[1]} \hat{\sigma}_{x}^{[2]} \hat{\sigma}_{x}^{[3]} \hat{\sigma}_{x}^{[4]} \hat{\sigma}_{x}^{[5]} \hat{\sigma}_{x}^{[6]} \hat{\sigma}_{x}^{[7]} \\
& \hat{\Sigma}_{y}=-\hat{\sigma}_{y}^{[1]} \hat{\sigma}_{y}^{[2]} \hat{\sigma}_{y}^{[3]} \hat{\sigma}_{y}^{[4]} \hat{\sigma}_{y}^{[5]} \hat{\sigma}_{y}^{[6]} \hat{\sigma}_{y}^{[7]}
\end{aligned}
$$

1-qubit gate \hat{G}

$$
\hat{\rho}-\hat{G}-g(\hat{\rho})=\hat{G} \hat{\rho} \hat{G}^{\dagger}
$$

$$
\begin{gathered}
\langle j| \hat{G}^{*}\left|j^{\prime}\right\rangle=\overline{\langle j| \hat{G}\left|j^{\prime}\right\rangle} \text { on the basis } \\
\{0\rangle,|1\rangle\} \\
\hat{\sigma}_{z}^{*}=\hat{\sigma}_{z}, \hat{\sigma}_{x}^{*}=\hat{\sigma}_{x}, \hat{\sigma}_{y}^{*}=-\hat{\sigma}_{y} \\
g^{*}(\hat{\rho}) \equiv \hat{G}^{*} \hat{\rho} \hat{G}^{* \top}=\left(\hat{G} \hat{\rho}^{\dagger} \hat{G}^{\dagger}\right)^{*}=g\left(\hat{\rho}^{*}\right)^{*} \\
\left(c \hat{\sigma}_{\mu}\right)^{\otimes 7}=\left(c \hat{\Sigma}_{\mu}\right)^{*} c= \pm 1, \pm i
\end{gathered}
$$

Pauli group: $V \equiv\{ \pm 1, \pm i\} \times\left\{\hat{1}, \hat{\sigma}_{z}, \hat{\sigma}_{x}, \hat{\sigma}_{z} \hat{\sigma}_{x}\right\}$

Suppose that $\quad \hat{G} \hat{v} \hat{G}^{\dagger} \in V \quad$ for all $\hat{v} \in V$
(Pauli operators are mapped to Pauli operators)

$$
\begin{aligned}
\hat{\Sigma}_{z} \mapsto & g\left(\hat{\sigma}_{z}^{[1]}\right) g\left(\hat{\sigma}_{z}^{[2]}\right) g\left(\hat{\sigma}_{z}^{[3]}\right) g\left(\hat{\sigma}_{z}^{[4]}\right) g\left(\hat{\sigma}_{z}^{[5]}\right) g\left(\hat{\sigma}_{z}^{[6]}\right) g\left(\hat{\sigma}_{z}^{[7]}\right) \\
& =g\left(\hat{\Sigma}_{z}\right)^{*}=g\left(\hat{\Sigma}_{z}^{*}\right)^{*}=g^{*}\left(\hat{\Sigma}_{z}\right)
\end{aligned}
$$

Similarly, $\hat{\Sigma}_{x} \mapsto g^{*}\left(\hat{\Sigma}_{x}\right)$

$$
\begin{aligned}
\hat{\Sigma}_{y} \mapsto & -g\left(\hat{\sigma}_{y}^{[1]}\right) g\left(\hat{\sigma}_{y}^{[2]}\right) g\left(\hat{\sigma}_{y}^{[3]}\right) g\left(\hat{\sigma}_{y}^{[4]}\right) g\left(\hat{\sigma}_{y}^{[5]}\right) g\left(\hat{\sigma}_{y}^{[6]}\right) g\left(\hat{\sigma}_{y}^{[7]}\right) \\
& =-g\left(\hat{\Sigma}_{y}\right)^{*}=g\left(\hat{\Sigma}_{y}^{*}\right)^{*}=g^{*}\left(\hat{\Sigma}_{y}\right)
\end{aligned}
$$

$\hat{G^{*}} \quad \quad \hat{\rho}_{\text {physical }}=\frac{1}{2}(\hat{1}+\boldsymbol{P} \cdot \hat{\boldsymbol{\Sigma}}) \mapsto g^{*}\left(\hat{\rho}_{\text {physical }}\right)$

Clifford group

Pauli group: $V \equiv\{ \pm 1, \pm i\} \times\left\{\hat{1}, \hat{\sigma}_{z}, \hat{\sigma}_{x}, \hat{\sigma}_{z} \hat{\sigma}_{x}\right\}$

$$
\hat{G} \hat{v} \hat{G}^{\dagger} \in V \quad \text { for all } \hat{v} \in V \quad \text { (Elements of Clifford group) }
$$

Elements of the Pauli group belongs to the Clifford group

$$
\begin{aligned}
& \text { Hadamard gate } \\
& \qquad H \equiv \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \quad\left\{\begin{array}{l}
\hat{\sigma}_{z} \mapsto \hat{\sigma}_{x} \\
\hat{\sigma}_{x} \mapsto \hat{\sigma}_{z} \\
\hat{\sigma}_{y} \mapsto-\hat{\sigma}_{y}
\end{array}\right.
\end{aligned}
$$

Phase gate

Two-qubit gates

$$
\begin{aligned}
& \text { gate } \\
& S \equiv\left(\begin{array}{cc}
1 & 0 \\
0 & i
\end{array}\right) \quad\left\{\begin{array}{l}
\hat{\sigma}_{z} \mapsto \hat{\sigma}_{z} \\
\hat{\sigma}_{x} \mapsto \hat{\sigma}_{y} \\
\hat{\sigma}_{y} \mapsto-\hat{\sigma}_{x}
\end{array}\right.
\end{aligned}
$$

$$
\hat{G}\left(\hat{v} \otimes \hat{v}^{\prime}\right) \hat{G}^{\dagger} \in V \otimes V \quad \text { for all } \hat{v}, \hat{v}^{\prime} \in V
$$

Controlled-NOT gate: $|0\rangle\langle 0| \otimes 1+|1\rangle\langle 1| \otimes \sigma_{x}$

$$
\left\{\begin{aligned}
\hat{\sigma}_{x} \otimes \hat{1} & \mapsto \hat{\sigma}_{x} \otimes \hat{\sigma}_{x} \\
\hat{1} \otimes \hat{\sigma}_{x} & \mapsto \hat{1} \otimes \hat{\sigma}_{x} \\
\hat{\sigma}_{z} \otimes \hat{1} & \mapsto \hat{\sigma}_{z} \otimes \hat{1} \\
\hat{1} \otimes \hat{\sigma}_{z} & \mapsto \hat{\sigma}_{z} \otimes \hat{\sigma}_{z}
\end{aligned}\right.
$$

