
4-2. Distinguishability 

Trace norm and polar decomposition 

Trace distance 

Minimum-error discrimination 

Fidelity 

Fidelity and distinguishability 

Relation between fidelity and trace distance 

No-cloning theorem 



Distinguishability 

A quantity describing how we can distinguish 

between the  two states in principle. 

Measure of distinguishability between two states 

Quantum channel (CPTP map) 

The distinguishability should never be 

improved by a quantum operation. 

Monotonicity under quantum operations 

Examples 



Distinguishability 

A quantity describing how we can distinguish 

between the  two states in principle. 

Measure of distinguishability between two states 

Quantum channel (CPTP map) 

The distinguishability should never be 

improved by a quantum operation. 

•Attach an ancilla 

•Apply a unitary 

•Discard the ancilla 

Monotonicity under quantum operations 



Trace norm 

Polar decomposition 

number 

linear operator 

unitary positive 

for any 

proof: 

proof: 



Trace distance 

Zero when 

Unity when 

(the same state) 

(perfectly distinguishable) 

Monotonicity 

•Discard the ancilla 

•Attach an ancilla 

•Apply a unitary 

A R 

: trace norm 



Measurements and quantum operations 

Measurement 

Quantum operation 

A 

A B 

Equivalent (in terms of feasibility) 

probability 

outcome 

“quantum state” 

We may apply rules and bounds for quantum operations to measurements 

Any measurement has a description in terms of a quantum operation. 



Monotonicity of trace distance and measurements 

Measurement 

Quantum operation 

A 

A B 

Equivalent (in terms of feasibility) 

probability 

outcome 

“quantum state” 

(total variation distance) 

Total variation distance between the probabilities  of the outcomes  

never exceeds the trace distance. 

The equality is always achieved by the orthogonal measurement 

on a basis diagonalizing            . 



Minimum-error discrimination 

? measurement 

(maybe) it was 

(maybe) it was 

50% 50% 

(outcome j=0) 

(outcome j=1) 

probability of error: 

total variation distance: 

The minimum error probability: 

An operational meaning of the trace distance 



Discrimination between two pure states 

? 

or 
50% 

measurement 

(maybe) 0 

(maybe) 1 

qubit 

50% 

The inner product determines the 

distinguishability of  two pure states. 



Fidelity R 

(purifications) 

Operational meaning of the fidelity 

 (to a pure state) 

YES 

NO 

proof: 



Fidelity R 

Any purification can be written as 



Monotonicity of fidelity 

is a measure of distinguishability. (not a distance) 

•Discard the ancilla 

•Attach an ancilla 

•Apply a unitary 

R 

Monotonicity 

Choose purifications achieving the maximum 

They are also purifications of   



Operational meaning of the fidelity? 

Measurement 
A 

probability 

outcome 

13 

Diagonalize the positive operator 

No clear operational meaning ... 

The equality is always achieved by the orthogonal measurement 

on a basis “diagonalizing                  .” 

Proof: 



Fidelity 

Multiplicativity 

Proof: 

This property  is not shared by the trace distance. 

Applications 

Basic principle for a quantum cryptography 

scheme called B92 protocol. 

No-cloning theorem 



Fidelity and trace distance 

1 

1 

0 

T
ra

c
e
 d

is
ta

n
c
e

 

There exists a measurement  that preserves the fidelity: 
Proof: 



Fidelity and trace distance 
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There exists  a pair of purifications satisfying 

Consider the quantum operation of discarding  

the subsystem used for purifying. 

Proof: 



5. Communication resources 

Classical channel 

Quantum channel 

Entanglement 
How does the state evolve under LOCC?  

Resource conversion protocols and bounds 

Properties of maximally entangled states 

Bell basis 
Quantum dense coding 

Entanglement swapping 

Quantum teleportation 



Classical channel 

0 

1 

0 

1 

0 

1 

0 

1 

a 

b 

c 

a 

b 

c 

Parallel use of channels 

0a 

0b 

0c 

1a 

1b 

1c 

0a 

0b 

0c 

1a 

1b 

1c 

d-symbol ideal classical channel 

d’-symbol ideal classical channel 
(dd’)-symbol ideal classical channel 

d-symbol ideal classical channel (log d) bits  

Additive for ideal channels 

Ideal classical channel: faithful transfer of any 

signal chosen from d symbols  

Measure of usefulness 



Quantum channel 

d-level ideal quantum channel (log d) qubits  

Additive for ideal channels 

Ideal quantum channel: faithful transfer of any 

state of an d-level system  

(Hilbert space of dimension d) 

d levels 

d’ levels 
(dd’)-level system 

Parallel use of channels 

Measure of usefulness 



Can classical channels substitute a quantum channel?  

NO (with no other resources) 

Classical info 

can be copied 
The same procedure should 

result in the same state. 

Any size of classical channel  

Suppose that it was possible … 

This amounts to the cloning of unknown quantum states, 

which is forbidden. 



Can a quantum channel substitute a classical channel?  

But not so bizarre (with no other resources). 

Of course yes. 

n-qubit ideal quantum channel can only substitute a n-bit classical channel.  

(Holevo bound) 

Suppose that transfer of an d-level system can convey any 

signal from s symbols faithfully.  

Measurement 

Always  

Recall that any measurement 

must be described by a POVM. 



Difference between quantum and classical channels 

We have seen that a quantum channel is 

more powerful than a classical channel. 

Can we pin down what is missing in a classical channel?  

+ 
Other resource 

I’ve already bought a classical channel, but 

now I want to use a quantum channel. Do I 

have to buy the quantum channel? 

Oh, you can buy this optional package for a 

cheaper price, and upgrade the classical 

channel to a quantum channel! 
Entanglement 



Operational definition of entanglement 

“Correlations that cannot be created over classical channels” 

LOCC: Local operations and classical communication 

Operations (including measurements) on a local subsystem are allowed. 

Communication between Alice and Bob only uses classical channels. 

Alice has a subsystem A, and Bob has a subsystem B. 

Separable states: The states that can be created under LOCC from scratch. 

Entangled states: The states that cannot be created under LOCC from scratch. 

A B 

Classical channels 



Entangled states and separable states 

Separable states Entangled  states 

Are there any procedure to distinguish between the two classes? 

Schmidt decomposition 

Separable states 

Entangled  states 

Schmidt number  

Number of nonzero coefficients in 

Schmidt decomposition 

         The eigenvalues of the marginal 

density operators (the same for A and B) 

= The rank of the marginal density operators 

Schmidt number = 1 

Schmidt number > 1 

 ‘Symmetry’ between A and B 

The same set of eigenvalues 



Any LOCC procedure can be made a sequential one: Alice appies local operations 

Alice communicates to Bob 

Bob applies local operations 

Bob communicates to Alice 

Alice  ….. 

How does the state evolve under LOCC?  

When Alice operates 

Probability  

Schmidt number never increases under LOCC (even probabilistically) 

Any such functional of the marginal density operator 

(e.g., von Neumann entropy) is monotone decreasing 

under LOCC on average. 

Schmidt number >1  Impossible to create 

under LOCC 

If a concave functional S only depends on the eigenvalues,  

outcome 



Maximally entangled states (MES)  “ideal” entangled states 

An MES with Schmidt number  

Schmidt number d 

Schmidt number d’ 

MES 

Putting two MESs together 

MES 

MES with  

Schmidt number dd’ 

Measure of entanglement 

MES with Schmidt number d (log d) ebits 

Additive for MESs 1ebit 



Ebits and bits are mutually exclusive 

Classical channels cannot increase (ideal) entanglement. 

Schmidt number never increases under LOCC. 

d-symbol ideal classical channel   

The outcome can be correctly predicted with probability at least 1/d. 

Success probability 1 

Success probability 1/d 

Entanglement cannot assist (ideal) classical channels 

(log d) bits 

Transfer of s symbols 

Transfer of s symbols 

bits  

ebits  



Ebits and bits are mutually exclusive 

Classical channels cannot increase (ideal) entanglement. 

Schmidt number never increases under LOCC. 

d-symbol ideal classical channel   

The outcome can be correctly predicted with probability at least 1/d. 

Success probability 1 

Success probability 1/2 

Entanglement cannot assist (ideal) classical channels 

1 bit 

Transfer of 3 symbols 

Transfer of 3 symbols 

0 or 1 

♥ ♦ ♠ 

♥ ♦ ♠ 

Which is on my mind? 
That must be ♥!! 

That must be ♥!! Which is on my mind? 



Resource conversion protocols 

bits 

qubits 

ebits 

Conversion to ebits 

Entanglement sharing 

1 qubit 1 ebit 

Conversion to bits 

Quantum dense coding 

1 qubit + 1 ebit 2 bits 

Conversion to qubits 

Quantum teleportation 

2 bits + 1 ebit 1 qubit 

Quantum  

Classical 
Static 

Non-directional 

Dynamic 

Directional 

bits alone no ebits 

ebits alone  no bits 

Restrictions 

1 qubit alone no more than 1 bit 



Properties of maximally entangled states 

(II) Pair of local states (relative states) 

(III) Pair of local operations  

(IV) Orthonormal basis (Bell basis)  

(I) Convertibility via local unitary 

measurement 

There exists an orthonormal basis composed of MESs. 



Bell basis for a pair of qubits 



Basis 

Eigenvalues:  

Bell basis 

Bell basis:  

(Unitary) 

All states are orthogonal. 



Quantum dense coding 
1 qubit + 1 ebit 2 bits 

Orthonormal basis (Bell basis)  

Convertibility via local unitary 

n qubits + n ebits 2n bits 

MES 

Measurement 

 on the Bell basis 

(Bell measurement) 



Creating entanglement by nonlocal measurement  

A B 

A’ C 

measurement 

(More precisely, obtaining an 

outcome corresponding to a 

POVM element                 ) 

Relative state of  

The same entanglement 

A B 

A’ C 

Initially no  

entanglement 

When                is an entangled state, 

entangled 

Such a measurement cannot be implemented over LOCC. 

(e.g., Bell measurement) 

:the same set of eigenvalues  



Entanglement swapping 

A B 

A’ C 

Bell 

measurement 

A B 

A’ C 

A maximally entangled state 

Bell 

measurement 

It should be written as 

? 



Entanglement swapping 

Bell measurement 

A B 

A’ 

C 

Classical channel (2log d  bits) 

B 

C 

Final state 

  

It is possible to creating entanglement over two subsystems  

without letting them directly interacted to each other.  



Bell 

measurement 

A B 

A’ 

C 

Classical channel (2log d  bits) 

B 

C 

Measurement Measurement 

Entanglement swapping 



Quantum teleportation 

Bell 

measurement 

A B 

A’ 

Classical channel (2log d  bits) 

B 

1 ebit + 2 bit 1 qubit 

n ebits + 2n bits n qubits 



Quantum teleportation 

If the cost of classical communication is neglected … 

One can reserve the quantum channel by storing a quantum state.  

One can use a quantum channel in the opposite direction. 

A convenient way of quantum error correction (failure       retry). 

Noisy quantum channel 

Recovering 

Failure      no recovery. 

Noisy quantum channel 

Noisy entanglement 

Recovering 



Resource conversion protocols 

bits 

qubits 

ebits 

Conversion to ebits 

Entanglement sharing 

1 qubit 1 ebit 

Conversion to bits 

Quantum dense coding 

1 qubit + 1 ebit 2 bits 

Conversion to qubits 

Quantum teleportation 

2 bits + 1 ebit 1 qubit 

Quantum  

Classical 
Static 

Non-directional 

Dynamic 

Directional 

bits alone no ebits 

ebits alone  no bits 

Restrictions 

1 qubit alone no more than 1 bit 



Resource conversion protocols and bounds 

Conversion to ebits 

Entanglement sharing 

1 qubit 1 ebit 

Conversion to bits 

Quantum dense coding 

1 qubit + 1 ebit 2 bits 

Conversion to qubits 

Quantum teleportation 

2 bits + 1 ebit 1 qubit 

We can do the following… 

0 

1 

1 

2 

Teleportation 

Entanglement sharing 

Dense coding 



Resource conversion protocols and bounds 

We can do the following… 

0 

1 

1 

2 

Teleportation 

Entanglement sharing 

Dense coding 
bits alone no ebits 

ebits alone  no bits 

Restrictions 

1 qubit alone no more than 1 bit 

•The red region should be unreachable. 

The region above the blue plane 

should be unreachable. 

•From a point above the blue plane, 

the red region is accessible through 

‘Teleportation’ and ‘Dense coding.’ 

 



Resource conversion protocols and bounds 

We can do the following… 

0 

1 

1 

2 

Teleportation 

Entanglement sharing 

Dense coding 
bits alone no ebits 

ebits alone  no bits 

Restrictions 

1 qubit alone no more than 1 bit 

•The red region should be unreachable. 

The region above the blue plane 

should be unreachable. 

•From a point above the blue plane, 

the red region is accessible through 

‘Dense coding’ and ‘Entanglement 

sharing.’ 

 



Resource conversion protocols and bounds 

Conversion to ebits 

Entanglement sharing (ES) 

1 qubit 1 ebit 

Conversion to bits 

Quantum dense coding (QD) 

1 qubit + 1 ebit 2 bits 

Conversion to qubits 

Quantum teleportation (QT) 

2 bits + 1 ebit 1 qubit 

1-qubit channel alone can  convey no 

more than 1 classical bit   

      + ES,QD 

Classical channels alone cannot 

increase entanglement 

+ QT,ES 

We can do the following… We cannot violate the following … 

Entanglement alone never assists 

classical channels  

+ QD,QT 



Teleportation 

Dense coding 

Entanglement sharing 

0 

1 

1 

2 

Resource conversion protocols and bounds 



Resource conversion protocols 

bits 

qubits 

ebits 

Conversion to ebits 

Entanglement sharing 

1 qubit 1 ebit 

Conversion to bits 

Quantum dense coding 

1 qubit + 1 ebit 2 bits 

Conversion to qubits 

Quantum teleportation 

2 bits + 1 ebit 1 qubit 

Quantum  

Classical 
Static 

Non-directional 

Dynamic 

Directional 

bits alone no ebits 

ebits alone  no bits 

Restrictions 

1 qubit alone no more than 1 bit 


