## 3. Qubits

Pauli operators (Pauli matrices)

# Bloch representation (Bloch sphere) 

Orthogonal measurement

Unitary operation

## Qubit

$\operatorname{dim} \mathcal{H}=2$
Take a standard basis $\{|0\rangle,|1\rangle\}$
Linear operator $\widehat{A}$
Matrix representation (for $\{|0\rangle,|1\rangle\}$ )

$$
\hat{A}=\left(\begin{array}{ll}
A_{00} & A_{01} \\
A_{10} & A_{11}
\end{array}\right) \quad \begin{aligned}
& A_{i j}=\langle i| \widehat{A}|j\rangle \\
& \widehat{A}=\sum_{i j} A_{i j}|i\rangle\langle j|
\end{aligned}
$$

4 complex parameters

$$
\widehat{A}=\alpha_{0} \hat{\sigma}_{0}+\alpha_{1} \hat{\sigma}_{1}+\alpha_{2} \hat{\sigma}_{2}+\alpha_{3} \hat{\sigma}_{3}
$$

## Pauli operators (Pauli matrices)

Take a standard basis $\{|0\rangle,|1\rangle\}$

$$
\begin{array}{r}
\hat{1} \equiv\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right), \quad \hat{\sigma}_{x}=\hat{\sigma}_{1} \equiv\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \\
\hat{\sigma}_{y}=\widehat{\sigma}_{2} \equiv\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \hat{\sigma}_{z}=\widehat{\sigma}_{3} \equiv\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
\end{array}
$$

Unitary and self-adjoint

$$
\begin{aligned}
& {\left[\hat{\sigma}_{i}, \widehat{\sigma}_{j}\right]=2 i \epsilon_{i j k} \widehat{\sigma}_{k} \ldots \ldots \text { Levi-Civita symbol }} \\
& \hat{\sigma}_{i} \hat{\sigma}_{j}+\hat{\sigma}_{j} \hat{\sigma}_{i}=2 \delta_{i, j} \hat{1} \\
& \operatorname{Tr}\left(\hat{\sigma}_{i}\right)=0, \operatorname{Tr}\left(\widehat{\sigma}_{i} \widehat{\sigma}_{j}\right)=2 \delta_{i, j} . \\
& i, j=1,2,3 \\
& \left\{\begin{array}{l}
\epsilon_{123}=\epsilon_{231}=\epsilon_{312}=1 \\
\epsilon_{321}=\epsilon_{213}=\epsilon_{132}=-1 \\
\text { Otherwise } \epsilon_{i j k}=0
\end{array}\right. \\
& \text { Einstein notation } \\
& \sum_{k} \text { is omitted. } \\
& {\left[\widehat{\sigma}_{x}, \widehat{\sigma}_{y}\right]=2 i \widehat{\sigma}_{z}} \\
& \widehat{\sigma}_{x}^{2}=\widehat{1} \\
& \left\{\hat{\sigma}_{x}, \widehat{\sigma}_{z}\right\} \equiv \hat{\sigma}_{x} \widehat{\sigma}_{z}+\hat{\sigma}_{z} \widehat{\sigma}_{x}=0 \\
& \operatorname{Tr}\left(\widehat{\sigma}_{\mu} \widehat{\sigma}_{\nu}\right)=2 \delta_{\mu, \nu} \quad \text { 'Orthogonality' with respect to } \\
& \left(\mu, \nu=0,1,2,3 ; \sigma_{0} \equiv \widehat{1}\right) \quad(\widehat{A}, \widehat{B}) \equiv \operatorname{Tr}\left(\widehat{A}^{\dagger} \widehat{B}\right)
\end{aligned}
$$

## Pauli operators (Pauli matrices)

$$
\begin{array}{r}
{\left[\hat{\sigma}_{i}, \widehat{\sigma}_{j}\right]=2 i \epsilon_{i j k} \widehat{\sigma}_{k}} \\
\widehat{\sigma}_{i} \widehat{\sigma}_{j}+\widehat{\sigma}_{j} \widehat{\sigma}_{i}=2 \delta_{i, j} \widehat{1} \\
\operatorname{Tr}\left(\hat{\sigma}_{i}\right)=0, \operatorname{Tr}\left(\hat{\sigma}_{i} \widehat{\sigma}_{j}\right)=2 \delta_{i, j} .
\end{array}
$$

Linear operator $\hat{A} \quad 4$ complex parameters $\left(P_{0}, P_{x}, P_{y}, P_{z}\right)$

$$
\begin{aligned}
& \widehat{A}=\frac{1}{2}\left(P_{0} \widehat{1}+\boldsymbol{P} \cdot \hat{\boldsymbol{\sigma}}\right)=\frac{1}{2}\left(\begin{array}{cc}
P_{0}+P_{z} & P_{x}-i P_{y} \\
P_{x}+i P_{y} & P_{0}-P_{z}
\end{array}\right) \\
& \boldsymbol{P}=\left(P_{x}, P_{y}, P_{z}\right) \\
& \hat{\boldsymbol{\sigma}}=\left(\hat{\sigma}_{x}, \hat{\sigma}_{y}, \hat{\sigma}_{z}\right) \\
& P_{0}=\operatorname{Tr}(\widehat{A}) \quad \boldsymbol{P}=\operatorname{Tr}(\hat{\boldsymbol{\sigma}} \widehat{A})
\end{aligned}
$$

## Pauli operators (Pauli matrices)

$$
\widehat{A}=\frac{1}{2}\left(P_{0} \hat{1}+\boldsymbol{P} \cdot \hat{\boldsymbol{\sigma}}\right)=\frac{1}{2}\left(\begin{array}{cc}
P_{0}+P_{z} & P_{x}-i P_{y} \\
P_{x}+i P_{y} & P_{0}-P_{z}
\end{array}\right)
$$

$\hat{A}$ is self-adjoint. $\longleftrightarrow P_{0}$ and $\boldsymbol{P}$ are real.
Eigenvalues $\lambda_{+}, \lambda_{-}$

$$
\begin{aligned}
\operatorname{det}(\widehat{A}) & =\lambda_{+} \lambda_{-}=\frac{1}{4}\left(P_{0}^{2}-|\boldsymbol{P}|^{2}\right) \\
\operatorname{Tr}(\widehat{A}) & =\lambda_{+}+\lambda_{-}=P_{0} \\
& \downarrow \\
\lambda_{ \pm}= & \left(P_{0} \pm|\boldsymbol{P}|\right) / 2
\end{aligned}
$$

$\hat{A}$ is positive. $\longleftrightarrow P_{0}$ and $\boldsymbol{P}$ are real, $P_{0} \geq|\boldsymbol{P}|$

## Bloch representation (Bloch sphere)

Density operator
Positive \& Unit trace

$$
P_{0} \geq|\boldsymbol{P}| \quad P_{0}=1
$$

$$
\hat{\rho}=\frac{1}{2}(\hat{1}+\boldsymbol{P} \cdot \hat{\sigma}) \quad|\boldsymbol{P}| \leq 1
$$

Density operator for a qubit system


A point inside or on the sphere of radius 1

$$
\begin{aligned}
& \boldsymbol{P}=\left(P_{x}, P_{y}, P_{z}\right) \\
& \text { Bloch vector } \\
& \lambda_{ \pm}=\left(P_{0} \pm|\boldsymbol{P}|\right) / 2=(1 \pm|\boldsymbol{P}|) / 2 \\
& \text { Pure states } \longleftrightarrow \lambda_{+}=1, \lambda_{-}=0 \\
& \longleftrightarrow|\boldsymbol{P}|=1 \\
& \longleftrightarrow \text { On the sphere }
\end{aligned}
$$

Pure states $\hat{\rho}_{j}=\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right|$

$$
\hat{\rho}_{j}=\frac{1}{2}\left(\hat{1}+P_{j} \cdot \hat{\sigma}\right)
$$

$$
\begin{aligned}
&\left|\left\langle\phi_{1} \mid \phi_{2}\right\rangle\right|^{2}=\operatorname{Tr}\left[\hat{\rho}_{1} \hat{\rho}_{2}\right] \\
&=\frac{1+P_{1} \cdot P_{2}}{2}=\cos ^{2} \frac{\theta}{2} \\
&=-\ldots\left|\phi_{1}\right\rangle \\
&=-\ldots-\ldots\left|\phi_{2}\right\rangle
\end{aligned}
$$

Vectors in the Hilbert space


Orthogonal states $\longleftrightarrow \theta=\pi$

Orthonormal basis $\longleftrightarrow$ A line through the origin


## Orthogonal measurement

Orthonormal basis $\left\{\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle\right\} \longleftrightarrow$ A line through the origin

$$
\begin{aligned}
& P(1)=\left\langle\phi_{1}\right| \hat{\rho}\left|\phi_{1}\right\rangle=\operatorname{Tr}\left(\hat{\rho}_{1} \hat{\rho}\right)=\frac{1+\boldsymbol{P}_{1} \cdot \boldsymbol{P}}{2} \\
& P(2)=\frac{1-\boldsymbol{P}_{1} \cdot \boldsymbol{P}}{2}
\end{aligned}
$$



Example
Measurement of observable $\widehat{\sigma}_{z}$


## Unitary operation

$|\psi\rangle, e^{i \theta}|\psi\rangle \quad$ The same physical state
$\hat{U}, e^{i \theta} \hat{U} \quad$ The same physical operation $\operatorname{det}\left(e^{i \theta} \widehat{U}\right)=e^{2 i \theta} \operatorname{det} \hat{U}$
group $\quad S U(2):$ Set of $\hat{U}$ with $\operatorname{det} \hat{U}=1 \quad \hat{U} \in S U(2) \leftrightarrow-\hat{U} \in S U(2)$
(2 to 1 correspondence to the physical unitary operations)

$$
\begin{aligned}
\widehat{U}=\exp [i \widehat{S}]_{\text {Self-adjoint, traceless }} & \hat{U}
\end{aligned}=\left(\begin{array}{cc}
e^{i \phi} & 0 \\
0 & e^{-i \phi}
\end{array}\right)
$$

We can parameterize the elements of $\mathrm{SU}(2)$ as

$$
\hat{U}(\boldsymbol{n}, \varphi) \equiv \exp [-i(\varphi / 2) \underset{\text { Unit vector }}{\boldsymbol{n}} \cdot \hat{\boldsymbol{\sigma}}]
$$

## Unitary operation

$$
\hat{\rho}=\frac{1}{2}(\widehat{1}+\boldsymbol{P} \cdot \hat{\boldsymbol{\sigma}}) \xrightarrow{\hat{U}(\boldsymbol{n}, \varphi)} \hat{\rho}^{\prime}=\frac{1}{2}\left(\widehat{1}+\boldsymbol{P}^{\prime} \cdot \hat{\boldsymbol{\sigma}}\right)
$$

How does the Bloch vector change?
Infinitesimal change $\hat{U}(\boldsymbol{n}, \delta \varphi) \sim \widehat{1}-i(\delta \varphi / 2) \boldsymbol{n} \cdot \hat{\boldsymbol{\sigma}}$

$$
\begin{aligned}
\delta \boldsymbol{P} & \equiv \boldsymbol{P}^{\prime}-\boldsymbol{P}=\operatorname{Tr}\left[\hat{\boldsymbol{\sigma}} \hat{\rho}^{\prime}\right]-\operatorname{Tr}[\hat{\boldsymbol{\sigma}} \widehat{\rho}] \\
& =\operatorname{Tr}\left[\hat{\boldsymbol{\sigma}} \widehat{U}(\boldsymbol{n}, \delta \varphi) \widehat{\rho} \widehat{U}^{\dagger}(\boldsymbol{n}, \delta \varphi)\right]-\operatorname{Tr}[\hat{\boldsymbol{\sigma}} \hat{\rho}] \\
& =\operatorname{Tr}\left[\widehat{U}^{\dagger}(\boldsymbol{n}, \delta \varphi) \hat{\boldsymbol{\sigma}} \widehat{U}(\boldsymbol{n}, \delta \varphi) \hat{\rho}\right]-\operatorname{Tr}[\hat{\boldsymbol{\sigma}} \widehat{\rho}] \\
& \sim \operatorname{Tr}\{(i \delta \varphi / 2)[(\boldsymbol{n} \cdot \widehat{\boldsymbol{\sigma}}), \widehat{\boldsymbol{\sigma}}] \hat{\rho}\}=-\delta \varphi \operatorname{Tr}\left[n_{i} \epsilon_{i j k} \widehat{\sigma}_{k} \hat{\rho}\right] \\
& =\delta \varphi \operatorname{Tr}[(\boldsymbol{n} \times \hat{\boldsymbol{\sigma}}) \hat{\rho}]=\delta \varphi \boldsymbol{n} \times \boldsymbol{P} .
\end{aligned}
$$

Rotation around axis $\boldsymbol{n}$ by angle $\delta \varphi$

## Unitary operation

$\widehat{U} \in S U(2)$

$$
\hat{U}=\exp [-i(\varphi / 2) \boldsymbol{n} \cdot \hat{\boldsymbol{\sigma}}]
$$

Rotation around axis $n$ by angle $\varphi$

## Examples


$\hat{\sigma}_{z}: \pi$ rotation around $z$ axis $\hat{\sigma}_{x}: \pi$ rotation around $x$ axis

$$
\hat{H}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

Hadamard transform $\pi$ rotation (interchanges $z$ and $x$ axes)

## 4. Power of an ancillary system

Kraus representation (Operator-sum rep.)
Generalized measurement
Unambiguous state discrimination
Quantum operation (Quantum channel, CPTP map)
Relation between quantum operations and bipartite states
A maximally entangled state and relative states
What can we do in principle?

## Power of an ancilla system

## Basic operations Unitary operations Orthogonal measurements

## An auxiliary system (ancilla)



## Power of an ancilla system

## Basic operations Unitary operations Orthogonal measurements

## An auxiliary system (ancilla)



## Power of an ancilla system

-measurement

probability

$\hat{\rho} \otimes|0\rangle_{E E}\langle 0|$

$$
\hat{U}\left(\hat{\rho} \otimes|0\rangle_{E E}\langle 0|\right) \hat{U}^{\dagger}
$$

$$
\begin{array}{rlr}
p_{j} \hat{\rho}_{\text {out }}^{(j)}= & { }_{E}\langle j| \widehat{U}\left(\hat{\rho} \otimes|0\rangle_{E E}\langle 0|\right) \hat{U}^{\dagger}|j\rangle_{E} & { }^{\langle j|} \widehat{U}^{|0\rangle_{E}} \\
= & \hat{M}^{(j)} \hat{\rho} \widehat{M}^{(j) \dagger} & \hat{M}^{(j)}: \mathcal{H}_{A} \rightarrow \mathcal{H}_{A} \\
& \hat{M}^{(j)} \equiv{ }_{E}\langle j| \widehat{U}|0\rangle_{E} &
\end{array}
$$

## Kraus representation (Operator-sum rep.)

$$
\begin{aligned}
p_{j} \hat{\rho}_{\text {out }}^{(j)} & ={ }_{E}\langle j| \widehat{U}\left(\hat{\rho} \otimes|0\rangle_{E E}\langle 0|\right) \widehat{U}^{\dagger}|j\rangle_{E} \\
& \downarrow \widehat{M}^{(j)} \equiv{ }_{E}\langle j| \widehat{U}|0\rangle_{E} \text { Kraus operators } \\
p_{j} \hat{\rho}_{\text {out }}^{(j)} & =\hat{M}^{(j)} \widehat{\rho}^{\left(\widehat{M}^{(j) \dagger}\right.} \text { with } \sum_{j} \widehat{M}^{(j) \dagger} \hat{M}^{(j)}=\widehat{1}
\end{aligned}
$$

Representation with no reference to the ancilla system

$$
\begin{aligned}
\sum_{j} \hat{M}^{(j) \dagger} \hat{M}^{(j)} & =\sum_{j}{ }_{E}\langle 0| \hat{U}^{\dagger}|j\rangle_{E E}\langle j| \widehat{U}|0\rangle_{E} \\
& ={ }_{E}\langle 0| \hat{U}^{\dagger} \hat{U}|0\rangle_{E} \\
& ={ }_{E}\langle 0| \widehat{1}_{A} \otimes \widehat{1}_{E}|0\rangle_{E} \\
& =\widehat{1}_{A}
\end{aligned}
$$

## Kraus operators $\longrightarrow$ Physical realization

$$
p_{j} \hat{\rho}_{\text {out }}^{(j)}={ }_{E}\langle j| \widehat{U}\left(\hat{\rho} \otimes|0\rangle_{E E}\langle\mathrm{O}|\right) \hat{U}^{\dagger}|j\rangle_{E}
$$

$$
\uparrow \downarrow \widehat{M}^{(j)} \equiv{ }_{E}\langle j| \widehat{U}|O\rangle_{E} \quad \text { Kraus operators }
$$

$$
p_{j} \hat{\rho}_{\text {out }}^{(j)}=\hat{M}^{(j)} \hat{\rho}^{\left(\hat{M}^{(j) \dagger} \text { with } \sum_{j} \hat{M}^{(j) \dagger} \hat{M}^{(j)}=\hat{1}, ~\right.}
$$

Arbitrary set $\left\{\hat{M}^{(j)}\right\}$ satisfying $\sum_{j} \hat{M}^{(j) \dagger} \hat{M}^{(j)}=\hat{1}$
$|\phi\rangle_{A} \otimes|0\rangle_{E} \mapsto \sum_{j} \hat{M}^{(j)}|\phi\rangle_{A} \otimes|j\rangle_{E}$ is linear. preserves inner products.

$$
\left(\begin{array}{l}
\begin{array}{l}
\text { For any two states }|\phi\rangle_{A} \text { and }|\psi\rangle_{A}, \\
\left(\sum_{j^{\prime}} \hat{M}^{\left(j^{\prime}\right)}|\psi\rangle_{A} \otimes\left|j^{\prime}\right\rangle_{E}\right)^{\dagger}\left(\sum_{j} \hat{M}^{(j)}|\phi\rangle_{A} \otimes|j\rangle_{E}\right) \\
\quad={ }_{A}\langle\psi \mid \phi\rangle_{A}=\left(|\psi\rangle_{A} \otimes|0\rangle_{E}\right)^{\dagger}\left(|\phi\rangle_{A} \otimes|0\rangle_{E}\right) .
\end{array} .
\end{array}\right.
$$

There exists a unitary satisfying
$\hat{U}\left(|\phi\rangle_{A} \otimes|0\rangle_{E}\right)=\sum_{j} \widehat{M}^{(j)}|\phi\rangle_{A} \otimes|j\rangle_{E}$

## Generalized measurement

$$
\begin{aligned}
& p_{j} \hat{\rho}_{\text {out }}^{(j)}=\hat{M}^{(j)} \widehat{\rho} \hat{M}^{(j) \dagger} \text { with } \sum_{j} \hat{M}^{(j) \dagger} \hat{M}^{(j)}=\hat{1}
\end{aligned}
$$

$$
\begin{aligned}
& p_{j}=\operatorname{Tr}\left[\widehat{F}^{(j)} \widehat{\rho}\right] \text { with } \sum_{j} \widehat{F}^{(j)}=\widehat{1} \\
& \left\{\widehat{F}^{(j)}\right\} \text { POVM } \\
& \text { Positive operator valued measure }
\end{aligned}
$$

## Generalized measurement

$$
p_{j}=\operatorname{Tr}\left[\widehat{F}^{(j)} \hat{\rho}\right] \text { with } \sum_{j} \widehat{F}^{(j)}=\hat{1}
$$

## Examples

Orthogonal measurement on basis $\left\{\left|a_{j}\right\rangle\right\}$

$$
\widehat{F}^{(j)}=\left|a_{j}\right\rangle\left\langle a_{j}\right|
$$

Trine measurement on a qubit

$$
\begin{gathered}
\widehat{F}^{(j)}=\frac{2}{3}\left|b_{j}\right\rangle\left\langle b_{j}\right| \\
\left|b_{j}\right\rangle\left\langle b_{j}\right|=\frac{1}{2}\left(\widehat{1}+\boldsymbol{P}_{j} \cdot \hat{\boldsymbol{\sigma}}\right) \\
\sum_{j} \boldsymbol{P}_{j}=0 \longrightarrow \sum_{j} \widehat{F}^{(j)}=\widehat{1}
\end{gathered}
$$



## Distinguishing two nonorthogonal states

$$
\left\langle\phi_{0} \mid \phi_{1}\right\rangle=s>0
$$

Minimum-error discrimination


Unambiguous state discrimination


## Unambiguous state discrimination



Orthogonal measurement
If the initial state is $\left|\phi_{0}\right\rangle$
it always fails.

If the initial state is $\left|\phi_{1}\right\rangle$
it fails with prob. $\left|\left\langle\phi_{0} \mid \phi_{1}\right\rangle\right|^{2}=s^{2}$

$$
\left\{\left|\phi_{1}\right\rangle,\left|\phi_{1}^{\frac{1}{1}}\right\rangle\right\}
$$

$$
\left\{\left|\phi_{0}\right\rangle,\left|\phi_{0}^{\perp}\right\rangle\right\}
$$

2 (I don't know) (surely) 1

$$
p_{\text {fail }}=\frac{1+s^{2}}{2} \underbrace{p_{\text {fail }}}_{\left\langle\dot{\phi}_{0} \mid \phi_{1}\right\rangle}
$$

## Unambiguous state discrimination



Generalized measurement

$$
\begin{aligned}
& \hat{F}_{0}:=\mu\left|\phi_{1}^{\perp}\right\rangle\left\langle\phi_{1}^{\perp}\right| \\
& \widehat{F}_{1}:=\mu\left|\phi_{0}^{\perp}\right\rangle\left\langle\phi_{0}^{\perp}\right| \\
& \widehat{F}_{2}:=\widehat{1}-\widehat{F}_{0}-\widehat{F}_{1}
\end{aligned}
$$

The only constraint on $\mu$ comes from $\widehat{F}_{2} \geq 0$

$$
\begin{aligned}
& \left\langle\left.\phi \frac{\perp}{\mathrm{D}} \right\rvert\, \phi_{1}^{\perp}\right\rangle=s \\
& \left(\widehat{F}_{0}+\widehat{F}_{1}\right)\left(\left|\phi_{0}^{\perp}\right\rangle \pm\left|\phi_{1}^{\perp}\right\rangle\right) \\
& =\mu(1 \pm s)\left(\left|\phi_{0}^{\perp}\right\rangle \pm\left|\phi_{1}^{\perp}\right\rangle\right)
\end{aligned}
$$

The optimum: $\mu=(1+s)^{-1}$

$$
\begin{aligned}
p_{\text {fail }} & =1-\frac{\mu}{2}\left|\left\langle\phi_{0} \mid \phi_{1}^{\perp}\right\rangle\right|^{2}-\frac{\mu}{2}\left|\left\langle\phi_{1} \mid \phi_{\mathrm{D}}\right\rangle\right|^{2} \\
& =1-\mu\left(1-s^{2}\right)
\end{aligned}
$$

$$
p_{\text {fail }}=s
$$



## Quantum operation (Quantum channel, CPTP map)

$$
p_{j} \hat{\rho}_{\text {out }}^{(j)}=\hat{M}^{(j)} \widehat{\rho} \widehat{M}^{(j) \dagger} \text { with } \sum_{j} \hat{M}^{(j) \dagger} \widehat{M}^{(j)}=\widehat{1}
$$

$$
\begin{aligned}
\hat{\rho} & \\
\begin{aligned}
\hat{\rho}_{\text {out }} & =\sum_{j} p_{j} \hat{\rho}_{\text {out }}^{(j)}
\end{aligned} & =\sum_{j} \hat{M}^{(j)} \hat{\rho} \widehat{M}^{(j) \dagger} \\
& =\sum_{j E}\langle j| \hat{U}\left(\hat{\rho} \otimes|0\rangle_{E E}\langle 0|\right) \hat{U}^{\dagger}|j\rangle_{E} \\
& =\operatorname{Tr}_{E}\left[\hat{U}\left(\hat{\rho} \otimes|0\rangle_{E E}\langle 0|\right) \widehat{U}^{\dagger}\right]
\end{aligned} \begin{aligned}
\hat{\rho}_{\text {out }} & =\sum_{j} \hat{M}^{(j)} \hat{\rho} \hat{M}^{(j) \dagger} \\
& =\operatorname{Tr}_{E}\left[\hat{U}\left(\hat{\rho} \otimes|0\rangle_{E E}\langle 0|\right) \hat{U}^{\dagger}\right]
\end{aligned}
$$

$$
\hat{\rho}_{\text {out }}=\mathcal{C}(\hat{\rho}) \quad \text { completely-positive trace-preserving map }
$$ CPTP map

## Quantum operation (Quantum channel, CPTP map)



$$
\begin{aligned}
\hat{\rho}_{\text {out }} & =\sum_{j} \widehat{M}^{(j)} \widehat{\rho} \widehat{M}^{(j) \dagger} \text { with } \sum_{j} \widehat{M}^{(j) \dagger} \widehat{M}^{(j)}=\widehat{1} \\
& =\operatorname{Tr}_{E}\left[\hat{U}\left(\hat{\rho} \otimes|0\rangle_{E E}\langle 0|\right) \widehat{U}^{\dagger}\right]
\end{aligned}
$$

$\hat{\rho}_{\text {out }}=\mathcal{C}(\hat{\rho}) \quad$ completely-positive trace-preserving map CPTP map

## Positive maps and completely-positive maps

Linear map
$\hat{\rho}_{A} \mapsto \mathcal{C}_{A}\left(\hat{\rho}_{A}\right)$
"positive": $\mathcal{C}_{A}\left(\hat{\rho}_{A}\right)$ is positive whenever $\hat{\rho}_{A}$ is positive

"completely-positive": $\left(\mathcal{C}_{A} \otimes \mathcal{I}_{B}\right)\left(\hat{\rho}_{A B}\right)$ is positive whenever $\hat{\rho}_{A B}$ is positive


## Power of an ancilla system

## Basic operations Unitary operations Orthogonal measurements

## An auxiliary system (ancilla)



## What can we do in principle?

We have seen what we can (at least) do by using an ancilla system.

$$
p_{j} \hat{\rho}_{\text {out }}^{(j)}=\hat{M}^{(j)} \widehat{\rho} \hat{M}^{(j) \dagger} \text { with } \sum_{j} \hat{M}^{(j) \dagger} \hat{M}^{(j)}=\hat{1}
$$

We also want to know what we cannot do.


Black box with classical and quantum outputs

This is what we can do in principle $p_{m} m$


Any physical process should be represented in the following form:
$p_{m} \hat{\rho}_{\text {Out }}^{(m)}=\sum_{k} \hat{M}^{(k, m)} \hat{\rho} \hat{M}^{(k, m) \dagger} \sum_{m, k} \hat{M}^{(k, m) \dagger} \hat{M}^{(k, m)}=\widehat{1}_{A}$


## What can we do in principle?



## Maximally entangled states (MES)

$$
\operatorname{dim} \mathcal{H}_{A}=\operatorname{dim} \mathcal{H}_{B}=d
$$



Orthonormal bases

$$
\left\{|k\rangle_{A}\right\}_{k=1,2, \ldots, d}
$$

$$
\left\{|k\rangle_{B}\right\}_{k=1,2, \ldots, d}
$$

$$
\sum_{k=1}^{d} \frac{1}{\sqrt{d}}|k\rangle_{A} \otimes|k\rangle_{B}
$$

Maximally entangled state (with Schmidt number $d$ )

## Properties of MES (II): Relative states

Fix a maximally $\operatorname{dim} \mathcal{H}_{A}=\operatorname{dim} \mathcal{H}_{B}=d$ entangled state
$|\Phi\rangle_{A B}=\sum_{k=1}^{d} \frac{1}{\sqrt{d}}|k\rangle_{A}|k\rangle_{B} A$


Relative states

$$
\begin{aligned}
|\phi\rangle_{A}=\sum_{k} \alpha_{k}|k\rangle_{A} \longleftrightarrow\left|\phi^{*}\right\rangle_{B}=\sum_{k} \overline{\alpha_{k}}|k\rangle_{B} \\
=\sqrt{d} \times{ }_{B}\left\langle\phi^{*}\right||\Phi\rangle_{A B} \quad=\sqrt{d} \times{ }_{A}\langle\phi||\Phi\rangle_{A B}
\end{aligned}
$$



## Properties of MES (III): Pair of equivalent local operations

$|\Phi\rangle_{A B}=\sum_{k=1}^{d} \frac{1}{\sqrt{d}}|k\rangle_{A}|k\rangle_{B}$




Equivalent

$|\Phi\rangle_{A B}$


## Quantum operation and bipartite state

We can remotely prepare system A in any state with a nonzero success probability.
At any time

$\widehat{\sigma}_{A R}$ :The state obtained when a half of an MES is fed to the channel.
If this state is known,
$\hat{\rho}_{\text {out }}={ }_{B}\left\langle\phi^{*}\right| \hat{\sigma}_{A R}\left|\phi^{*}\right\rangle_{B} d \quad$ Output for every input state is known!
Characterization of a process $=$ Characterization of a state

## Quantum operation and bipartite state

$$
\begin{gathered}
\hat{\rho}_{\text {out }}=\sqrt{d}_{R}\left\langle\phi_{A}\right| \hat{\sigma}_{A R}\left|\phi^{*}\right\rangle_{R} \sqrt{d} \\
{ }_{R}\left\langle\phi^{*}\right|=\sqrt{d}_{A R}\langle\Phi||\phi\rangle \quad \hat{\sigma}_{A R}=\sum_{j}\left|\Psi_{j}\right\rangle_{A R} \begin{array}{c}
\text { out } \\
\text { out } \\
\text { unnormalized }
\end{array} \\
\sqrt{d}_{R}\left\langle\phi^{*}\right|\left|\Psi_{j}\right\rangle_{A R}=\hat{M}^{(j)}|\phi\rangle_{A} \quad \text { (Alinear map) } \\
\hat{\rho}_{\text {out }}=\sum_{j} \hat{M}^{(j)}|\phi\rangle_{A A}\langle\phi| \hat{M}^{(j)^{\dagger}} \quad A R\langle\Phi| \begin{array}{l}
|\phi\rangle_{A} \\
\left|\Psi \Psi_{j}\right| A R
\end{array}
\end{gathered}
$$

## What we can do in principle



## Size of the ancilla system

$\operatorname{dim} \mathcal{H}_{E}=\left(\operatorname{dim} \mathcal{H}_{A}\right)^{2}$ is enough.

$\widehat{\sigma}_{A R}$

$|\xi\rangle_{A R E} \equiv \hat{U}\left(|\Psi\rangle_{A R} \otimes|0\rangle_{E}\right)$
$\operatorname{dim}\left(\operatorname{Ran} \hat{\rho}_{E}\right)=\operatorname{dim}\left(\operatorname{Ran} \hat{\rho}_{A R}\right) \leq \operatorname{dim} \mathcal{H}_{A R}=d^{2}$

## Universal NOT ? Spin reversal ?

Bloch vector

$$
\boldsymbol{P} \rightarrow-\boldsymbol{P}
$$

linear map $\hat{\rho} \rightarrow \mathcal{C}(\hat{\rho})$

$$
\begin{array}{cc}
\mathcal{C}(\hat{1})=\hat{1} & \mathcal{C}\left(\hat{\sigma}_{x}\right)=-\hat{\sigma}_{x} \\
\mathcal{C}\left(\hat{\sigma}_{y}\right)=-\widehat{\sigma}_{y} & \mathcal{C}\left(\hat{\sigma}_{z}\right)=-\hat{\sigma}_{z}
\end{array}
$$

$\mathcal{C}(|0\rangle\langle 0|)=|1\rangle\langle 1|$
$\mathcal{C}(|1\rangle\langle 1|)=|0\rangle\langle 0|$
$\mathcal{C}(|0\rangle\langle 1|)=-|0\rangle\langle 1|$
$\mathcal{C}(|1\rangle\langle 0|)=-|1\rangle\langle 0|$


$$
\begin{gathered}
\widehat{\sigma}_{x}=|1\rangle\langle 0|+|0\rangle\langle 1| \\
\hat{\sigma}_{y}=i|1\rangle\langle 0|-i|0\rangle\langle 1| \\
\widehat{\sigma}_{z}=|0\rangle\langle 0|-|1\rangle\langle 1| \\
\widehat{1}=|0\rangle\langle 0|+|1\rangle\langle 1|
\end{gathered}
$$

This map is positive, but...

## Universal NOT ? Spin reversal?

$$
\begin{aligned}
& \begin{array}{l}
\mathcal{C}(|0\rangle\langle 0|)=|1\rangle\langle 1| \\
\mathcal{C}(|1\rangle\langle 1|)
\end{array}=|0\rangle\langle 0| \\
& \left.\begin{array}{c}
\mathcal{C}(|0\rangle\langle 1|)
\end{array}\right)=-|0\rangle\langle 1| \\
& \mathcal{C}(|1\rangle\langle 0|)=-|1\rangle\langle 0| \\
& 2|\Phi\rangle\langle\Phi|=(|00\rangle+|11\rangle)(\langle 00|+\langle 11|) \\
& =|00\rangle\langle 00|+|00\rangle\langle 11|+|11\rangle\langle 00|+|11\rangle\langle 11| \\
& 2 \hat{\rho}_{A R} \equiv 2(\mathcal{C} \otimes \mathcal{I})|\Phi\rangle\langle\Phi|= \\
& =|10\rangle\langle 10|-|00\rangle\langle 11|-|11\rangle\langle 00|+|01\rangle\langle 01|
\end{aligned}
$$

$\longrightarrow$ Universal NOT is impossible.

