Appendix: Linear algebra Masato Koashi

- 1. Complex linear space (複素線形空間)
- ©: The set of complex numbers (複素数の集合)

複素線形空間とは、ある構造を持った集合の呼び名で、その集合の要素をとくにベクトルと呼ぶ

と呼ぶ。 その構造とは...ベクトルどうしの足し算と、 スカラー倍(複素数を掛ける操作)がちゃん と定義されているということ。

ちゃんと定義を書くと次のようになる。

- \clubsuit A complex linear space [a linear space over \mathbb{C} (\mathbb{C} 上の線形空間), a vector space over \mathbb{C} (\mathbb{C} 上のベクトル空間)] is a set V with the following operations,
 - sum (\mathfrak{A}) : $a + b \in V$ $(a, b \in V)$,
 - scalar multiple (スカラー倍): $\alpha a \in V \ (\alpha \in \mathbb{C}, a \in V),$

which satisfy the properties i)-viii).

i)
$$a + (b + c) = (a + b) + c$$

- ii) zero element (零元) $\exists 0 \in V; \forall a \in V; a+0=0+a=a$
- iii) inverse element (逆元) $\forall a \in V; \exists x (=:-a) \in V; a+x=x+a=0$

$$iv) a + b = b + a$$

v)
$$\alpha(a+b) = \alpha a + \alpha b$$

vi)
$$(\alpha + \beta)a = \alpha a + \beta a$$

vii)
$$(\alpha \beta)a = \alpha(\beta a)$$

- viii) 1a = a
- **&** Elements of a linear space is called **vectors**.

部分空間とは...複素線形空間 V の部分集合で、それ自身が線形空間になっているもの。つまり、足し算やスカラー倍の結果が部分集合の外に出なければよい。

- A subset of V is called a **subspace** (部分空間) when it is a linear space itself.
- \diamond Any nonempty subset of V which is closed under addition and scalar multiplication is a subspace.
- \diamond An intersection of subspaces is a subspace.

Basis (基底) and dimension (次元)

線形空間の元を何個か集めた集合について、 次の概念を思い出そう。

「ベクトルの集合 $\{a_1, a_2, \ldots, a_n\}$ の線形結合」

―足し算とスカラー倍の組み合わせで作った ベクトルを指す。一般に、次の形。

$$a = \alpha_1 a_1 + \alpha_2 a_2 + \cdots + \alpha_n a_n$$

「集合 $\{a_1, a_2, \ldots, a_n\}$ は線形独立である」

―その集合のどの要素も、自分以外の要素の 線形結合で書けない場合。

「集合 $\{a_1, a_2, \ldots, a_n\}$ は線形従属である」

―線形独立の逆。ある要素が、自分以外の要素の線形結合で書ける場合。

「集合 $\{a_1,a_2,\ldots,a_n\}$ のスパン」

- —集合Aの線形結合の形に書けるベクトルを全部集めると、それは部分空間になる。これをAのスパンと呼ぶ。Aによって生成される部分空間ともいう。
- \clubsuit We say a subset $A \subset V$ is **linearly independent** (線形独立) when

$$\alpha_j \in \mathbb{C}(j=1,\ldots k), \{b_1,b_2,\ldots,b_k\} \subset A;$$

 $\alpha_1b_1 + \alpha_2b_2 + \cdots + \alpha_kb_k = 0$
 $\Longrightarrow (\alpha_1,\alpha_2,\ldots,\alpha_k) = (0,0,\ldots,0).$

- \clubsuit We say a subset $A \subset V$ is **linearly dependent (**線 形従属) when it is not linearly independent.
- The intersection of all the subspaces including a set $A \subset V$ is called the **span** of A (or the subspace generated by A).
- \heartsuit A vector b is in the span of A iff $\exists k; \, \exists \alpha_j \in \mathbb{C}, \, \exists b_j \in A(j=1,\ldots k);$ $b = \alpha_1 b_1 + \alpha_2 b_2 + \cdots + \alpha_k b_k$

(We say b is a **linear combination (**線形結合**)** of A in this case.)

線形空間 V のベクトルの集合で、

「線形独立」

「ベクトルを追加すると必ず線形従属になる」 の両方を満足するものをVの基底と呼ぶ。言 いかえれば、線形独立で、スパンがV。

基底 B が与えられると、V の任意の元は、B の線形結合の形に一意に書ける。

- \clubsuit A linearly independent set whose span is the whole space V is called a **basis** of V.
- \diamond When B is a basis of V, any element $a \in V$ is uniquely decomposed as

 $a = \alpha_1 b_1 + \alpha_2 b_2 + \cdots + \alpha_k b_k$ $[\alpha_j \in \mathbb{C}, b_j \in B(j = 1, \dots k)].$

証明のヒント: V が B のスパンだから、a を B の線形結合で書く方法が必ずある。もし書き方が 2 種類以上あったら、B が線形従属になってしまうことが簡単に示せる。

どんな線形空間でも基底は必ず存在する。それだけではなく、線形独立な集合があれば、いつでもそれにベクトルを追加して基底を作れる。

線形空間の基底はたくさんの種類があるが、 どの基底もベクトルの個数は同じ。この数を 線形空間の次元と呼ぶ。

一般には、次元が無限のこともあるが、以後は次元が有限の場合だけを考える。

- ♦ Every linear space has a basis.
- \diamond For any linearly independent set A of vectors in V, there exists a basis B of V including those vectors $(A \subset B)$.

証明のヒント: A の線形結合で書けない (スパンに含まれない) ベクトル v があったら、それを A に追加した集合 $A+\{v\}$ は線形独立。これを繰り返せば最後には基底が完成するはず。 (無限次元の場合は「無限」に絡んだ注意が必要なのでちょっと難しくなる。)

 \heartsuit All the bases of a linear space V have the same cardinality (濃度) .

集合の濃度とは、有限集合の場合は要素の数のこと。

- ♣ The cardinality of a basis of V is called the (Hamel) dimension (次元) of V (denoted by dim V).
- \clubsuit When dim V is finite, we say V is **finite dimensional** (有限次元).
- When $\dim V$ is infinite, we say V is **infinite dimensional (無限次元)** .

基底の要素の数が一定という上の定理は、次の定理からすぐに証明できる。

 \heartsuit If

i) V is the span of A,

ii) $B \subset V$ is linearly independent, then $|A| \geq |B|$. (|X| is the cardinality of a set X.)

n:=|A| が有限の場合の証明のヒント: $|B|\geq n+1$ だとすると、どうしても B は線形従属になることが次のように示せる。

:B の要素 b_1 をとる。 $A+\{b_1\}$ は線形従属で、 $\{b_1\}$ は線形独立ということから、A のある要素 a_1 が他の要素と b_1 の線形結合で書けることが示せる。すると、 a_1 を取り除いてもスパンは変わらないことになり、 $A+\{b_1\}-\{a_1\}$ のスパンは V だということがわかる。

:B の別の要素 b_2 をとる。 $A-\{a_1\}+\{b_1,b_2\}$ は線形従属で、 $\{b_1,b_2\}$ は線形独立ということから、 $A-\{a_1\}$ のある要素 a_2 が他の要素と b_1,b_2 の線形結合で書けることが示せる。すると、 a_2 を取り除いてもスパンは変わらないことになり、 $A+\{b_1,b_2\}-\{a_1,a_2\}$ のスパンは V だということがわかる。

:上の手続きをn 回繰り返すと、 $\{b_1,b_2,\ldots,b_n\}$ のスパンがV という結論になる。 $\{b_1,b_2,\ldots,b_n,b_{n+1}\}$ は線形従属。B も線形従属。

2. Inner product space (内積空間)

二つのベクトルu, v に対して、下のi)-v) のルールに沿って複素数を対応させる写像を内積とよぶ。

内積の定義された線形空間を内積空間とよぶ。

内積の計算はi)-iii) のルールを使えばよい。 $(\alpha a, b) = \overline{\alpha}(a, b)$ に注意。

同じベクトルどうしの内積 (a,a) は正の実数またはゼロで、その平方根を $\|a\|$ と書いてノルムとよぶ。これはベクトルの長さ、大きさだと思えばよい。

ノルムがゼロのベクトルは零ベクトルだけ。 内積がゼロの2つのベクトルは互いに直交するという。そうでない場合は非直交であるという。

- **A** An inner product space is a linear space V over \mathbb{C} together with a map $(\cdot,\cdot):V\times V\to\mathbb{C}$ called inner product (内積), satisfying
 - i) $(a,b) = \overline{(b,a)}$
 - ii) $(a, b_1 + b_2) = (a, b_1) + (a, b_2)$
 - iii) $(a, \alpha b) = \alpha(a, b)$
 - iv) (a, a) > 0
 - v) (a, a) = 0 iff a = 0
- ♣ When (a, b) = 0, we say a is **orthogonal (直交)** to b (b is orthogonal to a, a and b are orthogonal to each other).
- **♣** When $(a, b) \neq 0$, we say a and b are **nonorthogonal** (非直交) (to each other).

 $\|a\| := \sqrt{(a,a)}$ is called the **norm** (ノルム) defined by the inner product.

ノルムが1のベクトルの集合で、どの組み合 わせも互いに直交するものを正規直交系とよ ぶ。

正規直交系は線形独立。

逆に、任意の線形独立な集合から、同じ個数 で同じスパンを持つ正規直交系を作れる。(グ ラムシュミットの直交化)

- \clubsuit A subset X of an inner product space is called an **orthonormal set** (正規直交系) when for any $a, b \in$
 - i) (a, a) = 1 (||a|| = 1),
- ii) (a, b) = 0 if $a \neq b$.
- \heartsuit An orthonormal set is linearly independent.
- ◇ (Gram-Schmidt orthogonalization (直交化)) Suppose that $\{a_1, a_2, \ldots, a_n, \ldots\}$ is linearly independent. Define

$$\begin{aligned} v_1 &= a_1, & u_1 &= v_1/\|v_1\| \\ v_2 &= a_2 - (u_1, a_2)u_1, & u_2 &= v_2/\|v_2\| \\ & \cdots & \cdots \\ v_n &= a_n - \sum_{k=1}^{n-1} (u_k, a_n)u_k, & u_n &= v_n/\|v_n\|, \end{aligned}$$

which is well-defined since all $v_i \neq 0$.

For every m, $\{u_j\}_{j=1}^m$ is an orthonormal set and its span is the same as that of $\{a_j\}_{j=1}^m$.

コーシーシュワルツの不等式

 $|(a,b)| \le ||a|| ||b||$ 等号はa とb がスカラー倍の関係にあるとき だけ。

 \diamond (**Pythagorean theorem**) Let $\{u_1,\ldots,u_n\}$ be an orthonormal set in an inner product space V. Then for all $a \in V$,

$$||a||^2 = \sum_{k=1}^n |(u_k, a)|^2 + \left\| a - \sum_{k=1}^n (u_k, a) u_k \right\|^2$$

♦ (Bessel's inequality)

$$||a||^2 \ge \sum_{k=1}^n |(u_k, a)|^2$$

♡ (Cauchy-Schwarz inequality)

$$|(a,b)| \le ||a|| ||b||$$

The equality holds iff $\{a, b\}$ is linearly dependent (b = 0)or $a = \alpha b, \ \alpha \in \mathbb{C}$).

 $b \neq 0$ のときの証明は、計算ですぐ確かめられる次の 式を使う。

$$\left\| a - \frac{(b,a)}{\|b\|^2} b \right\|^2 = \|a\|^2 - \frac{|(a,b)|^2}{\|b\|^2}$$

 $\diamond ||a|| := \sqrt{(a,a)}$ satisfies

i)
$$||a|| = 0$$
 iff $a = 0$

- ii) $\|\alpha a\| = |\alpha| \|a\|$
- iii) ||a+b|| < ||a|| + ||b||

Every inner product space is a normed linear space () ルム空間) with the norm ||a||.

$$\diamond d(a,b) := ||a-b||$$
 satisfies

i)
$$d(x, y) = 0$$
 iff $x = y$

ii)
$$d(x,y) = d(y,x)$$

iii)
$$d(x,z) < d(x,y) + d(y,z)$$

Every inner product space is a metric space (距離空間) with the metric (距離、計量) d(a,b).

3. Hilbert space (ヒルベルト空間)

有限次元の内積空間は、ヒルベルト空間とも 呼ばれる。

(無限次元の場合はある条件(完備)を満たす 内積空間をヒルベルト空間とよぶ。

• We say a normed linear space V is **complete** (完備)

$$||x_n - x_m|| \to 0 (n, m \to \infty)$$

 $\implies \lim x_n = x \in V$

- A Hilbert space \mathcal{H} is an inner product space that is complete with respect to the norm defined by the inner product.
- \heartsuit If an inner product space is finite dimensional, it is a Hilbert space.

ヒルベルト空間光のベクトルの集合で、 「正規直交系である」

「ベクトルを追加すると必ず正規直交系では なくなる」

の両方を満足するものを正規直交基底とよぶ。 どんな正規直交系も、ベクトルを追加して正 規直交基底にできる。

 $\{u_1,\cdots,u_d\}$ が正規直交基底なら、任意のべ クトルは

$$a = \sum_{j=1}^{d} (u_j, a) u_j$$

と分解できる。(有限次元なら、正規直交基底 は線形空間 \mathcal{H} の基底でもある。)

ノルムについては、パーセバルの等式

$$||a||^2 = \sum_{j=1}^d |(u_j, a)|^2$$

が成り立つ。

ヒルベルト空間 光の正規直交基底の要素の数 は一定で、ヒルベルト空間 升 の次元と呼ぶ。 (有限次元なら、これは線形空間としての次 元に等しい。)

- \clubsuit If S is an orthonormal set in a Hilbert space $\mathcal H$ and no other orthonormal set contains S as a proper subset, then S is called an **orthonormal basis** (正規直交基 底) (or a complete orthonormal system (完全正 規直交系)) of \mathcal{H} .
- ♦ Every Hilbert space has a basis.
- \diamond For any orthonormal set A of vectors in a Hilbert space \mathcal{H} , there exists a basis S of \mathcal{H} that contains A

 \heartsuit Let $S = \{u_{\lambda}\}_{{\lambda} \in \Lambda}$ be an orthonormal basis of \mathcal{H} . Then, for each $a \in \mathcal{H}$,

$$a = \sum_{\lambda \in \Lambda} (u_{\lambda}, a) u_{\lambda}$$

 \heartsuit (Parseval's identity)

$$||a||^2 = \sum_{\lambda \in \Lambda} |(u_\lambda, a)|^2$$

- \heartsuit All orthogonal bases of a Hilbert space \mathcal{H} have the same cardinality.
- ♣ The cardinality of a orthonormal basis of a Hilbert space \mathcal{H} is called the (Hilbert) **dimension** (次元) of \mathcal{H} (denoted by dim \mathcal{H}).

♥ When the Hamel dimension is finite,

Hilbert dimension = Hamel dimension.

♦ When the Hamel dimension is infinite, the Hilbert dimension is infinite and

Hilbert dimension < Hamel dimension.

• We say a Hilbert space is **separable** (可分) when it has a countable orthogonal basis.

4. Linear operators (線形演算子)

In the following, Hilbert spaces $(\mathcal{H}, \mathcal{H}_1, \ldots)$ are assumed to be finite dimensional.

ヒルベルト空間からヒルベルト空間への写像 $T: \mathcal{H}_1 \to \mathcal{H}_2$ で、和とスカラー倍の関係を保 存するもの、つまり、下の(1)式を満たすも のを線形写像または線形演算子とよぶ。

複素数の集合 \mathbb{C} は、内積 $(\alpha, \beta) := \overline{\alpha}\beta$ が定義 された次元1のヒルベルト空間と見なせる。

線形汎関数とよぶ。

 $T:\mathcal{H}_1 \to \mathcal{H}_2$ に関して、 \mathcal{H}_1 の部分空間 Ker $T := \{x \in \mathcal{H}_1 : T(x) = 0\}$

を kernel(核) とよび、 \mathcal{H}_2 の部分空間

 $\operatorname{Ran} T := \{ T(x) : x \in \mathcal{H}_1 \}$

を range(値域) とよぶ。

range の次元をT のランクとよぶ。

 $\dim(\operatorname{Ker} T) + \dim(\operatorname{Ran} T) = \dim \mathcal{H}_1$

 \clubsuit We say a mapping $T:\mathcal{H}_1\to\mathcal{H}_2$ is a **linear opera**tor when

$$T(\alpha a + \beta b) = \alpha T(a) + \beta T(b) \tag{1}$$

for all $\alpha, \beta \in \mathbb{C}$ and $a, b \in \mathcal{H}_1$.

 \heartsuit \mathbb{C} is a Hilbert space of dimension 1 with the inner product $(\alpha, \beta) := \overline{\alpha}\beta$.

- \clubsuit A linear operator $f: \mathcal{H} \to \mathbb{C}$ is called a **linear** functional (線形汎関数)
- \clubsuit For a linear operator $T: \mathcal{H}_1 \to \mathcal{H}_2$,
 - The subspace of \mathcal{H}_1 , Ker $T := \{x \in \mathcal{H}_1 : T(x) =$ 0}, is called the **kernel** (核) of T.
 - The subspace of \mathcal{H}_2 , Ran $T := \{T(x) : x \in \mathcal{H}_1\}$, is called the range (值域) or the image (像) of
 - The dimension of Ran T is called the **rank** of T.
- The **operator norm** of $T: \mathcal{H}_1 \to \mathcal{H}_2$ is defined as

$$||T|| := \sup_{x \in \mathcal{H}_1: ||x|| = 1} ||T(x)|| = \sup_{x \in \mathcal{H}_1: x \neq 0} \frac{||T(x)||}{||x||}$$

- $\diamond ||T(x)|| \le ||T|| ||x||.$
- For $A \subset \mathcal{H}$, we define the subspace $A^{\perp} := \{x \in \mathcal{H} :$ $\forall a \in A; (a, x) = 0\}.$
- $\diamond \ A \subset B \Rightarrow A^{\perp} \supset B^{\perp}$

- When A is a subspace of \mathcal{H} , we say A^{\perp} is the **or**thogonal complement (直交補空間) of A.
- \diamond When A is a subspace of \mathcal{H} , $A \cap A^{\perp} = \{0\}$.
- \diamond (**Projection theorem**) When A is a subspace of \mathcal{H} , every $x \in \mathcal{H}$ can be uniquely written as x = z + wwhere $z \in A$ and $w \in A^{\perp}$. $(\mathcal{H} = A \oplus A^{\perp})$
- \diamond When A is a subspace of \mathcal{H} , dim $A + \dim A^{\perp} = \dim \mathcal{H}$.
- \diamond When A is a subspace of \mathcal{H} , $(A^{\perp})^{\perp} = A$.
- \heartsuit Suppose that dim $\mathcal{H}_1 = d$. For every linear operator $T: \mathcal{H}_1 \to \mathcal{H}_2$, dim(Ker T) + dim(Ran T) = d.

ヒルベルト空間 \mathcal{H} のベクトル y を固定したと き、入力 $x \in \mathcal{H}$ に対して複素数 (y, x) を返す 写像は線形汎関数である。

逆に、任意の線形汎関数 $f:\mathcal{H}\to\mathbb{C}$ は、ある ベクトル $y_f \in \mathcal{H}$ を用いて $f(x) = (y_f, x)$ と書 ける。f に対応する y_f は一意に決まる(リー スの補題)。

 \heartsuit (Riesz lemma) For each linear functional $f: \mathcal{H} \to$ \mathbb{C} , there is a unique $y_f \in \mathcal{H}$ such that $||f|| = ||y_f||$ and

$$f(x) = (y_f, x).$$

証明のヒント: y_f の存在を示すには、正規直交基底 $\{u_j\}$ を考え、 $y_f=\sum_j \overline{f(u_j)}u_j$ とおく。一意性は、 y_f' も $f(x)=(y_f',x)$ を満たすとすると、 $z:=y_f-y_f'$ は、 全ての $x \in \mathcal{H}$ について (z,x) = 0 を満たすことになる が、そのようなz はz=0 だけ。

• The set \mathcal{H}^* of all linear functionals $f:\mathcal{H}\to\mathbb{C}$ is called the dual space (双対空間) of H.

ディラックの記法

ベクトル $x \in \mathcal{H}$ を $|x\rangle$ と書く。これはケット ベクトルと呼ばれる。

線形演算子Tは、ハットをつけて \hat{T} と書く ことが多い。さらに、引数の括弧を省き、常 に右側に作用すると考える。つまり、T(x)と 書くかわりに $\hat{T}|x\rangle$ と書く。U(T(x))も単に $\hat{U}\hat{T}|x\rangle$ と書く。

入力 $x \in \mathcal{H}$ に対して複素数 (y, x) を返す線形 汎関数を、 $\langle y |$ と書く。これはブラベクトルと 呼ばれる。

内積 (y,x) を、 $\langle y|x\rangle$ と書く。これは、 $\langle y|$ を |x⟩に作用させたと解釈してもよい。

例:(y,T(x))は、 $\langle y|\hat{T}|x\rangle$ と書ける。

例: $|z\rangle\langle y|$ をベクトル $|x\rangle$ に作用させると、 $|z\rangle\langle y|x\rangle$ となる。ここで、 $\langle y|x\rangle$ は複素数だ から、この出力もベクトルである。つまり、 $|z
angle\langle y|$ は $\mathcal{H} o\mathcal{H}$ の線形演算子と見なせる。

♣ Dirac notation

 $a \in \mathcal{H}$ is denoted by $|a\rangle$, called a **ket vector**. $(a, \cdot) \in \mathcal{H}^*$ is denoted by $\langle a |$, called a **bra vector**. The inner product (a, b) is denoted by $\langle a|b\rangle$.

We often denote a linear operator with a hat (^), like $\hat{T}: \mathcal{H} \to \mathcal{H}$.

 $\hat{T}|a\rangle := T(a).$

 $\langle b|\hat{T}|a\rangle = (b, T(a)).$

A ket vector $|a\rangle$ can be regarded as a linear operator $T_a:\mathbb{C}\to\mathcal{H}$, defined by $T_a(\alpha):=\alpha|a\rangle$ for $\alpha\in\mathbb{C}$.

 $|a\rangle\langle b|$ is a linear operator : $\mathcal{H} \to \mathcal{H}$.

 $(|a\rangle\langle b|)|c\rangle = (b,c)a.$

 $\{u_1,\ldots,u_d\}$ が \mathcal{H} の正規直交基底であるとき、

$$\sum_{j=1}^{d} |u_j\rangle\langle u_j| = \hat{1}$$

が成り立つ。右辺 î は恒等演算子(入力がそ のまま出力になる) である。この関係を Completeness (closure) relation と呼ぶ。

式の好きな場所に左辺の和の形を挿入しても 式は不変である。

例:

$$\langle c|\hat{A}|b\rangle = \sum_{i=1}^{d} \sum_{j=1}^{d} \langle c|u_i\rangle\langle u_i|\hat{A}|u_j\rangle\langle u_j|b\rangle$$
 (2)

♥ (Completeness relation, closure relation) When $\{|u_1\rangle, |u_2\rangle, \dots, |u_d\rangle\}$ is an orthonormal basis,

$$\sum_{j=1}^{d} |u_j\rangle\langle u_j| = \hat{1},$$

where $\hat{1}$ is the identity operator (恒等演算子).

証明のヒント: どんなベクトル $|\phi\rangle$ も、正規直交基底で $|\phi\rangle = \sum_{j=1}^{d} |u_j\rangle\langle u_j|\phi\rangle$ と展開できることを思いだそう。

行列表現

 \mathcal{H} の正規直交基底 $\{u_1,\ldots,u_d\}$ をひとつ固定 する。このとき、

 $|b\rangle$ に対して d 次元の列ベクトル (第 j 成分が $b_j := \langle u_j | b
angle$) を対応させる。 $| b
angle = \sum_j b_j | u_j
angle$

 $\langle c |$ に対して d 次元の行ベクトル (第 i 成分が $c_i := \langle c|u_i \rangle$) を対応させる。 $\langle c| = \sum_i c_i \langle u_i|$

 $\hat{A}: \mathcal{H} \to \mathcal{H}$ に対して $d \times d$ 行列 [(i,j) 成分が $A_{ij} := \langle u_i | \hat{A} | u_j \rangle$] を対応させる。

 $\hat{A} = \sum_{i,j} A_{ij} |u_i\rangle\langle u_j|$

すると、 $\langle c|\hat{A}|b
angle = \sum_{i,j} c_i A_{ij} b_j$ のように、全 ての計算は行列の計算のルールに従う。

♥ (Matrix representation)

 $\hat{A} = \sum_{i,j} A_{ij} |u_i\rangle\langle u_j|$

Fix an orthonormal basis $\{u_1, \ldots, u_d\}$ for \mathcal{H} . $\operatorname{ket} |b\rangle \Rightarrow b_j := \langle u_j | b \rangle \text{ (column vector)}$ $|b\rangle = \sum_{j} b_{j} |u_{j}\rangle$ bra $\langle c| \Rightarrow c_i := \langle c|u_i \rangle$ (row vector) $\langle c| = \sum_{i} c_i \langle u_i|$ operator $\hat{A} \Rightarrow A_{ij} := \langle u_i | \hat{A} | u_j \rangle \ (d \times d \text{ matrix})$

線形演算子 $A:\mathcal{H}_1 \to \mathcal{H}_2$ を考える。任意の $x \in \mathcal{H}_1, y \in \mathcal{H}_2$ について、

$$(A^{\dagger}(y), x) = (y, A(x)) \tag{3}$$

を満たすような線形演算子 $A^{\dagger}:\mathcal{H}_2 \to \mathcal{H}_1$ が、 リースの補題により一意に定まる。この A^{\dagger} を Aの随伴演算子 (adjoint) と呼ぶ。

随伴演算子の随伴演算子はもとの演算子であ る。つまり、 $(A^{\dagger})^{\dagger} = A$ 。

$$(A+B)^\dagger = A^\dagger + B^\dagger_{\ \bullet}$$

 $(BC)^{\dagger} = C^{\dagger}B^{\dagger}$ 。順番に注意。

ケットベクトル $|a\rangle$ は、複素数 $\beta\in\mathbb{C}$ の入力に 対して $\beta|a\rangle\in\mathcal{H}$ を出力する線形演算子 $\mathbb{C}\to$ \mathcal{H} と見なしてもよい。すると、 $(|a\rangle)^{\dagger} = \langle a|$ 、 つまり、ケットとブラは互いに随伴演算子の 関係。

複素数 α は、複素数 $\beta \in \mathbb{C}$ の入力に対して $lphaeta\in\mathbb{C}$ を出力する線形演算子 $\mathbb{C} o\mathbb{C}$ と見な してもよい。すると、 $(\alpha)^{\dagger} = \overline{\alpha}$ 、つまり、随 伴演算子は複素共役に相当。

随伴演算子 A[†] の行列表現は?

(i,j) 成分の複素共役を計算すると、

$$\overline{\langle u_i | \hat{A}^{\dagger} | u_j \rangle} = (\langle u_i | \hat{A}^{\dagger} | u_j \rangle)^{\dagger}
= (|u_i\rangle)^{\dagger} (\hat{A}^{\dagger})^{\dagger} (\langle u_i |)^{\dagger} = \langle u_i | \hat{A} | u_i \rangle$$

となり、 \hat{A} の行列表現の(j,i) 成分に等しい。 つまり、随伴演算子の行列はもとの演算子の 行列の転置複素共役をとったもの。

 \heartsuit Let $A:\mathcal{H}_1\to\mathcal{H}_2$ be a linear operator. There is a unique linear operator $A^{\dagger}: \mathcal{H}_2 \to \mathcal{H}_1$ satisfying

$$(A^{\dagger}(y), x) = (y, A(x))$$

for all $x \in \mathcal{H}_1$ and all $y \in \mathcal{H}_2$. A^{\dagger} is called the (Hilbert space or Hermitian) adjoint (随伴演算子) of A.

 $\diamond \|\hat{A}^{\dagger}\| = \|\hat{A}\|$

 $\diamond \|\hat{A}^{\dagger}\hat{A}\| = \|\hat{A}\|^2$

 $(\hat{A}^{\dagger})^{\dagger} = \hat{A}$

 $(\hat{A} + \hat{B})^{\dagger} = \hat{A}^{\dagger} + \hat{B}^{\dagger}$

 $\stackrel{\circ}{\nabla} (|\stackrel{\circ}{a}\rangle)^{\dagger} = \langle a|.$

(Regard a ket as an operator $|a\rangle: \mathbb{C} \to \mathcal{H}$.)

 $\heartsuit (\alpha)^{\dagger} = \overline{\alpha}.$

(Regard a complex number as an operator $\alpha: \mathbb{C} \to \mathbb{C}$.)

(Transpose (転置) and complex conjugate (複素共役))

計算のルールのまとめ

複素数: α, β, \ldots

ケット: $|a\rangle, |b\rangle, \dots$

ブラ: $\langle a|,\langle b|,\ldots$

線形演算子 \hat{A} , \hat{B} ,...

足し算、掛け算、adjoint(†)

adjoint は転置複素共役だと思えば、行列の計 算のルールと全く同じ。

足し算掛け算は普通にやってよいが、掛け算の順番の 交換はだめ。複素数だけは好きに順番を移して構わ ない。

$$(|a\rangle)^{\dagger} = \langle a|, \ (\alpha)^{\dagger} = \overline{\alpha}$$

X,Y は複素数、ケット、ブラ、線形演算子のいずれで もよいとして、

$$(X^{\dagger})^{\dagger} = X$$

 $(X+Y)^{\dagger} = X^{\dagger} + Y^{\dagger}$

 $(XY)^{\dagger} = Y^{\dagger}X^{\dagger}$

5. Normal operators (正規演算子)

 $A^{\dagger}=A$ を満たす線形演算子 $A:\mathcal{H}\to\mathcal{H}$ を自己随伴 (self-adjoint) 演算子またはエルミート演算子とよぶ。

自己随伴演算子の行列表現はエルミート行列。

自己随伴演算子の固有値は実数。

自己随伴演算子 \hat{A} は、ある正規直交基底 $\{u_1,\ldots,u_d\}$ を用いて「対角化できる」、すなわち、

 $\hat{A} = \sum_{j=1}^{d} \lambda_j |u_j\rangle\langle u_j|$

と書ける。 $\{\lambda_1,\ldots,\lambda_d\}$ は固有値。(スペクトル分解定理)

自己随伴演算子の kernel と range は直交する。

自己随伴演算子 \hat{A} , \hat{B} が可換 $([\hat{A},\hat{B}]:=\hat{A}\hat{B}-\hat{B}\hat{A}=0)$ なら、同じ正規直交基底で同時対角化できる。

どんな線形演算子 \hat{T} も、自己随伴演算子 \hat{A} , \hat{B} を用いて $\hat{T}=\hat{A}+i\hat{B}$ と一意に分解できる。

♣ A linear operator $A: \mathcal{H} \to \mathcal{H}$ is called **self-adjoint** (自己随伴) or **Hermitian** (エルミート) when $A^{\dagger} = A$. \heartsuit Let $\{u_i\}$ be an orthonormal basis.

 $\hat{A} = \sum_{i,j} A_{ij} |u_i\rangle\langle u_j|$ is self-adjoint iff $A_{ij} = \overline{A_{ji}}$ (エルミート行列).

♡ The eigenvalues of a self-adjoint operator are real. 証明のヒント: $\hat{A}|u\rangle = \lambda|u\rangle \Rightarrow \lambda\langle u|u\rangle = \langle u|\hat{A}|u\rangle$. $\overline{\langle u|\hat{A}|u\rangle} = \langle u|\hat{A}^{\dagger}|u\rangle = \langle u|\hat{A}|u\rangle$.

 \heartsuit (**Spectral thoerem**) A self-adjoint operator $\hat{A}: \mathcal{H} \to \mathcal{H}$ can be decomposed as

$$\hat{A} = \sum_{j=1}^{d} \lambda_j |u_j\rangle\langle u_j|,$$

where $\{|u_j\rangle\}$ is an orthonormal basis of \mathcal{H} , and $\{\lambda_j\}$ are the eigenvalues of \hat{A} .

証明のヒント:固有値 ν_1 の固有空間を V_1 とする。任意の $|\phi\rangle\in V_1$ と $|\psi\rangle\in V_1^\perp$ について、 $\langle\psi|\hat{A}|\phi\rangle=\nu_1\langle\psi|\phi\rangle=0$ 。ここで $\hat{A}^\dagger=\hat{A}$ を使うと、 $\langle\phi|\hat{A}|\psi\rangle=0$ 。つまり、 $\hat{A}|\psi\rangle\in V_1^\perp$ となり、これは \hat{A} の V_1^\perp への制限の像が V_1^\perp に含まれることを示す。 $\hat{A}:V_1^\perp\to V_1^\perp$ も自己随伴であることから、また固有値 v_2 を取ってきて繰り返せばよい。

 \heartsuit If A is self-adjoint, $\langle u|v\rangle=0$ for any $|u\rangle\in \operatorname{Ker} A$ and for any $|v\rangle\in \operatorname{Ran} A$. $(\mathcal{H}=\operatorname{Ran} A\oplus\operatorname{Ker} A)$

 \heartsuit Suppose that self-adjoint operators $\hat{A}: \mathcal{H} \to \mathcal{H}$ and $\hat{B}: \mathcal{H} \to \mathcal{H}$ satisfy $\hat{A}\hat{B} = \hat{B}\hat{A}$. Then, there exists an

orthonormal basis $\{|u_i\rangle\}$ and

$$\hat{A} = \sum_{j=1}^{d} \lambda_j |u_j\rangle\langle u_j|, \quad \hat{B} = \sum_{j=1}^{d} \lambda_j' |u_j\rangle\langle u_j|$$

証明のヒント: 先の定理から、 \hat{A} の互いに異なる固有値 ν_1,ν_2,\dots の固有空間 V_1,V_2,\dots を用いて $\mathcal{H}=V_1\oplus V_2\oplus\dots\oplus V_m$ と書ける。すると、 \hat{B} の V_k への制限の像は V_k に含まれることが次のようにしてわかる。 $|\phi_k\rangle\in V_k$ 、 $|\phi_l\rangle\in V_l(k\neq l)$ なら、 $0=\langle\phi_l|(\hat{A}\hat{B}-\hat{B}\hat{A})|\phi_k\rangle=(\nu_l-\nu_k)\langle\phi_l|\hat{B}|\phi_k\rangle$ より $\langle\phi_l|\hat{B}|\phi_k\rangle=0$ 。 よって $\hat{B}|\phi_k\rangle\in V_k$ 。 \heartsuit A linear operator $\hat{T}:\mathcal{H}\to\mathcal{H}$ is uniquely decomposed as $\hat{T}=\hat{A}+i\hat{B}$, where \hat{A} and \hat{B} are self-adjoint. 証明のヒント: $\hat{A}=(\hat{T}+\hat{T}^\dagger)/2$ 、 $\hat{B}=(\hat{T}-\hat{T}^\dagger)/(2i)$ 。

任意のベクトル $|\phi\rangle\in\mathcal{H}$ に対して $\langle\phi|\hat{N}|\phi\rangle\geq 0$ を満たす線形演算子 $\hat{N}:\mathcal{H}\to\mathcal{H}$ を正値 (positive) 演算子とよぶ。 $\hat{N}\geq 0$ と書くこともある。

正値演算子は自己随伴演算子であり、固有値は非負。

どんな線形演算子 \hat{T} でも、 $\hat{T}^{\dagger}\hat{T}>0$

 \clubsuit A linear operator $\hat{N}: \mathcal{H} \to \mathcal{H}$ is called **positive** (正値) or positive semidefinite when $\langle \phi | \hat{N} | \phi \rangle \geq 0$ for all $|\phi\rangle \in \mathcal{H}$. We write $\hat{N} \geq 0$ when \hat{N} is positive.

 \heartsuit Every positive operator is self-adjoint, and its eigenvalues are nonnegative.

証明のヒント:自己随伴演算子を使って $\hat{N}=\hat{A}+i\hat{B}$ と書く。常に $\langle \phi|\hat{N}|\phi \rangle$ が実だから、 $\langle \phi|\hat{B}|\phi \rangle=0$ 、つまり \hat{B} の固有値は全てゼロで、 $\hat{B}=0$ 。

• For every positive operator $\hat{A}: \mathcal{H} \to \mathcal{H}$, there is a unique positive operator $\hat{B}: \mathcal{H} \to \mathcal{H}$ satisfying $\hat{B}^2 = \hat{A}$. We write $\sqrt{\hat{A}} := \hat{B}$.

 \heartsuit For any linear operator $\hat{T}: \mathcal{H}_1 \to \mathcal{H}_2, \ \hat{T}^{\dagger}\hat{T}$ is positive.

 $\bullet \ |\hat{T}| := \sqrt{\hat{T}^\dagger \hat{T}}$

 $\hat{P}^2 = \hat{P}$ を満たす自己随伴演算子 $\hat{P}: \mathcal{H} \to \mathcal{H}$ を射影演算子 (projection) とよぶ。

射影演算子の固有値は0か1。

A linear operator $\hat{P}: \mathcal{H} \to \mathcal{H}$ is called **(orthogonal) projection (射影演算子)** when it is self-adjoint and $\hat{P}^2 = \hat{P}$.

 $\hat{T}\hat{T}^{\dagger}=\hat{T}^{\dagger}\hat{T}$ を満たす線形演算子 $\hat{T}:\mathcal{H}\to\mathcal{H}$ を正規 (normal) 演算子とよぶ。

正規演算子はある正規直交基底で対角化できる。

 \clubsuit A linear operator $\hat{T}:\mathcal{H}\to\mathcal{H}$ is called **normal** when $\hat{T}\hat{T}^\dagger=\hat{T}^\dagger\hat{T}.$

 \heartsuit A linear operator $\hat{T}:\mathcal{H}\to\mathcal{H}$ is normal iff it can be decomposed as

$$\hat{T} = \sum_{j=1}^{d} \lambda_j |u_j\rangle \langle u_j|,$$

where $\{|u_j\rangle\}$ is an orthonormal basis of \mathcal{H} , and $\{\lambda_j\}$ are the eigenvalues of \hat{T} .

証明のピント:自己随伴演算子を使って $\hat{T}=\hat{A}+i\hat{B}$ と書けば、 \hat{T} が正規演算子であることと $\hat{B}\hat{A}-\hat{A}\hat{B}=0$ は同値。

内積を保存する、すなわち $\hat{U}|\phi\rangle$ と $\hat{U}|\psi\rangle$ の内積が常に $\langle \phi|\psi\rangle$ に等しくなる (言い換えると、 $\hat{U}^{\dagger}\hat{U}=\hat{1}$ となる) 線形演算子 $\hat{U}:\mathcal{H}\to\mathcal{H}$ をユニタリ演算子 (unitary) とよぶ。

 $\hat{U}\hat{U}^{\dagger}=\hat{1}$ も成立。

ユニタリ演算子の行列表現はユニタリ行列。

ユニタリ演算子の固有値は絶対値1の複素数。

ユニタリ演算子はある正規直交基底で対角化 できる。

 \clubsuit A linear operator U from \mathcal{H}_1 onto \mathcal{H}_2 satisfying (U(x),U(y))=(x,y) for all $x,y\in\mathcal{H}_1$ is called **unitary** (ユニタリ演算子).

 \heartsuit A linear operator $\hat{U}: \mathcal{H}_1 \to \mathcal{H}_2$ is unitary iff $\hat{U}^{\dagger}\hat{U} = \hat{1}$ and $\hat{U}\hat{U}^{\dagger} = \hat{1}$.

• A linear operator $U:\mathcal{H}_1\to\mathcal{H}_2$ satisfying (U(x),U(y))=(x,y) for all $x,y\in\mathcal{H}_1$ is called **isometry**.

 \diamond A linear operator $\hat{U}: \mathcal{H}_1 \to \mathcal{H}_2$ is isometry iff $\hat{U}^{\dagger} \hat{U} = \hat{1}$.

 \heartsuit If \mathcal{H} is finite-dimensional and $\hat{U}: \mathcal{H} \to \mathcal{H}$ satisfies $\hat{U}^{\dagger}\hat{U} = \hat{1}$, then \hat{U} is unitary.

証明のヒント: $U|\phi\rangle=0$ なら $|\phi\rangle=0$ なので、 \hat{U} は単射。 $\dim \operatorname{Ker} \hat{U}=0$ なので、 $\dim \operatorname{Ran} U=\dim \mathcal{H}$ 、従って \hat{U} は全射でもあり、 \hat{U}^{-1} が存在してこれは \hat{U}^{\dagger} に等しい。

 \heartsuit Let $\{u_j\}$ be an orthonormal basis.

 $\hat{U} = \sum_{i,j} U_{ij} |u_i\rangle\langle u_j|$ is unitary iff

$$\sum_{k=1}^{d} U_{jk} \overline{U_{ik}} = \sum_{k=1}^{d} \overline{U_{ki}} U_{kj} = \delta_{i,j}$$

for all i, j. (ユニタリ行列)

 \heartsuit A unitary operator $\hat{U}: \mathcal{H} \to \mathcal{H}$ can be decomposed as

$$\hat{U} = \sum_{j=1}^{d} \lambda_j |u_j\rangle\langle u_j|, \ |\lambda_j| = 1$$

where $\{|u_j\rangle\}$ is an orthonormal basis of \mathcal{H} , and $\{\lambda_j\}$ are the eigenvalues of \hat{U} .

 $\{|u_j\rangle\}$ が正規直交基底で、 \hat{U} ユニタリ演算子なら、 $|v_j\rangle:=\hat{U}|u_j\rangle$ として、 $\{|v_j\rangle\}$ も正規直交基底。

逆に、任意の正規直交基底 $\{|u_j\rangle\}$ 、 $\{|v_j\rangle\}$ に対して、 $|v_j\rangle:=\hat{U}|u_j\rangle$ を満たすユニタリ演算子 \hat{U} が存在。

 \heartsuit Let $\{u_j\}$ be an orthonormal basis, and $\hat{U} = \sum_{i,j} U_{ij} |u_i\rangle \langle u_j|$ be unitary. Define

$$|v_j\rangle := \hat{U}|u_j\rangle = \sum_{i=1}^d U_{ij}|u_i\rangle.$$

Then $\{v_j\}$ is an orthonormal basis. \heartsuit Let $\{u_j\}$ and $\{v_j\}$ be orthonormal bases of \mathcal{H} . Then, there is a unitary operator $\hat{U}: \mathcal{H} \to \mathcal{H}$ such that $|v_j\rangle = \hat{U}|u_i\rangle$.

証明のヒント: $\hat{U}:=\sum_{j}|v_{j}
angle\langle u_{j}|$ 。

線形演算子の分類のまとめ

正規演算子: $\hat{N}^{\dagger}\hat{N} = \hat{N}\hat{N}^{\dagger}$ 、対角化可能。 自己随伴演算子: $\hat{A} = \hat{A}^{\dagger}$ 、固有値は実。 正値演算子: 固有値は非負。 射影演算子: 固有値は0又は1。

ユニタリ演算子: $\hat{U}^{\dagger}\hat{U} = \hat{U}\hat{U}^{\dagger} = \hat{1}$

♡ (Polar decomposition (極分解))

Any linear operator $\hat{T}: \mathcal{H}_1 \to \mathcal{H}_2$ is decomposed as $\hat{T} = \hat{U}|\hat{T}|$ where $\hat{U}: \mathcal{H}_1 \to \mathcal{H}_2$ is an isometry and $|\hat{T}| = \sqrt{\hat{T}^{\dagger}\hat{T}}$ is a positive operator. It is also decomposed as $\hat{T} = |\hat{T}^{\dagger}|\hat{U}$ with a positive operator $|\hat{T}^{\dagger}| = \sqrt{\hat{T}\hat{T}^{\dagger}}$.

証明のヒント: \hat{T} が逆を持つときは、 $\hat{U}=\hat{T}|\hat{T}|^{-1}$ とおいて $\hat{U}^{\dagger}\hat{U}=\hat{1}$ を示す。

♣ The eigenvalues of $|\hat{T}| = \sqrt{\hat{T}^{\dagger}\hat{T}}$ are called **singular** values (特異値) of \hat{T} .

6. Tensor product (テンソル積)

2 つのヒルベルト空間 \mathcal{H}_1 と \mathcal{H}_2 から、テンソル積空間 $\mathcal{H}_1 \otimes \mathcal{H}_2$ と呼ばれるヒルベルト空間が定義される。計算のルールは以下のとおり。

 $|\phi
angle\in\mathcal{H}_1,\,|\psi
angle\in\mathcal{H}_2$ のとき、 $|\phi
angle\otimes|\psi
angle$ は $\mathcal{H}_1\otimes\mathcal{H}_2$ のベクトルである。

 $\mathcal{H}_1 \otimes \mathcal{H}_2$ は線形空間だから、上の形のベクトルの線形結合もまた $\mathcal{H}_1 \otimes \mathcal{H}_2$ のベクトルである。つまり、 $|\phi_j\rangle \in \mathcal{H}_1$ 、 $|\psi_j\rangle \in \mathcal{H}_2$ 、 $\alpha_j \in \mathbb{C}$ のとき $\sum_i \alpha_j |\phi_j\rangle \otimes |\psi_j\rangle \in \mathcal{H}_1 \otimes \mathcal{H}_2$ 。

上記のように作られるベクトルの中には、見かけが違っても同じベクトルだと見なされるものがある。同じと見なすルールは、

$$\begin{split} |\phi\rangle\otimes(|\psi\rangle+|\psi'\rangle) &= |\phi\rangle\otimes|\psi\rangle+|\phi\rangle\otimes|\psi'\rangle\\ (|\phi\rangle+|\phi'\rangle)\otimes|\psi\rangle &= |\phi\rangle\otimes|\psi\rangle+|\phi'\rangle\otimes|\psi\rangle\\ \alpha(|\phi\rangle\otimes|\psi\rangle) &= (\alpha|\phi\rangle)\otimes|\psi\rangle &= |\phi\rangle\otimes(\alpha|\psi\rangle)\\ \mathbb{C}$$
 であり、⊗は掛け算に似ている。

どのベクトルがどのヒルベルト空間の元かが見やすいように、上記の $|\phi\rangle\otimes|\psi\rangle$ を $|\phi\rangle_1\otimes|\psi\rangle_2$ と書くことが多い。また、 $\mathcal{H}_1\otimes\mathcal{H}_2$ のベクトルを表す場合は $|\Phi\rangle_{12}$ のように書く。

記号 \otimes を省いて $|\phi\rangle_1|\psi\rangle_2$ と書いたり、さらに略して $|\phi\psi\rangle_{12}$ と書くこともある。このように記号でヒルベルト空間が区別されていれば、順番を入れ替えて $|\psi\rangle_2\otimes|\phi\rangle_1$ と書いてもよい。

• Let V be a linear space and R be a subspace of V. For $x \in V$, the set $S(x) := \{x + y : y \in R\}$ is called a residue class (\mathfrak{A}) .

 $\diamond \text{ If } x - x' \in R, \ S(x) = S(x').$ If $x - x' \notin R, \ S(x) \cap S(x') = \emptyset.$

• The set of all residue classes forms a linear space by defining the sum and the scalar product as follows, which is well-defined.

S(x) + S(x') := S(x + x')

 $\alpha S(x) := S(\alpha x)$

This linear space is denoted by V/R and is called a **quotient space** (商空間).

• (Tensor product of linear spaces) Let V_1 and V_2 be linear spaces. Let F be the linear space whose basis is $V_1 \times V_2 := \{\langle x, y \rangle : x \in V_1, y \in V_2\}$. Let R be the subspace of F spanned by the elements of the following forms:

 $\begin{array}{l} \langle x+x',y\rangle - \langle x,y\rangle - \langle x',y\rangle, \ \langle x,y+y'\rangle - \langle x,y\rangle - \langle x,y'\rangle, \\ \langle \alpha x,y\rangle - \alpha \langle x,y\rangle, \ \langle x,\alpha y\rangle - \alpha \langle x,y\rangle. \end{array}$

The quotient space F/R is denoted by $V_1 \otimes V_2$ and is called the **tensor product** of linear spaces V_1 and V_2 .

• When $x \in V_1$ and $y \in V_2$, $x \otimes y$ represents the element of $V_1 \otimes V_2$ that is the residue class including $\langle x, y \rangle$.

テンソル積どうしの内積の計算のルール:

まず、 $|\Theta'\rangle_{12}:=|\phi'\rangle_1\otimes|\psi'\rangle_2$ と $|\Theta\rangle_{12}:=|\phi\rangle_1\otimes|\psi\rangle_2$ の内積は、それぞれのヒルベルト空間で内積を計算し、結果を掛け算する。つまり、 $_{12}\langle\Theta'|\Theta\rangle_{12}={}_1\langle\phi'|\phi\rangle_1\times{}_2\langle\psi'|\psi\rangle_2$

さらに内積のルールに従うと、一般の場合、つまり $|\Theta'\rangle_{12}:=\sum_k \beta_k |\phi_k'\rangle_1 \otimes |\psi_k'\rangle_2$ と $|\Theta\rangle_{12}:=\sum_j \alpha_j |\phi_j\rangle_1 \otimes |\psi_j\rangle_2$ の内積が次のように計算できる。

 $_{12}\langle\Theta'|\Theta\rangle_{12} = \sum_{k,j} \beta_k \alpha_{j-1} \langle\phi'_k|\phi_j\rangle_{1-2} \langle\psi'_k|\psi_j\rangle_{2}$

 \diamond Let \mathcal{H}_1 and \mathcal{H}_2 be Hilbert spaces, and define F and R as above. Define a map $(\cdot,\cdot):F\to\mathbb{C}$ by

 $(\langle x, y \rangle, \langle x', y' \rangle) = (x, x')(y, y'),$

 $(a,b) = \overline{(b,a)},$

 $(a, b_1 + b_2) = (a, b_1) + (a, b_2),$

 $(a, \alpha b) = \alpha(a, b),$

where $x, x' \in \mathcal{H}_1, y, y' \in \mathcal{H}_2, a, b, b_1, b_2 \in F$.

If $a-a' \in R$ and $b-b' \in R$, then (a,b)=(a',b'). Thus we can define $(\cdot,\cdot):\mathcal{H}_1\otimes\mathcal{H}_2\to\mathbb{C}$.

 ϕ $(\phi, \phi) \geq 0$ for all $\phi \in \mathcal{H}_1 \otimes \mathcal{H}_2$. If $(\phi, \phi) = 0$, then $\phi = 0$. Thus (\cdot, \cdot) is an inner product.

 $(x \otimes y, x' \otimes y') = (x, x')(y, y')$

- \clubsuit (Tensor product of Hilbert spaces) We define $\mathcal{H}_1 \otimes \mathcal{H}_2$ to be F/R with the inner product (\cdot, \cdot) defined above. It is called the **tensor product** of Hilbert spaces \mathcal{H}_1 and \mathcal{H}_2 .

 $\{|u_i
angle_1\}_{i=1,2,...,d_1}$ が \mathcal{H}_1 の正規直交基底で、 $\{|v_j
angle_2\}_{j=1,2,...,d_2}$ が \mathcal{H}_2 の正規直交基底であるとき、

 $\{|u_i\rangle_1\otimes|v_j\rangle_2\}_{i=1,2,...,d_1;j=1,2,...,d_2}$

は $\mathcal{H}_1 \otimes \mathcal{H}_2$ の正規直交基底である。

次元については次のような関係がある。

 $\dim \mathcal{H}_1 \otimes \mathcal{H}_2 = \dim \mathcal{H}_1 \dim \mathcal{H}_2.$

 \heartsuit When $\{u_i\}$ and $\{v_j\}$ are orthonormal bases of \mathcal{H}_1 and \mathcal{H}_2 , respectively, $\{u_i \otimes v_j\}$ is an orthonormal basis of $\mathcal{H}_1 \otimes \mathcal{H}_2$. dim $\mathcal{H}_1 \otimes \mathcal{H}_2 = \dim \mathcal{H}_1 \dim \mathcal{H}_2$.

 $\hat{A}:\mathcal{H}_1 o\mathcal{H}_1'$ 、 $\hat{B}:\mathcal{H}_2 o\mathcal{H}_2'$ のとき、テンソル積空間の線形演算子

 $\hat{A}\otimes\hat{B}:\mathcal{H}_1\otimes\mathcal{H}_2 o\mathcal{H}_1'\otimes\mathcal{H}_2'$

 $(\hat{A}\otimes\hat{B})(|\phi\rangle_1\otimes|\psi\rangle_2)=\hat{A}|\phi\rangle_1\otimes\hat{B}|\psi\rangle_2$ で定義される。(線形結合 $\sum_j\alpha_j|\phi_j\rangle_1\otimes|\psi_j\rangle_2$ に作用した結果は、 $\hat{A}\otimes\hat{B}$ が線形であること から自動的に定まる。)

例: $\hat{A}:\mathcal{H}_1\to\mathcal{H}_1',\ _2\langle\phi|:\mathcal{H}_2\to\mathbb{C}$ のとき、 $\hat{A}\otimes_2\langle\phi|:\mathcal{H}_1\otimes\mathcal{H}_2\to\mathcal{H}_1'$ が $(\hat{A}\otimes_2\langle\phi|)(|\phi\rangle_1\otimes|\psi\rangle_2)=\hat{A}|\phi\rangle_1\times_2\langle\phi|\psi\rangle_2$ で定義される。

 $\hat{A}\otimes\hat{1}:\mathcal{H}_1\otimes\mathcal{H}\to\mathcal{H}_2\otimes\mathcal{H}$ を、略して単に \hat{A} と書くことがある。つまり、作用する相手 とヒルベルト空間が一致しない場合は、適当 に恒等演算子を補って考える。

- For $\hat{A}: \mathcal{H}_1 \to \mathcal{H}_1'$ and $\hat{B}: \mathcal{H}_2 \to \mathcal{H}_2'$, we define a linear operator $\hat{A} \otimes \hat{B}: \mathcal{H}_1 \otimes \mathcal{H}_2 \to \mathcal{H}_1' \otimes \mathcal{H}_2'$ by $(\hat{A} \otimes \hat{B})(|\phi\rangle_1 \otimes |\psi\rangle_2) = \hat{A}|\phi\rangle_1 \otimes \hat{B}|\psi\rangle_2$ and requiring the linearity.
- $\hat{A} \hat{A} \otimes \hat{1} : \mathcal{H}_1 \otimes \mathcal{H} \to \mathcal{H}_2 \otimes \mathcal{H}$ is sometimes denoted just by \hat{A} .

演算子の計算のルール:

 $\hat{A} \otimes (\hat{B} + \hat{B}') = \hat{A} \otimes \hat{B} + \hat{A} \otimes \hat{B}'$

 $\hat{A} \otimes (\alpha \hat{B}) = \alpha (\hat{A} \otimes \hat{B})$

 $(\hat{A} \otimes \hat{B})^{\dagger} = \hat{A}^{\dagger} \otimes \hat{B}^{\dagger}$

 $\hat{A}:\mathcal{H}_1\to\mathcal{H}_1',\,\hat{B}:\mathcal{H}_2\to\mathcal{H}_2'$

 $\hat{C}: \mathcal{H}'_1 \to \mathcal{H}''_1, \, \hat{D}: \mathcal{H}'_2 \to \mathcal{H}''_2$

のとき、

 $(\hat{C} \otimes \hat{D})(\hat{A} \otimes \hat{B}) = \hat{C}\hat{A} \otimes \hat{D}\hat{B}$

(入力と出力のつじつまが合っていることに注意。たとえ $(\hat{D}\otimes\hat{C})(\hat{A}\otimes\hat{B})$ と書いてあっても、計算結果はやはり $\hat{C}\hat{A}\otimes\hat{D}\hat{B}$ となる。)

どんな線形演算子 $\hat{Q}:\mathcal{H}_1\otimes\mathcal{H}_2 o\mathcal{H}_1\otimes\mathcal{H}_2$ も、テンソル積の形の演算子に分解できる。 $\hat{Q}=\sum_j \alpha_j \hat{A}_j\otimes\hat{B}_j$

 $(\hat{A}_j:\mathcal{H}_1 \to \mathcal{H}_1, \ \hat{B}_j:\mathcal{H}_2 \to \mathcal{H}_2, \ \alpha_j \in \mathbb{C})$

自己随伴演算子どうしのテンソル積は自己随 伴演算子。

正規演算子どうしのテンソル積は正規演算子。

$$\hat{A}|u\rangle_1 = \lambda|u\rangle_1$$
、 $\hat{B}|v\rangle_2 = \nu|v\rangle_2$ なら $(\hat{A}\otimes\hat{B})(|u\rangle_1\otimes|v\rangle_2) = \lambda\nu(|u\rangle_1\otimes|v\rangle_2)$

正値演算子どうしのテンソル積は正値演算子。 射影演算子どうしのテンソル積は射影演算子。 ユニタリ演算子どうしのテンソル積はユニタ リ演算子。

 \heartsuit For $\hat{A}: \mathcal{H}_1 \to \mathcal{H}_1'$, $\hat{B}: \mathcal{H}_2 \to \mathcal{H}_2'$, $\hat{C}: \mathcal{H}_1' \to \mathcal{H}_1''$, and $\hat{D}: \mathcal{H}_2' \to \mathcal{H}_2''$,

 $(\hat{C} \otimes \hat{D})(\hat{A} \otimes \hat{B}) = \hat{C}\hat{A} \otimes \hat{D}\hat{B}$

 ∇ Let $\{|u_i\rangle_1\}$ and $\{|v_j\rangle_2\}$ be orthonormal bases of \mathcal{H}_1 and \mathcal{H}_2 , respectively. Any operator \hat{Q} acting on $\mathcal{H}_1 \otimes \mathcal{H}_2$ is decomposed as

$$\hat{Q} = \sum_{i,j,i',j'} Q_{ij,i'j'} |u_i\rangle_1 \otimes |v_j\rangle_{21} \langle u_{i'}| \otimes {}_2\langle v_{j'}|$$

$$=\sum_{i,j,i',j'}^{-1} Q_{ij,i'j'} |u_i\rangle_{11} \langle u_{i'}| \otimes |v_j\rangle_{22} \langle v_{j'}|.$$

 $(\hat{A} \otimes \hat{B})^{\dagger} = \hat{A}^{\dagger} \otimes \hat{B}^{\dagger}$

© The tensor product of self-adjoint operators is self-adjoint

- \heartsuit The tensor product of positive operators is positive.
- The tensor product of unitary operators is unitary.

7. Trace (トレース)

演算子 $\hat{A}:\mathcal{H}\to\mathcal{H}$ に対して、複素数

$$\operatorname{Tr}(\hat{A}) := \sum_{j=1}^{d} \langle u_j | \hat{A} | u_j \rangle$$

を \hat{A} のトレースと呼ぶ。ここで、 $\{|u_j\rangle\}_{j=1,2,\dots}$ は \mathcal{H} の正規直交基底である。正規直交基底はいろいろあるが、トレースは正規直交基底の選び方には依存しない。

トレースは線形である、すなわち、 $\operatorname{Tr}(\alpha \hat{A} + \beta \hat{B}) = \alpha \operatorname{Tr}(\hat{A}) + \beta \operatorname{Tr}(\hat{B})$

 $\hat{B}:\mathcal{H}_1 o\mathcal{H}_2$ 、 $\hat{C}:\mathcal{H}_2 o\mathcal{H}_1$ のとき、 $\mathrm{Tr}(\hat{B}\hat{C})=\mathrm{Tr}(\hat{C}\hat{B})$

とくに、

 $Tr(|a\rangle\langle b|) = \langle b|a\rangle$

 $\operatorname{Tr}(\hat{A}) = \operatorname{Tr}(\hat{U}^{\dagger} \hat{A} \hat{U}) (\hat{U}$ はユニタリ)

 $\operatorname{Tr}(\hat{A} \otimes \hat{B}) = \operatorname{Tr}(\hat{A})\operatorname{Tr}(\hat{B})$

 $\operatorname{Tr}(\hat{A}^{\dagger}) = \overline{\operatorname{Tr}(\hat{A})}$

\$ Let $\hat{A}: \mathcal{H} \to \mathcal{H}$ be a linear operator acting on a Hilbert space \mathcal{H} . We define the **trace** of \hat{A} by

$$\operatorname{Tr}(\hat{A}) := \sum_{j=1}^{d} \langle u_j | \hat{A} | u_j \rangle$$

for an orthonormal basis $\{|u_j\rangle\}_{j=1,2,...,d}$ of \mathcal{H} . This definition is independent of the choice of the orthonormal basis $\{|u_j\rangle\}$.

- \heartsuit The mapping $\hat{A} \mapsto \text{Tr}(\hat{A})$ is linear.
- \heartsuit For $\hat{B}: \mathcal{H}_1 \to \mathcal{H}_2$ and $\hat{C}: \mathcal{H}_2 \to \mathcal{H}_1$,
- $\operatorname{Tr}(\hat{B}\hat{C}) = \operatorname{Tr}(\hat{C}\hat{B}).$
- $\heartsuit \operatorname{Tr}(|a\rangle\langle b|) = \langle b|a\rangle$
- $\nabla \operatorname{Tr}(\hat{A}) = \operatorname{Tr}(\hat{U}^{\dagger} \hat{A} \hat{U})$ when \hat{U} is unitary.
- $\nabla \operatorname{Tr}(\hat{A} \otimes \hat{B}) = \operatorname{Tr}(\hat{A}) \operatorname{Tr}(\hat{B})$
- $\nabla \operatorname{Tr}(\hat{A}^{\dagger}) = \operatorname{Tr}(\hat{A})$
- **♣** For a linear operator \hat{T} , $||\hat{T}||_1 := \text{Tr}|\hat{T}| = \text{Tr}\sqrt{\hat{T}^{\dagger}\hat{T}}$ is called the **trace norm** of \hat{T} .
- \heartsuit When \hat{A} is a normal operator with the eigenvalues $\{\lambda_j\}, \ \|\hat{A}\|_1 = \sum_j |\lambda_j|.$

♡ For $\hat{T}: \mathcal{H} \to \mathcal{H}$, $\|\hat{T}\|_1 = \max\{\operatorname{Tr}(\hat{T}\hat{V})|\hat{V}$ is unitary} 証明のヒント: $|\operatorname{Tr}(\hat{T}\hat{V})| = |\operatorname{Tr}(|\hat{T}|\hat{U}\hat{V})| \leq \operatorname{Tr}|\hat{T}|$ を示す。

 $\hat{Q}_{AB}:\mathcal{H}_A\otimes\mathcal{H}_B o\mathcal{H}_A\otimes\mathcal{H}_B$ に対して、部分トレースと呼ばれる演算子 $\mathrm{Tr}_B(\hat{Q}_{AB}):\mathcal{H}_A o\mathcal{H}_A$ を、次のように定める。まず、特殊な場合として、

 $\operatorname{Tr}_B(\hat{Q}_A \otimes \hat{Q}_B) = [\operatorname{Tr}(\hat{Q}_B)]\hat{Q}_A$

一般の場合は、部分トレースは線形であると要請すると、答えは決まってしまう。つまり、 $\hat{Q}_{AB} = \sum_j \hat{Q}_A^{(j)} \otimes \hat{Q}_B^{(j)}$ と分解されるなら、

 $\operatorname{Tr}_B(\hat{Q}_{AB}) = \sum_i \operatorname{Tr}(\hat{Q}_B^{(j)}) \hat{Q}_A^{(j)}$

 $\{|v_j
angle_B\}_{j=1,2,...}$ が \mathcal{H}_B の正規直交基底であれば、

 ${
m Tr}_B(\hat{Q}_{AB}) = \sum_{j B} \langle v_j | \hat{Q}_{AB} | v_j \rangle_B$ これを部分トレースの定義と考えてもよい。

 $\operatorname{Tr}[\operatorname{Tr}_{B}(\hat{Q}_{AB})] = \operatorname{Tr}(\hat{Q}_{AB})$ $\operatorname{Tr}_{B}(\hat{Q}_{AB}\hat{R}_{A}) = \operatorname{Tr}_{B}(\hat{Q}_{AB})\hat{R}_{A}$

 $\operatorname{Tr}_{B}(\hat{Q}_{AB}\hat{R}_{B}) = \operatorname{Tr}_{B}(\hat{R}_{B}\hat{Q}_{AB})$

 $\operatorname{Tr}_B(\hat{Q}_{AB}^{\dagger}) = [\operatorname{Tr}_B(\hat{Q}_{AB})]^{\dagger}$

 \hat{Q}_{AB} が自己随伴演算子なら、 $\mathrm{Tr}_B(\hat{Q}_{AB})$ も自己随伴演算子。

 \hat{Q}_{AB} が正値演算子なら、 $\mathrm{Tr}_B(\hat{Q}_{AB})$ も正値演算子。

- ♣ Consider \hat{Q}_{AB} : $\mathcal{H}_A \otimes \mathcal{H}_B \to \mathcal{H}_A \otimes \mathcal{H}_B$. We define a **partial trace** (部分トレース) of \hat{Q}_{AB} , $\operatorname{Tr}_B(\hat{Q}_{AB})$, to be a linear operator acting on \mathcal{H}_A determined by the following conditions:
- (1) The mapping $\hat{Q}_{AB} \mapsto \operatorname{Tr}_B(\hat{Q}_{AB})$ is linear.
- (2) $\operatorname{Tr}_B(\hat{Q}_A \otimes \hat{Q}_B) = [\operatorname{Tr}(\hat{Q}_B)]\hat{Q}_A.$
- $\nabla \operatorname{Tr}_B(\hat{Q}_{AB}) = \sum_{j B} \langle v_j | \hat{Q}_{AB} | v_j \rangle_B$ for any orthonormal basis $\{|v_j\rangle_B\}$ for \mathcal{H}_B .
- $\nabla \operatorname{Tr}[\operatorname{Tr}_B(\hat{Q}_{AB})] = \operatorname{Tr}(\hat{Q}_{AB})$
- $\heartsuit \operatorname{Tr}_B(\hat{Q}_{AB}\hat{R}_A) = \operatorname{Tr}_B(\hat{Q}_{AB})\hat{R}_A$
- $\heartsuit \operatorname{Tr}_{B}(\hat{Q}_{AB}\hat{R}_{B}) = \operatorname{Tr}_{B}(\hat{R}_{B}\hat{Q}_{AB})$
- $\heartsuit \operatorname{Tr}_B(\hat{Q}_{AB}^{\dagger}) = [\operatorname{Tr}_B(\hat{Q}_{AB})]^{\dagger}$
- \heartsuit If \hat{Q}_{AB} is self-adjoint, $\operatorname{Tr}_{B}(\hat{Q}_{AB})$ is self-adjoint.
- \heartsuit If \hat{Q}_{AB} is positive, $\operatorname{Tr}_{B}(\hat{Q}_{AB})$ is positive.