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1. Basic rules of guantum mechanics

How to describe the states of an ideally controlled system?
How to describe changes in an ideally controlled system?
How to describe measurements on an ideally controlled system?

How to treat composite systems?



How to describe the states of an ideally controlled system?

(Basic rule 1) Example of a classical system

A particle on a 1D line

e\ | e\
1\ 1 O
—

> |tis at 3.4 cm to the right of
the origin and stands still.

-

> Itis at 2.3 cm to the left of the origin
and moves to the right at 0.3 cm/sec.

Is there any common structure in the set?

Set of all the states Relation between a pair of states?

Closeness?



How to describe the states of an ideally controlled system?

(Basic rule 1) Quantum system

State A and State B may not be perfectly
distinguishable.

Distinguishablity: Can be operationally defined.

Applicable to any system

Common structure

A quantity representing the distiguishablity is
assigned to every pair of states.

Hilbert space

e Linear space over C
e Inner product (a,b)

Set of all the states e Complete in the norm ||a|| = +/(a,a)

C: set of complex numbers



How to describe the states of an ideally controlled system?

(Basic rule 1)
A physical system <« a Hilbert space H

A state <+ a ray in the Hilbert space
Usually, we use a normalized vector ¢ satisfying

(¢,6) = 1 as a representative of the ray.
(not unique: @, —@,1¢, ... )
Distinguishability —— Inner product (p,0) = (v,9) =1
(p,9)| =0 Perfectly distinguishable

0 < |(¢p,%)] <1 Partially distinguishable
(¢,)] =1 Completely indistinguishable (the same state)

Dirac notation
‘ket’ |¢p) — vector ¢ € H.
‘bra’ (¢| — linear functional (¢,-) : H — C.

(plp) — (&, %)



How to describe the states of an ideally controlled system?

(Basic rule 1)

Set of all the states Hilbert space

A state « a ray in the Hilbert space
ray including vector a % 0 is
{aala € C, a %= 0}.



How to describe changes in an ideally controlled system?

(Basic rule II)

Inner products are preserved by
unitary operations.

Reversible evolution

A unitary operator U:
— Ul Distinguishability should never be
|¢OUt> |¢|n> improved by any operation.

!

Distinguishability should be unchanged
by any reversible operation.

v :
Inner products will be preserved in any

Infinitesimal change reversible operation.

|p(t2)) = U(ta, t1)|o(t1))
[o(t + dt)) = U(t + dt, t)|p(t))
U(t+dt,t) =1 — (i/h)H(t)dt

Schrodinger equation:

Self-adjoint operator H(t):
Hamiltonian of the system

d _ A
zh£|¢(t)) = H(t)|p(t))



Classes of linear operators: # — 3 A" orthonormalbasis [, 00

T is normal <« T is diagonalizable.
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How to describe measurements on an ideally controlled system?

(Basic rule 1lI)

An ideal measurement with outcome 7 = 1,...,d

For every 73,
(1) There exists an input state |a;) that produces

outcome 3 with probability 1.

(2) Arny—-ether state produces-eutcome j
with_probabittty 0.

(3) The number of outcomes d is maximal.

|

{laj)}j=1.... 4 is an orthonormal basis of H.

——

d=dimH. Note: This is not the unique way of defining
the ‘best’ measurement. We'll see later.



How to describe measurements on an ideally controlled system?
(Basic rule 1lI)

Orthogonal measurement on an orthonormal basis{|aj>}j=1,--- d
(von Neumann measurement, projection measurement)

Input state |qb> = Zj |a,j><aj|¢> Closure relation
. , Yjlaj)a;l =1
Probability of outcome j

P(j) = |{aj|¢)|?

Measurement of an observable

Self-adjoint operator A
A =35 Njlaj) (aj
Measurement on {|aj>}j=1,---,d Assign 3 — A

J
(A) = ZP(j))\j = (plaj)(aj|lp)r; = (| A|)
J

J



How to treat composite systems?
(Basic rule V)

System A System B Subsystems
We know how to describe
each of the systems A and B.
How to describe AB as a single _ Y,
system? I

System AB Composite system
System A: Hilbert space H 4 Basis {|a;)}i=1.....d,
System B: Hﬂ)ert space Hp Basis {[b;)}j=1,.- dp
Composite system AB: Basis

Hilbert space Huyp = HA®@Hp {la;) @ [bj) bi=1,... dyj=1, dpg
Tensor product

dim(Hs @ H) =dimH4dimHp



How to treat composite systems?
(Basic rule V)

When system A and system B are independently accessed ... Q Q
State preparation Unitary evolution  Orthogonal measurement
System A ¢>A UA { ai)A}z’zl,---,dA
System B lb)B VB { bj)B}jzl,--- ,dp
Ao j=1,+,dp
SystemAB  |9)A ® |[¥)B Ua®Vp {lana®I1b)BY=1].. /4,
Separable states Local unitary
. Local measurements
operations
When system A and system B are directly interacted ... @

(WAB € HAB  Tap:Han— Hag {{Wi)aB k=12, .dAds

o &
2k oklOk) A @ V1) B Global unitary Global

Entangled states operations measurements



2. State of a subsystem

Rule for a local measurement
State after discarding a subsystem (marginal state)

Density operator
Properties of density operators
Rules in terms of density operators

Why is the density operator sufficient for description ?

Schmidt decomposition
Pure states with the same marginal state
Ensembles with the same density operator



Entanglement

System A System B
Suppose that the whole system
(AB) is ideally controlled
(prepared in a definite state). \_ -
Y
System AB

state: |P)lyp
Intuition in a ‘classical’ world:

If the whole is under a good control, so are the parts.

But ....

It is not always possible to assign a state vector to subsystem A.

What is the state of subsystem A?



Rule for a local measurement

Initial state: |P)4p

B
Measurement on
b; —1 ...



Rule for a local measurement

Initial state: |®)4p

@

Q.

P(J) Measur
4 State ]ng)A A Outcome j
Measurement on .
{IG%M}@:L d l P (i)
arbitrary \\Outcome 1 /
\

P(il§) = | alai|#;) al?

l

|

ement on

{16;)B}j=1,.- dp

Measurement on

—1
{la;i)a ® |b;)BY _1

P(i,5) = | alail (b;]|P)

P(i,5) = P(l5)P(G) = | alail\/ PG o) al?

2

. 7dB
)7t 7dA



A remark on notations

l abbreviation

= ala;| g{b;| |P)aB

B(bj|ZHB—>(C
Ta:Hs— Hag

j:A@B(bjl HARHB — H,p

afag] |
B(bj|

1945

o



Rule for a local measurement

Initial state: |®)4p

© 0.

P(J) Measurement on

X b —1 ...
State ]gbj)A Outcomeg t >B}J_1’ 4B

{ VP e a = B(bjl|P)aB }

P@5) = |lp(bjl|®) aplI?

_ B{bjl[P)aB
||B< ®) aBll

©5) A




State after discarding a subsystem (marginal state)
Initial state: |®)p

A l B
) discard
?
, Pj l Measurement on
b; =1 ...
State [¢;) 4 Outcome j tbj) BYj=1, dp

State of system A: |;) 4 With probability p; — {p;,|¢;) 4}
VPil®i)a = B(bj||P) aB

This description is correct, but dependence on
the fictitious measurement is weird...



Example

{]0), 1)} : an orthonormal basis 1
| +) = —=(]0) = [1))
{I4+),|—)}: an orthonormal basis V2
1
—(10) 410)p + |1 1
750)410)5 + 1) 411) )

o )

A B
50% 50%  4------mmmmmmm e measurement
{10) 4, 11) 4} {10)B, 1) B}

1
—(10)410) + |1 1
\/E(l >A|>/B\| Yal1)B)

o )

A B
50% 50% measurement

L) a5 | =) At wmmmmmr e {I+)B:1-)B}



Alternative description: density operator

{pj,|P;)a} ¢i)A With probability p;

PA =D PilP5) Al

Cons

Same PA
i loat —

Two different physical states could have the same density operator.
(The description could be insufficient.)

Pros VPil®5) 4 = B(b;l|P) AR
pA = 2;pjldj) anle;l = X5 /Djlbj) aaleil\/P5
= 2_ B(bjl|PN (@b} g = Trp(|®)(P[)

J
Independent of the choice of the fictitious measurement



Example

{]0),]1)} : an orthonormal basis ) = L(|0> £11))
{14+),|—)}: an orthonormal basis V2
1
——(10) 410 1 1
7500410)5 +11)411) 5)
T —
Q DA = ! 11 1 Q
A PA—§|O>AA<O‘—|—§‘ )AA( | 5
50% 50%  4------mmmmmmm e measurement
{10) 4,11) 4} {10)B,|1)B}
1
——((0) 410 1)4]1
\/§(| ) Al )/B'IQ Yall)B)
T —
1 1
Q [ﬁA = §|+>AA<+| + 2|>AA<|J Q
A B
50% 50% measurement

UA) A5 | =) AT o mmmmmmmm oo {I+)B;|-)B}



Properties of density operators

p=2ipiloi) (ol
For any |¢), (¥|plv) = 3 pil(¥]¢;)|* >0  Positive

Tr(p) = 2 pjTr(l¢)(d;])
— Zj Pj(¢j|¢j> —_— Zj pj = 1 Unit trace

Positive & Unit trace —— P = Ej Pj|¢j>(¢j|

This decomposition is
probability by no means unique!

Pure state p = |¢> <¢|
Mixed state p = Zj Pj|¢j)(¢j|

1.
Maximally mixed state: p = &1 (d=dim™H)

(=The state after random unitary operation)



Range and kernel

Range and kernel of an operator T:H—H
Ran T ={T|z) | |x) € H} (A subspace of H )

Ker T ={|z) e H | T|z) =0} (Asubspace of H)
Rank(7) = dimRan T

p :positive operator P = ij‘ﬁbj)(@j’ (pj >0)

J
Ran p : Subspace spanned by {|¢;)}

Subspace in which p > 0

Ker p : Subspace orthogonal to Ran T
Subspace in which p =10

H = (Ran p) & (Ker p)

—

Rank(p) Number of the nonzero eigenvalues of P
Pure state Rank(p) =1
Mixed state Rank(p) > 2



Rules in terms of density operators

Prepare |¢;) with probability p; Prepare p; with probability p;

=D AN p = 2.jPjP;
Unitary evolution

[Pout) = Uldin) Pout = UﬁinUT

Hint‘ﬁbout)(ﬁbout‘ — U|¢in>(¢’in‘fﬁ

Orthogonal measurement on basis {|a;)}

P(5) = [ajl¢)|? P(j) = (aj|pla;)

Hint: P(j) = (aj|#)(¢|a;)

Expectation value of an observable A

(A) = (9| Al|o) (A) = Tr(Ap)

Hint:(A) = Tr(A|¢){¢])



Rules in terms of density operators

Independently prepared systems A and B
(W)ap = [#)a @ |¥)B PAB = PA® PB

Local measurement on system B on basis {|b;)p}
VBjléj)a = B(bjl|®) A pipd’ = B(bjlpanlb;) s
Discarding system B

pa = Trp(|P)(P|) pa= Trplpapl

All the rules so far can be written in terms of density operators.



Which is the better description?

This looks natural. The system is in one of the pure states, but we just
don’t know. Quantum mechanics may treat just the pure states, and
leave mixed states to statistical mechanics or probability theory.

Best description

p = ijj‘(bjﬂqul 7

=

All the rules so far can be written in terms of density operators.

Which description has one-to-one correspondence to physical states?

Theorem: Two states {p;,|¢;)} and {q, |[¥g)}
with the same density operator are physically
indistinguishable (hence are the same state).



Schmidt decomposition

Bipartite pure states have a very nice standard form.

Any orthonormal basis  {|ai)a} {|b;)B}

D) ap =Y aijlai)albj)s
]
We can always choose the two bases such that

P)ap = Z VDilai)albi) b Schmidt decomposition

{lai)a} : Any basis that dlagonallzes pa = Trp|P)(P| = sz\az Aala;|

Proof: P)ap = Z |ai) aaail|®)ap = Z |ai) A\b

B(bjlbi)B = AB((I)HC%)A alai||®) aB
= Tr [a(ai||®)aB aB(P||a;)a]
= a(a;|Trp [|®)ap aB(®|] |a;) ] )
= a(ai|palaj)a = p;oi VPilbi) B = 1bj)B

by = alail|®)an
(unnormalized)



Entangled states and separable states
[9) A ® |¥)B >k klor) A ® |Yr) B

Separable states Entangled states
Are there any procedure to distinguish between the two classes?

—— Schmidt decomp05|t|on |(I))AB = Z \/E\QQA\E) )
= pr>po>-->ps >0

-

Schmidt number -~
{pj} :The eigenvalues of the marginal

Number of nonzero coefficients in density operators (the same for A and B)

Schmidt decomposition
= The rank of the marginal density operators ‘Symmetry’ between A and B
PA, PB The same set of eigenvalues

s = Rank(p4) = Rank(pp)

Separable states  Schmidt number =1
P1 —
Entangled states Schmidt number > 1
p12p2>0



Maximally entangled states (MES)
dmHgs=dmHp =d

0, Op

Orthonormal L . E)plr—=1o
oloel {lk)Atk=12,.4 Uk) B k=1,2,....d
i1
Maximally entangled state Z \/—E|k>A & |k>B
k=1
1. 1.
pa=-la PB=5lB

The marginal states are maximally mixed.

<1
(MES with Schmidt number s : Z ﬁvf)AVf)B )
=1



Pure states with the same marginal state

pa = Tr(|P)(P|)
pa = Trp(|WV)(V|)

|P)aB

Marginal state (unique)
PA  — |P)AB purification
\ Pure extension (not unique)
V) aB

[ [Py ap=(14® UB)W)AB}

Theorem: If |W),p and |®P),p are purifica-
tions of the same state py, state |W)4p can
be physically converted to state |®) p with-
out touching system A.



Pure states with the same marginal state

|‘U )AB

pa = Trp(|W)(V]) = TrB(lq))(CDD

Proof:

Orthonormal basis {|a;) 4} that diagonalizes p4
Schmidt decomposition

(W)aB = Z\/Emi)AWi)B
|P)aB = Z\/ﬁlaz’MIw)B

{|lns) B} Orthonormal basis

viYp = Uplui) B
{|Vz'>B} Orthonormal basis ' '

unitary ﬁB = Z \%‘)BB (Mz‘

[ P)ap = (T4 Up)|V)ap



Properties of MES (I): Local interconvertibility

All maximally entangled states have the same marginal state.
1

d d
1 1 .
©)ap == ) _laj)albi)s pa= - > laj)aale;] = ~1a
j=1 j=1
1 <& | 1
©") ap = 7 > la))albh)s pa = > laf)aala)] = S1a
j=1 j=1

— /
©)ap = 1a®Up)|®) a5 They can be converted to one another by
©)ap = (VA K iB)‘@’MB only accessing one of the subsystems.

Purification 2f PA is not unique, but there is a simple way to write down all of them.

1 a .
[P)ap = a Z alile  |®,)ap = Vd(\/pa @ 15)|®) ap is a purification of /4
j=1
Trp|P,)(Pp| = dv/pa (Tre|P)(P]) V/pa = pa

Any purification can be written as \/3(\/,@4 ® UB)@)AB



Sealed move (HLF)
Chess, Go, Shogi ...

Bb5
47}8R

N8 GO
N3 il)]

vt o e
¥l Rt 1Y o fsdivdis

Let us call it a day and shall we start over tomorrow, with Bob’s move.

While they are (suppose to be) sleeping...
 Alice should not learn the sealed move.
* Bob should not alter the sealed move.


http://i-aquos-blog.com/archives/omc062-s.jpg
http://ja.wikipedia.org/wiki/%E7%94%BB%E5%83%8F:Chess_Screenshot.PNG
http://images.google.co.jp/imgres?imgurl=http://ykoizumi5.cocolog-nifty.com/photos/uncategorized/kinko.gif&imgrefurl=http://ykoizumi5.cocolog-nifty.com/blog/cat5579641/index.html&h=230&w=230&sz=23&hl=ja&start=1&um=1&tbnid=GhRHqVcBf5p2JM:&tbnh=108&tbnw=108&prev=/images?q=%E9%87%91%E5%BA%AB&svnum=10&um=1&hl=ja&safe=off&rls=GGLG,GGLG:2006-12,GGLG:ja&sa=N

Bb5

Sealed move V) AB | arxip
» Alice should not learn the sealed move.
* Bob should not alter the sealed move. |¢>AB Pd5
If there is no reliable safe available ... 3tHA

(If there is no system out of both Alice’s and Bob’s reach ...)

‘ @ Alice has no knowledge
Bob can alter the states
pa = Trp(|W)(V]) = Trp(|P)(P|)

Function of the “safe”

{ DY = (14 ® UB)|\U>AB} cannot be realized.

Impossibility of unconditionally secure quantum bit commitment
(Lo, Mayers)



Ensembles with the same density operator

{pj,|Pj) A} |¢;) 4 with probability p;
{ak, |YK) A} Y1) 4 With probability gy
PA =22 Pildj)aa(Pjl = 2k arlr) A4k

A scheme to realize the ensemble {Pja ’ij)A}

Prepare system AB in state {|bj>B} Orthonormal basis
DY ap =D /PilPi)albj) B
J
Measure system B on basis {|bj>B}

VPil?i) 4 = B(b;||P) AB
|#;) 4 With probability p;

pa = Tr(|P)(P|)



Ensembles with the same density operator
Prepare system AB in state

\W)aB = D Varlve) albr) B
k

Apply unitary operation UB to system B

(DY ap =S /B10,) alb) B WY ap =S VaRlvr) albe) s
J k

Measure system B on basis {|bj>B} Measure system B on basis {1bx) B}
|#;) 4 with probability p; 1) 4 With probability g
{pj,|®;)a} {ak, [¥r) At

pa = Trp(|W)(V]) = Trp(|P)(P|)
P)ap=(140Up)|V)ap



Example

1
Recipe I:  1Pj;|®j)a} po =p1 = ~ [#0)a = [0) 4, |P1)a = [1)4

1

Recipe Il:  {qg, |[Yr)a} 90 = q1 = 1 Vo)A = |H)a, [Y1)a=1-)a
1 1 1 1 1.
§|0>AA(0|+§|1>AA(1\ = §\+>AA<+| +§|—>AA<—| = 51

1 measurement

(10)4l0) g + (1) 4|1)B) TSy Recipe I:

|0 =14)550] + )51

V2

\/15(|0>A|+>B+ 1) al-)B)

1 measurement -
- _ 1 N .
\/§(|+>A|O>B+| Yal1)B) 0V s. 1) o) Recipe II:




Example

1
EUO)MO)/B"‘\H)AH)B)
e Q
A B
50% 50% measurement
110) a4, 11) 4} oo 110)B, 1) B}
(Recipe |)
50% 50%
Ut)as [ =) Af wmmmmmmrm e {I+)B,1-)B}
(Recipe II)
1 measurement o
ﬁ(|O>A|O>B+ 11)4l1)B) Mos Lyt  Recipel: “i'g_(ﬂ
|0 =1+)55(0] + [-)ps(1] =
1 measurement
ﬁ(|O>A|‘|‘>BH+ 1) al-)B) = {|+)B|-)B}
(14 4l0) g + | =) 4l1) ) — measurEment J geing |y

V2 {10), 1)}



Ensembles with the same density operator

W) aB
A 1pj |®j)a} B
{qlﬂa |wk>A}

Alice Bob
Can Alice distinguish the two states Bob can remotely decide which of the
even partially? states the system Aiis in.

NO! Bob can postpone his decision
' indefinitely.
Theorem: Two states {p;,|¢;)} and {qy, |¢)} Density operator

with the same density operator are physically

R I One-to-one
indistinguishable (hence are the same state).

Physical state



