量子情報基礎

Masato Koashi，Univ．of Tokyo
1．Basic rules of quantum mechanics 2．State of subsystems
3．Qubits
4．Power of ancilla system
5．Communication resources
6．Quantum error correcting codes

1. Basic rules of quantum mechanics

How to describe the states of an ideally controlled system?
How to describe changes in an ideally controlled system?
How to describe measurements on an ideally controlled system?
How to treat composite systems?

How to describe the states of an ideally controlled system?

(Basic rule I)

Example of a classical system

A particle on a 1D line

Is there any common structure in the set?
Set of all the states
Relation between a pair of states?
Closeness?

How to describe the states of an ideally controlled system?

(Basic rule I)

Set of all the states

Quantum system

State A and State B may not be perfectly distinguishable.

Distinguishablity: Can be operationally defined.
Applicable to any system

Common structure

A quantity representing the distiguishablity is assigned to every pair of states.

Hilbert space

- Linear space over \mathbb{C}
- Inner product (a, b)
- Complete in the norm $\|a\| \equiv \sqrt{(a, a)}$

How to describe the states of an ideally controlled system?

(Basic rule I)
A physical system \leftrightarrow a Hilbert space \mathcal{H}
A state \leftrightarrow a ray in the Hilbert space
Usually, we use a normalized vector ϕ satisfying
$(\phi, \phi)=1$ as a representative of the ray.
(not unique: $\phi,-\phi, i \phi, \ldots$)
Distinguishability —— Inner product $(\phi, \phi)=(\psi, \psi)=1$

$$
\begin{aligned}
|(\phi, \psi)|=0 & \text { Perfectly distinguishable } \\
0<|(\phi, \psi)|<1 & \text { Partially distinguishable } \\
|(\phi, \psi)|=1 & \text { Completely indistinguishable (the same state) }
\end{aligned}
$$

Dirac notation

$$
\begin{aligned}
& \text { ‘ket' }|\phi\rangle-\text { vector } \phi \in \mathcal{H} . \\
& \text { ‘bra' }\langle\phi| \text { - linear functional }(\phi, \cdot): \mathcal{H} \rightarrow \mathbb{C} . \\
& \langle\phi \mid \psi\rangle-(\phi, \psi)
\end{aligned}
$$

How to describe the states of an ideally controlled system?

(Basic rule I)

Set of all the states
Hilbert space
A state \leftrightarrow a ray in the Hilbert space ray including vector $a \neq 0$ is $\{\alpha a \mid \alpha \in \mathbb{C}, \alpha \neq 0\}$.

How to describe changes in an ideally controlled system?

(Basic rule II)

Reversible evolution
A unitary operator \hat{U} :

$$
\left|\phi_{\text {out }}\right\rangle=\hat{U}\left|\phi_{\text {in }}\right\rangle
$$

Inner products are preserved by unitary operations.

Distinguishability should be unchanged by any reversible operation.

Inner products will be preserved in any reversible operation.

Infinitesimal change

$$
\begin{aligned}
& \left|\phi\left(t_{2}\right)\right\rangle=\widehat{U}\left(t_{2}, t_{1}\right)\left|\phi\left(t_{1}\right)\right\rangle \\
& |\phi(t+d t)\rangle=\widehat{U}(t+d t, t)|\phi(t)\rangle \\
& \quad \widehat{U}(t+d t, t) \cong \widehat{1}-(i / \hbar) \hat{H}(t) d t
\end{aligned}
$$

Self-adjoint operator $\hat{H}(t)$: Hamiltonian of the system

Schrödinger equation:

$$
i \hbar \frac{d}{d t}|\phi(t)\rangle=\hat{H}(t)|\phi(t)\rangle
$$

$\begin{array}{lll}\text { Classes of linear operators: } & \mathcal{H} \rightarrow \mathcal{H}^{\text {An orthonormal basis }} \text { or } \\ \text { is normal } \leftrightarrow \hat{T} \text { is diagonalizable. } & \left.\hat{T}=\sum_{j} \lambda_{j} \left\lvert\, \begin{array}{cccc}\lambda_{1} & 0 & 0 & 0 \\ 0 & \\ 0 & \lambda_{2} & 0 & 0 \\ 0 & 0 & \lambda_{3} & 0 \\ 0 & 0 & 0 & \ddots\end{array}\right.\right)\end{array}$

How to describe measurements on an ideally controlled system?

 (Basic rule III)An ideal measurement with outcome $j=1, \ldots, d$
For every j,
(1) There exists an input state $\left|a_{j}\right\rangle$ that produces outcome j with probability 1 .
(2) Ally sther state produces j with protility 0 .
(3) The number of outcomes d is maximal.

> Note: This is not the unique way of defining the 'best' measurement. We'll see later.

How to describe measurements on an ideally controlled system?

 (Basic rule III)Orthogonal measurement on an orthonormal basis $\left\{\left|a_{j}\right\rangle\right\}_{j=1, \cdots, d}$ (von Neumann measurement, projection measurement)

Input state $|\phi\rangle=\sum_{j}\left|a_{j}\right\rangle\left\langle a_{j} \mid \phi\right\rangle$
Closure relation
$\Sigma_{j}\left|a_{j}\right\rangle\left\langle a_{j}\right|=\hat{1}$
Probability of outcome j

$$
P(j)=\left|\left\langle a_{j} \mid \phi\right\rangle\right|^{2}
$$

Measurement of an observable
Self-adjoint operator \hat{A}

$$
\widehat{A}=\sum_{j} \lambda_{j}\left|a_{j}\right\rangle\left\langle a_{j}\right|
$$

Measurement on $\left\{\left|a_{j}\right\rangle\right\}_{j=1, \cdots, d} \quad$ Assign $j \rightarrow \lambda_{j}$

$$
\langle\widehat{A}\rangle \equiv \sum_{j} P(j) \lambda_{j}=\sum_{j}\left\langle\phi \mid a_{j}\right\rangle\left\langle a_{j} \mid \phi\right\rangle \lambda_{j}=\langle\phi| \widehat{A}|\phi\rangle
$$

How to treat composite systems?

(Basic rule IV)

System AB Composite system

System A: Hilbert space \mathcal{H}_{A} System B: Hilbert space \mathcal{H}_{B}

Composite system AB:
Hilbert space $\mathcal{H}_{A B}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$

Basis $\left\{\left|a_{i}\right\rangle\right\}_{i=1, \cdots, d_{A}}$
Basis $\left\{\left|b_{j}\right\rangle\right\}_{j=1, \cdots, d_{B}}$

Basis

$\left\{\left|a_{i}\right\rangle \otimes\left|b_{j}\right\rangle\right\}_{i=1, \cdots, d_{A} ; j=1, \cdots, d_{B}}$
$\operatorname{dim}\left(\mathcal{H}_{A} \otimes \mathcal{H}_{B}\right)=\operatorname{dim} \mathcal{H}_{A} \operatorname{dim} \mathcal{H}_{B}$

How to treat composite systems?

(Basic rule IV)
When system A and system B are independently accessed ...

State preparation
System A $|\phi\rangle_{A}$ $|\psi\rangle_{B}$
System B

System AB
$|\phi\rangle_{A} \otimes|\psi\rangle_{B}$ Separable states

Unitary evolution

\widehat{V}_{B}
$\left\{\left|b_{j}\right\rangle_{B}\right\}_{j=1, \cdots, d_{B}}$
$\left\{\left|a_{i}\right\rangle_{A}\right\}_{i=1, \cdots, d_{A}}$
Orthogonal measurement
$\widehat{U}_{A} \otimes \widehat{V}_{B}$ Local unitary operations
$\left\{\left|a_{i}\right\rangle_{A} \otimes\left|b_{j}\right\rangle_{B}\right\}_{i=1, \cdots, d_{A}}^{j=1, \cdots, d_{B}}$
Local measurements

When system A and system B are directly interacted ... \qquad
$|\Psi\rangle_{A B} \in \mathcal{H}_{A B} \quad \hat{U}_{A B}: \mathcal{H}_{A B} \rightarrow \mathcal{H}_{A B} \quad\left\{\left|\Psi_{k}\right\rangle_{A B}\right\}_{k=1,2, \ldots, d_{A} d_{B}}$
$\sum_{k} \alpha_{k}\left|\phi_{k}\right\rangle_{A} \otimes\left|\psi_{k}\right\rangle_{B}$
Entangled states

Global unitary operations

Global measurements

2. State of a subsystem

Rule for a local measurement
State after discarding a subsystem (marginal state)
Density operator
Properties of density operators
Rules in terms of density operators
Why is the density operator sufficient for description?
Schmidt decomposition
Pure states with the same marginal state
Ensembles with the same density operator

Entanglement

Suppose that the whole system (AB) is ideally controlled (prepared in a definite state).

System AB

state: $|\Phi\rangle_{A B}$
Intuition in a 'classical' world:
If the whole is under a good control, so are the parts.

But
It is not always possible to assign a state vector to subsystem A.

What is the state of subsystem A?

Rule for a local measurement Initial state: $|\Phi\rangle_{A B}$

Outcome j

$$
\left\{\left|b_{j}\right\rangle_{B}\right\}_{j=1}, \cdots, d_{B}
$$

Rule for a local measurement

$$
\begin{aligned}
& \text { Initial state: }|\Phi\rangle_{A B} \\
& \text { Measurement on } \\
& P(j) \downarrow \text { Measurement on } \\
& \text { State }\left|\phi_{j}\right\rangle_{A} \quad \text { Outcome } j \\
& \left\{\left|b_{j}\right\rangle_{B}\right\}_{j=1, \cdots, d_{B}} \\
& \text { Outcome } i \\
& P(i, j)=P(i \mid j) P(j)=\left.\left.\right|_{A}\left\langle a_{i}\right| \sqrt{P(j)}\left|\phi_{j}\right\rangle_{A}\right|^{2}
\end{aligned}
$$

A remark on notations

$$
\begin{aligned}
&{ }_{A}\left\langle a_{i}\right| \otimes_{B}\left\langle b_{j}\right||\Phi\rangle_{A B} \\
&={ }_{A}\left\langle a_{i}\right| \\
&\underbrace{\left(\widehat{1}_{A} \otimes_{B}\left\langle b_{j}\right|\right.}) \underbrace{}_{\text {abbreviation }} \\
&={ }_{A}\left\langle a_{i}\right|{ }_{B}\left\langle b_{j}\right||\Phi\rangle_{A B}
\end{aligned}
$$

$$
\begin{aligned}
&{ }_{B}\left\langle b_{j}\right|: \mathcal{H}_{B} \rightarrow \mathbb{C} \\
& \widehat{1}_{A}: \mathcal{H}_{A} \rightarrow \mathcal{H}_{A} \\
& \widehat{\mathrm{1}}_{A} \otimes{ }_{B}\left\langle b_{j}\right|: \mathcal{H}_{A} \otimes \mathcal{H}_{B} \rightarrow \mathcal{H}_{A}
\end{aligned}
$$

Rule for a local measurement Initial state: $|\Phi\rangle_{A B}$

State $\left|\phi_{j}\right\rangle_{A}$

$$
\sqrt{P(j)}\left|\phi_{j}\right\rangle_{A}={ }_{B}\left\langle b_{j} \| \Phi\right\rangle_{A B}
$$

$$
\begin{aligned}
P(j) & =\left\|_{B}\left\langle b_{j} \| \Phi\right\rangle_{A B}\right\|^{2} \\
\left|\phi_{j}\right\rangle_{A} & =\frac{{ }_{B}\left\langle b_{j} \| \Phi\right\rangle_{A B}}{\left\|_{B}\left\langle b_{j} \| \Phi\right\rangle_{A B}\right\|}
\end{aligned}
$$

State after discarding a subsystem (marginal state) Initial state: $|\Phi\rangle_{A B}$

discard

State of system A: $\left|\phi_{j}\right\rangle_{A}$ with probability $p_{j} \longrightarrow\left\{p_{j},\left|\phi_{j}\right\rangle_{A}\right\}$

$$
\sqrt{p_{j}}\left|\phi_{j}\right\rangle_{A}={ }_{B}\left\langle b_{j} \| \Phi\right\rangle_{A B}
$$

This description is correct, but dependence on the fictitious measurement is weird...

Example

$\{|0\rangle,|1\rangle\}$: an orthonormal basis

Alternative description: density operator

$$
\begin{gathered}
\left\{p_{j},\left|\phi_{j}\right\rangle_{A}\right\} \quad\left|\phi_{j}\right\rangle_{A} \text { with probability } p_{j} \\
\hat{\rho}_{A} \equiv \sum_{j} p_{j}\left|\phi_{j}\right\rangle_{A A}\left\langle\phi_{j}\right|
\end{gathered}
$$

Cons

$$
\begin{aligned}
& \left\{q_{k},\left|\psi_{k}\right\rangle_{A}\right\} \\
& \left\{p_{j},\left|\phi_{j}\right\rangle_{A}\right\}
\end{aligned} \longrightarrow \text { Same } \hat{\rho}_{A}
$$

Two different physical states could have the same density operator. (The description could be insufficient.)

Pros

$$
\begin{gathered}
\sqrt{p_{j}}\left|\phi_{j}\right\rangle_{A}={ }_{B}\left\langle b_{j}\right||\Phi\rangle_{A B} \\
\hat{\rho}_{A}=\sum_{j} p_{j}\left|\phi_{j}\right\rangle_{A A}\left\langle\phi_{j}\right|=\sum_{j} \sqrt{p_{j}}\left|\phi_{j}\right\rangle_{A A}\left\langle\phi_{j}\right| \sqrt{p_{j}} \\
=\sum_{j}{ }_{B}\left\langle b_{j} \| \Phi\right\rangle\left\langle\Phi \| b_{j}\right\rangle_{B}=\operatorname{Tr}_{B}(|\Phi\rangle\langle\Phi|)
\end{gathered}
$$

Independent of the choice of the fictitious measurement

Example

$\{|0\rangle,|1\rangle\}$: an orthonormal basis

$$
\overbrace{\hat{\rho}_{A}=\frac{1}{2}|+\rangle_{A A}\langle+|+\frac{1}{2}|-\rangle_{A A}\langle-|}^{\frac{1}{\sqrt{2}}\left(|0\rangle_{A}|0\rangle_{B}+|1\rangle_{A}|1\rangle_{B}\right)}
$$

Properties of density operators

$\hat{\rho} \equiv \sum_{j} p_{j}\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right|$
For any $|\psi\rangle,\langle\psi| \hat{\rho}|\psi\rangle=\sum_{j} p_{j}\left|\left\langle\psi \mid \phi_{j}\right\rangle\right|^{2} \geq 0$
Positive

$$
\begin{aligned}
\operatorname{Tr}(\hat{\rho}) & =\sum_{j} p_{j} \operatorname{Tr}\left(\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right|\right) \\
& =\sum_{j} p_{j}\left\langle\phi_{j} \mid \phi_{j}\right\rangle=\sum_{j} p_{j}=1
\end{aligned}
$$

Unit trace

Positive \& Unit trace $\longrightarrow \hat{\rho}=\sum_{j} p_{j}\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right|$
probability

This decomposition is by no means unique!

Pure state

$$
\begin{aligned}
& \hat{\rho}=|\phi\rangle\langle\phi| \\
& \hat{\rho}=\sum_{j} p_{j}\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right|
\end{aligned}
$$

Maximally mixed state: $\hat{\rho}=\frac{1}{d} \hat{1} \quad(d=\operatorname{dim} \mathcal{H})$
(=The state after random unitary operation)

Range and kernel

Range and kernel of an operator $\hat{T}: \mathcal{H} \rightarrow \mathcal{H}$

$$
\begin{array}{ll}
\operatorname{Ran} \hat{T} \equiv\{\hat{T}|x\rangle||x\rangle \in \mathcal{H}\} & \text { (A subspace of } \mathcal{H}) \\
\operatorname{Ker} \hat{T} \equiv\{|x\rangle \in \mathcal{H}|\hat{T}| x\rangle=0\} & \text { (A subspace of } \mathcal{H})
\end{array}
$$

$\operatorname{Rank}(\hat{T}) \equiv \operatorname{dim} \operatorname{Ran} \hat{T}$
$\hat{\rho}:$ positive operator $\quad \hat{\rho}=\sum_{j} p_{j}\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right| \quad\left(p_{j}>0\right)$
Ran $\hat{\rho}$: Subspace spanned by $\left\{\left|\phi_{j}\right\rangle\right\}$ Subspace in which $\hat{\rho}>0$
Ker $\hat{\rho}$: Subspace orthogonal to Ran \hat{T} Subspace in which $\hat{\rho}=0$
$\mathcal{H}=(\operatorname{Ran} \hat{\rho}) \oplus(\operatorname{Ker} \hat{\rho})$
$\operatorname{Rank}(\hat{\rho})$ Number of the nonzero eigenvalues of $\hat{\rho}$
Pure state $\operatorname{Rank}(\hat{\rho})=1$
Mixed state $\quad \operatorname{Rank}(\hat{\rho}) \geq 2$

Rules in terms of density operators

Prepare $\left|\phi_{j}\right\rangle$ with probability p_{j}

$$
\hat{\rho} \equiv \sum_{j} p_{j}\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right|
$$

Prepare $\hat{\rho}_{j}$ with probability p_{j}

$$
\hat{\rho}=\sum_{j} p_{j} \hat{\rho}_{j}
$$

Unitary evolution

$$
\left|\phi_{\text {out }}\right\rangle=\widehat{U}\left|\phi_{\text {in }}\right\rangle \quad \hat{\rho}_{\text {out }}=\hat{U} \widehat{\rho}_{\text {in }} \hat{U}^{\dagger}
$$

$$
\text { Hint: }\left|\phi_{\text {out }}\right\rangle\left\langle\phi_{\text {out }}\right|=\widehat{U}\left|\phi_{\text {in }}\right\rangle\left\langle\phi_{\text {in }}\right| \widehat{U}^{\dagger}
$$

Orthogonal measurement on basis $\left\{\left|a_{j}\right\rangle\right\}$

$$
\begin{aligned}
P(j)= & \left|\left\langle a_{j} \mid \phi\right\rangle\right|^{2} \\
& \text { Hint: } P(j)=\left\langle a_{j} \mid \phi\right\rangle\left\langle\phi \mid a_{j}\right\rangle
\end{aligned}
$$

Expectation value of an observable \hat{A}

$$
\langle\widehat{A}\rangle=\langle\phi| \widehat{A}|\phi\rangle \quad\langle\widehat{A}\rangle=\operatorname{Tr}(\widehat{A} \widehat{\rho})
$$

$$
\text { Hint: }\langle\widehat{A}\rangle=\operatorname{Tr}(\widehat{A}|\phi\rangle\langle\phi|)
$$

Rules in terms of density operators

Independently prepared systems A and B

$$
|\Psi\rangle_{A B}=|\phi\rangle_{A} \otimes|\psi\rangle_{B} \quad \hat{\rho}_{A B}=\hat{\rho}_{A} \otimes \hat{\rho}_{B}
$$

Local measurement on system B on basis $\left\{\left|b_{j}\right\rangle_{B}\right\}$

$$
\sqrt{p_{j}}\left|\phi_{j}\right\rangle_{A}={ }_{B}\left\langle b_{j}\right||\Phi\rangle_{A B} \quad \quad p_{j} \hat{\rho}_{A}^{(j)}={ }_{B}\left\langle b_{j}\right| \widehat{\rho}_{A B}\left|b_{j}\right\rangle_{B}
$$

Discarding system B

$$
\hat{\rho}_{A}=\operatorname{Tr}_{B}(|\Phi\rangle\langle\Phi|) \quad \hat{\rho}_{A}=\operatorname{Tr}_{B}\left[\hat{\rho}_{A B}\right]
$$

All the rules so far can be written in terms of density operators.

Which is the better description?

$\left\{p_{j},\left|\phi_{j}\right\rangle\right\}$
This looks natural. The system is in one of the pure states, but we just don't know. Quantum mechanics may treat just the pure states, and leave mixed states to statistical mechanics or probability theory.

All the rules so far can be written in terms of density operators.

Which description has one-to-one correspondence to physical states?
Theorem: Two states $\left\{p_{j},\left|\phi_{j}\right\rangle\right\}$ and $\left\{q_{k},\left|\psi_{k}\right\rangle\right\}$ with the same density operator are physically indistinguishable (hence are the same state).

Schmidt decomposition

Bipartite pure states have a very nice standard form.
Any orthonormal basis $\left\{\left|a_{i}\right\rangle_{A}\right\} \quad\left\{\left|b_{j}\right\rangle_{B}\right\}$

$$
|\Phi\rangle_{A B}=\sum_{i j} \alpha_{i j}\left|a_{i}\right\rangle_{A}\left|b_{j}\right\rangle_{B}
$$

We can always choose the two bases such that

$$
|\Phi\rangle_{A B}=\sum_{i} \sqrt{p_{i}}\left|a_{i}\right\rangle_{A}\left|b_{i}\right\rangle_{B}
$$

Schmidt decomposition
$\left\{\left|a_{i}\right\rangle_{A}\right\}$: Any basis that diagonalizes $\hat{\rho}_{A} \equiv \operatorname{Tr}_{B}|\Phi\rangle\langle\Phi|=\sum_{i} p_{i}\left|a_{i}\right\rangle_{A A}\left\langle a_{i}\right|$
Proof:

$$
\begin{aligned}
& \text { oof: } \quad|\Phi\rangle_{A B}=\sum_{i}\left|a_{i}\right\rangle_{A A}\left\langle a_{i}\right||\Phi\rangle_{A B}=\sum_{i}\left|a_{i}\right\rangle_{A}\left|\tilde{b}_{i}\right\rangle_{B} \\
& \begin{aligned}
\left.\left|\tilde{b}_{i}\right\rangle_{B} \equiv{ }_{A}\left\langle\tilde{b}_{j}\right| \tilde{b}_{i}| | \Phi\right\rangle_{A B} & \text { (unnormalized) } \\
& ={ }_{A B}\langle\Phi|\left|a_{j}\right\rangle_{A A}\left\langle a_{i}\right||\Phi\rangle_{A B} \\
& =\operatorname{Tr}\left[{ }_{A}\left\langle a_{i}\right||\Phi\rangle_{A B} \quad A B\langle\Phi|\left|a_{j}\right\rangle_{A}\right] \\
& \left.={ }_{A}\left\langle a_{i}\right| \operatorname{Tr}_{B}\left[|\Phi\rangle_{A B} A_{A B}\langle\Phi|\right]\left|a_{j}\right\rangle_{A}\right] \\
& ={ }_{A}\left\langle a_{i}\right| \hat{\rho}_{A}\left|a_{j}\right\rangle_{A}=p_{j} \delta_{i, j} \quad \sqrt{p_{j}}\left|b_{j}\right\rangle_{B} \equiv\left|\tilde{b}_{j}\right\rangle_{B}
\end{aligned}
\end{aligned}
$$

Entangled states and separable states

$|\phi\rangle_{A} \otimes|\psi\rangle_{B}$
$\sum_{k} \alpha_{k}\left|\phi_{k}\right\rangle_{A} \otimes\left|\psi_{k}\right\rangle_{B}$

Separable states
Entangled states
Are there any procedure to distinguish between the two classes?
\longrightarrow Schmidt decomposition

$$
\begin{array}{r}
|\Phi\rangle_{-A \bar{B}}^{=} \sum_{i=1} \sqrt{p_{i}}\left|a_{i}\right\rangle_{A}\left|b_{i}\right\rangle_{B} \\
p_{1} \geq p_{2} \geq \cdots \geq p_{s}>0
\end{array}
$$

Schmidt number

Number of nonzero coefficients in Schmidt decomposition
= The rank of the marginal density operators
$\left\{p_{j}\right\}$:The eigenvalues of the marginal density operators (the same for A and B)
‘Symmetry' between A and B
$\hat{\rho}_{A}, \hat{\rho}_{B}$ The same set of eigenvalues

$$
s=\operatorname{Rank}\left(\hat{\rho}_{A}\right)=\operatorname{Rank}\left(\hat{\rho}_{B}\right)
$$

Schmidt number = 1

$$
p_{1}=1
$$

Entangled states Schmidt number > 1

$$
p_{1} \geq p_{2}>0
$$

Maximally entangled states (MES)

$$
\operatorname{dim} \mathcal{H}_{A}=\operatorname{dim} \mathcal{H}_{B}=d
$$

Orthonormal bases

$$
\left\{|k\rangle_{A}\right\}_{k=1,2, \ldots, d} \quad\left\{|k\rangle_{B}\right\}_{k=1,2, \ldots, d}
$$

Maximally entangled state $\sum_{k=1}^{d} \frac{1}{\sqrt{d}}|k\rangle_{A} \otimes|k\rangle_{B}$

$$
\hat{\rho}_{A}=\frac{1}{d} \hat{1}_{A} \quad \hat{\rho}_{B}=\frac{1}{d} \hat{1}_{B}
$$

The marginal states are maximally mixed.
(MES with Schmidt number $s: \sum_{i=1}^{s} \frac{1}{\sqrt{s}}|k\rangle_{A}|k\rangle_{B}$)

Pure states with the same marginal state

$|\Phi\rangle_{A B} \quad \longrightarrow \hat{\rho}_{A} \quad$ Marginal state \quad (unique)
$\hat{\rho}_{A} \quad \longrightarrow|\Phi\rangle_{A B} \quad$ Purification
Pure extension (not unique)

$$
|\Phi\rangle_{A B}=\left(\hat{1}_{A} \otimes \widehat{U}_{B}\right)|\Psi\rangle_{A B}
$$

Theorem: If $|\Psi\rangle_{A B}$ and $|\Phi\rangle_{A B}$ are purifications of the same state $\hat{\rho}_{A}$, state $|\Psi\rangle_{A B}$ can be physically converted to state $|\Phi\rangle_{A B}$ without touching system A.

Pure states with the same marginal state

Proof:
Orthonormal basis $\left\{\left|a_{i}\right\rangle_{A}\right\}$ that diagonalizes $\hat{\rho}_{A}$ Schmidt decomposition

$$
\begin{aligned}
|\Psi\rangle_{A B} & =\sum_{i} \sqrt{p_{i}}\left|a_{i}\right\rangle_{A}\left|\mu_{i}\right\rangle_{B} \\
|\Phi\rangle_{A B} & =\sum_{i} \sqrt{p_{i}}\left|a_{i}\right\rangle_{A}\left|\nu_{i}\right\rangle_{B}
\end{aligned}
$$

$\left\{\left|\mu_{i}\right\rangle_{B}\right\} \quad$ Orthonormal basis

$$
\left|\nu_{i}\right\rangle_{B}=\hat{U}_{B}\left|\mu_{i}\right\rangle_{B}
$$

$$
\text { unitary } \quad \hat{U}_{B}=\sum_{i}\left|\nu_{i}\right\rangle_{B B}\left\langle\mu_{i}\right|
$$

$$
|\Phi\rangle_{A B}=\left(\widehat{1}_{A} \otimes \widehat{U}_{B}\right)|\Psi\rangle_{A B}
$$

Properties of MES (I): Local interconvertibility

All maximally entangled states have the same marginal state.

$$
\begin{aligned}
& |\Theta\rangle_{A B}=\frac{1}{\sqrt{d}} \sum_{j=1}^{d}\left|a_{j}\right\rangle_{A}\left|b_{j}\right\rangle_{B} \longmapsto \rho_{A}=\frac{1}{d} \sum_{j=1}^{d}\left|a_{j}\right\rangle_{A A}\left\langle a_{j}\right|=\frac{1}{d} \hat{1}_{A} \\
& \left|\Theta^{\prime}\right\rangle_{A B}=\frac{1}{\sqrt{d}} \sum_{j=1}^{d}\left|a_{j}^{\prime}\right\rangle_{A}\left|b_{j}^{\prime}\right\rangle_{B} \longrightarrow \rho_{A}=\frac{1}{d} \sum_{j=1}^{d}\left|a_{j}^{\prime}\right\rangle_{A A}\left\langle a_{j}^{\prime}\right|=\frac{1}{d} \hat{1}_{A}
\end{aligned}
$$

$$
|\Theta\rangle_{A B}=\left(\hat{1}_{A} \otimes \hat{U}_{B}\right)\left|\Theta^{\prime}\right\rangle_{A B}
$$

$$
|\Theta\rangle_{A B}=\left(\hat{V}_{A} \otimes \hat{1}_{B}\right)\left|\Theta^{\prime}\right\rangle_{A B}
$$

They can be converted to one another by only accessing one of the subsystems.

Purification of $\hat{\rho}_{A}$ is not unique, but there is a simple way to write down all of them. $|\Phi\rangle_{A B} \equiv \frac{1}{\sqrt{d}} \sum_{j=1}^{d}|j\rangle_{A}|j\rangle_{B} \quad\left|\Phi_{\rho}\right\rangle_{A B} \equiv \sqrt{d}\left(\sqrt{\hat{\rho}_{A}} \otimes \hat{1}_{B}\right)|\Phi\rangle_{A B}$ is a purification of $\hat{\rho}_{A}$

$$
\operatorname{Tr}_{B}\left|\Phi_{\rho}\right\rangle\left\langle\Phi_{\rho}\right|=d \sqrt{\hat{\rho}_{A}}\left(\operatorname{Tr}_{B}|\Phi\rangle\langle\Phi|\right) \sqrt{\hat{\rho}_{A}}=\hat{\rho}_{A}
$$

Any purification can be written as $\sqrt{d}\left(\sqrt{\hat{\rho}_{A}} \otimes \hat{U}_{B}\right)|\Phi\rangle_{A B}$

Sealed move（封じ手）

Chess，Go，Shogi ．．．

Let us call it a day and shall we start over tomorrow，with Bob＇s move．
While they are（suppose to be）sleeping．．．
－Alice should not learn the sealed move．
－Bob should not alter the sealed move．

Sealed move

\section*{$|\Psi\rangle_{A B}$| Bb 5 |
| :---: |
| 4六銀 |}

－Alice should not learn the sealed move．
－Bob should not alter the sealed move． If there is no reliable safe available ．．．
（If there is no system out of both Alice＇s and Bob＇s reach ．．．）

Impossibility of unconditionally secure quantum bit commitment （Lo，Mayers）

Ensembles with the same density operator

$$
\begin{array}{ll}
\left\{p_{j},\left|\phi_{j}\right\rangle_{A}\right\} & \left|\phi_{j}\right\rangle_{A} \text { with probability } p_{j} \\
\left\{q_{k},\left|\psi_{k}\right\rangle_{A}\right\} & \left|\psi_{k}\right\rangle_{A} \text { with probability } q_{k}
\end{array}
$$

$$
\hat{\rho}_{A} \equiv \sum_{j} p_{j}\left|\phi_{j}\right\rangle_{A A}\left\langle\phi_{j}\right|=\sum_{k} q_{k}\left|\psi_{k}\right\rangle_{A A}\left\langle\psi_{k}\right|
$$

A scheme to realize the ensemble $\left\{p_{j},\left|\phi_{j}\right\rangle_{A}\right\}$

Prepare system AB in state

$$
|\Phi\rangle_{A B} \equiv \sum_{j} \sqrt{p_{j}}\left|\phi_{j}\right\rangle_{A}\left|b_{j}\right\rangle_{B}
$$

$\left\{\left|b_{j}\right\rangle_{B}\right\} \quad$ Orthonormal basis

$$
\hat{\rho}_{A}=\operatorname{Tr}_{B}(|\Phi\rangle\langle\Phi|)
$$

Measure system B on basis $\left\{\left|b_{j}\right\rangle_{B}\right\}$

$$
\sqrt{p_{j}}\left|\phi_{j}\right\rangle_{A}={ }_{B}\left\langle b_{j} \| \Phi\right\rangle_{A B}
$$

$\left|\phi_{j}\right\rangle_{A}$ with probability p_{j}

Ensembles with the same density operator

Prepare system AB in state

$$
|\Psi\rangle_{A B} \equiv \sum_{k} \sqrt{q_{k}}\left|\psi_{k}\right\rangle_{A}\left|b_{k}\right\rangle_{B}
$$

Apply unitary operation \widehat{U}_{B} to system B

$$
|\Phi\rangle_{A B} \equiv \sum_{j} \sqrt{p_{j}}\left|\dot{\phi_{j}}\right\rangle_{A}\left|b_{j}\right\rangle_{B}
$$

Measure system B on basis $\left\{\left|b_{j}\right\rangle_{B}\right\}$

$$
|\Psi\rangle_{A B} \equiv \sum_{k} \sqrt{q_{k}}\left|\psi_{k}\right\rangle_{A}\left|b_{k}\right\rangle_{B}
$$

$\left|\phi_{j}\right\rangle_{A}$ with probability p_{j}

$$
\begin{gathered}
\left\{p_{j},\left|\phi_{j}\right\rangle_{A}\right\} \mid\left\{q_{k},\left|\psi_{k}\right\rangle_{A}\right\} \\
\hat{\rho}_{A}=\operatorname{Tr}_{B}(|\Psi\rangle\langle\Psi|)=\operatorname{Tr}_{B}(|\Phi\rangle\langle\Phi|) \\
|\Phi\rangle_{A B}=\left(\widehat{1}_{A} \otimes \widehat{U}_{B}\right)|\Psi\rangle_{A B}
\end{gathered}
$$

$\left|\psi_{k}\right\rangle_{A}$ with probability q_{k}

Example

Recipe I: $\left\{p_{j},\left|\phi_{j}\right\rangle_{A}\right\} \quad p_{0}=p_{1}=\frac{1}{2},\left|\phi_{0}\right\rangle_{A}=|0\rangle_{A},\left|\phi_{1}\right\rangle_{A}=|1\rangle_{A}$
Recipe II: $\left\{q_{k},\left|\psi_{k}\right\rangle_{A}\right\} \quad q_{0}=q_{1}=\frac{1}{2},\left|\psi_{0}\right\rangle_{A}=|+\rangle_{A},\left|\psi_{1}\right\rangle_{A}=|-\rangle_{A}$

$$
\frac{1}{2}|0\rangle_{A A}\langle 0|+\frac{1}{2}|1\rangle_{A A}\langle 1|=\frac{1}{2}|+\rangle_{A A}\langle+|+\frac{1}{2}|-\rangle_{A A}\langle-|=\frac{1}{2} \widehat{1}
$$

$$
\frac{1}{\sqrt{2}}\left(|0\rangle_{A}|0\rangle_{B}+|1\rangle_{A}|1\rangle_{B}\right) \frac{\text { measurement }}{\left\{|0\rangle_{B},|1\rangle_{B}\right\}} \text { Recipe I: }
$$

$$
\downarrow \hat{U}=|+\rangle_{B B}\langle 0|+|-\rangle_{B B}\langle 1|
$$

$$
\frac{1}{\sqrt{2}}\left(|0\rangle_{A}|+\rangle_{B}+|1\rangle_{A}|-\rangle_{B}\right)
$$

$$
\frac{1}{\sqrt{2}}\left(|+\rangle_{A}|0\rangle_{B}+|-\rangle_{A}|1\rangle_{B}\right) \xrightarrow[\left\{|0\rangle_{B},|1\rangle_{B}\right\}]{\text { measurement }} \text { Recipe II: }
$$

Example

$$
\begin{gathered}
\frac{1}{\sqrt{2}}\left(|0\rangle_{A}|0\rangle_{B}+|1\rangle_{A}|1\rangle_{B}\right) \xrightarrow{\text { measurement }} \\
\left.\qquad|0\rangle_{B},|1\rangle_{B}\right\}
\end{gathered} \text { Recipe I: }
$$

Ensembles with the same density operator

Can Alice distinguish the two states even partially?

Bob can remotely decide which of the states the system A is in.

Bob can postpone his decision indefinitely.

Theorem: Two states $\left\{p_{j},\left|\phi_{j}\right\rangle\right\}$ and $\left\{q_{k},\left|\psi_{k}\right\rangle\right\}$ with the same density operator are physically indistinguishable (hence are the same state).

Density operator
\downarrow One-to-one Physical state

