夏期研修会2012 ~量子情報未来テーマ開拓研究会~ 8月8日(水)~8月18日(土) 沖縄県・宮古島・ホテルブリーズベイマリーナ

量子計測と光格子時計

東京大学大学院工学系研究科 ERATO 創造時空間プロジェクト、科学技術振興機構 理化学研究所 量子計測研究室 香取秀俊

Personal research background

- Finish D. thesis in '94 in Tokyo (Prof. Fujio Shimizu)
 - Ultracold **neutral** rare-gas atoms (Ar*,Kr*), atomic interactions...
- Post doc. in Walther's group in MPQ, Garching (94.9-97.3)
 - Prof. Shimizu's suggestion: Do not join ion clock group.
 - Excitement of the Cirac-Zoller gate; a step toward QC, as later realized in Wineland's group and Blatt's group
 - Spent nearly 2 years for terrible micro-motion compensation, QC seemed far away, ...
- Fruitful Gifts from Garching
 - Huge amount of time to read Dr. Wineland's papers and his strategies
 - Never win the game as long as I follow his track
 - Glancing at In+ clock poster every day
 - We should work quickly with many atoms to recover 20 years' delay!
- Simulating ion experiments with neutral atoms (97.4-present)
 - Narrowline cooling down to μK (1999) and "magic wavelength" optical trap (1999)
- Optical lattice clock proposal at FSM 2001

Quantum Metrology

Study of <u>measurement</u> at <u>quantum limited</u> performance

Time / Frequency

Currently, NOT on temperature, weight, (voltage),... lack of quantum references NOT limited by technical noises:

- Noise from electronics circuit, detectors, ...
- Thermal noise

Time/frequency measurement is NOT limited by frequency counters but is limited by the quantum system itself (and their design).

Electron shelving technique

1原子の電子状態を量子効率100%で観測する Quantum Metrologyのエッセンス! これに代わる手法をぜひ見つけたい!

VOLUME 56, NUMBER 26

PHYSICAL REVIEW LETTERS

30 JUNE 1986

Shelved Optical Electron Amplifier: Observation of Quantum Jumps

Warren Nagourney, Jon Sandberg, and Hans Dehmelt Department of Physics, University of Washington, Seattle, Washington 98195 (Received 5 May 1986)

We demonstrate here the direct observation of quantum jumps between the $6^2S_{1/2}$ state and the $5^2D_{5/2}$ state of an individual laser-cooled Ba⁺ ion contained in a radio-frequency trap. The state detection and cooling are performed by two lasers which cause $6^2S_{1/2}-6^2P_{1/2}-5^2D_{3/2}$ transitions. In-coherent excitation to the $5^2D_{5/2}$ state (via the $6^2P_{3/2}$ level) causes the fluorescence from the $6^2P_{1/2}$ state to be suppressed for the > 30-sec lifetime of that state, after which the fluorescence reappears. The resulting "telegraph signal" provides a direct monitor of the atomic state.

双極子遷移の典型的な光子散 乱レートは10⁸/s、検出の立体 角を10⁻⁴としても10⁴個の光子 を計測可能。検出器の量子効 率PMT>10%、PD~50-99%

S

FIG. 1. Level structure of Ba⁺. The shelf level is the $5^2D_{5/2}$ state. The laser excitation is shown by the bold lines; the lamp excitation is indicated by the light solid line while the subsequent decay into the shelf level is indicated by the dashed line.

FIG. 2. A typical trace of the 493-nm fluorescence from the $6^2P_{1/2}$ level showing the quantum jumps after the hollow cathode lamp is turned on. The atom is definitely known to be in the shelf level during the low fluorescence periods.

精密計測の鉄則:

「測定値を時間・周波数の測定に置き換えること」

時間・周波数は物理計測の中で最も正確に計測 可能な物理量

- □ 1秒の定義の精度:15桁、国際原子時
- □ 長さ計測;光速度一定、時間計測へ
- □ 電圧計測;ジョセフソン効果、周波数計測へ
- K_J = 2e / h=483597.9(GHz/V);ジョセフソン定数
- □ 光格子時計のアイディア
 - ー 摂動を与えるプロトコルを周波数で定義する

内容

原子時計の実現:2状態間のエネルギー差を正確に測る方法

– デーコヒーレンスの最小のqbitの実現

- 原子時計の安定度は量子射影ノイズで原理的に制限される
- ・光格子時計の発明、「魔法波長」の発見
- 量子限界で動作する光格子時計の実現
- ・ (原子時計の)時間比較でわかること
- ・いま進めている研究

原子時計研究はなぜ面白い?

- ・ 原子時計の精度
 - 科学計測の中で桁違いの精度を誇る
 →精密計測・原子分光技術のベンチマークテスト
 スーパーカー、スパコン、スパーコライダー、…、スパクロ…
- 量子のルールだけで性能を競う(測定器の雑音を混 入させないエ夫) – Electron shelving –
- 極限的な精度で物理の根幹に迫る
- 物理として面白い上に、工学的にきっと役立つ
 - GPS、電波時計、高速ネットワーク同期…
 - 新しい工学ニーズの発掘:50年前にGPSのカーナビ応用 を考えるような斬新な発想が必要

どうやって時間を認識するか?

- 周期Tの現象を見出す:地球の自転、振り子、原子の振動...
- 繰り返しの回数nを数える:経過時間 t=n·T=n/v
- ・周期がδT狂うと、経過時間もδt=n·δTだけ狂う

→ 時計の精度: δt/t= δT/T= δv/v

- 時計精度δt/tは、振り子の周波数精度δv/vで読み替える
- δt/t=1秒/300億年、ならδv/v=δt/t=10⁻¹⁸が必要

→18桁の時計・分光精度を目指す

Building Atomic Clocks

- Believe in the constancy of fundamental constant. (Is this true?)
- Measure local oscillator frequency referencing the atomic transition
 - Excitation linewidth $\gamma \approx 1/T$ (Fourier limit for *T* interaction)
 - Data averaging for better statistics with N atoms
 - Uncertainty in frequency estimation (QPN): $\langle \delta v \rangle = \langle \Delta N \rangle / |d(Np_B)/dv| \le \frac{1}{\sqrt{Np_B}}$
- Servo control of flywheel oscillator (laser)

量子揺らぎとの戦い 原子によるレーザー周波数の最善の測定

いい原子時計を作る戦略

原子の振り子の相対的な周波数揺らぎ $\Delta v / v_0$ が指標 \rightarrow 測定の不確かさ $\Delta v \approx 10^{-3} \sim 10^{-5}$ が同程度なら、周波数 v_0 が 高いほど有利。光原子時計 ($v_0 \approx 10^{15}$ Hz) はマイクロ波のCs時 計($v_0 \approx 10^{10}$ Hz)より圧倒的に有利。ただし、ドップラー効果 $v_D = \frac{u}{c} v_0$ は例外! \rightarrow ラムディッケ束縛が重要

正確さ(Accuracy)

- 原子固有の遷移周波数からのずれの小ささ(ドップラー・シフト、電磁場の影響をなくす…)
- 原子時計の設計=電磁場がゼロの 環境整備

安定度(Stability)

- どれだけ早く、目標の不確かさに到 達できるか?
- 量子雑音が分光精度δν=γ/νNを制限
- 原子時計の安定度: δv/v₀ ≈ (γ/VN)/v₀
 - 延べ測定原子数Nの平方根でし か向上しない

「正確さ」の観点ではポールトラップ中の単一イオンが理想的

For decades, singly trapped-ions (atoms) in **Paul** traps ("50-) have been considered to be the prime candidate for future optical atomic clocks as proposed by **Dehmelt** and others ("82)

Al+ ion optical clock with uncertainty of 7.0 \times 10⁻¹⁸ (NIST group 2009.12)

見えなかった時間領域に光をあてる!

発想の転換:電磁場のエンジニアリング

- 伝統的な摂動除去の原則
 単一イオン時計の量子限界に到達
- エンジニアリングした電磁場を印加して、正確で安定な時計を目指す
 - 格子の振動基底状態に原子を凍結
 - 電磁場の影響を18桁制御可能か?
 - "光格子時計"の概念の提案

Katori 2001・FMS: 魔法波長のレーザー で原子をトラップすると、原子には摂動が 見えない

⇒原子間相互作用を排除:単一原子時計100万台と等価

強い電磁場を加えながら、正確な時計が作れるのか? 半世紀の原子時計の歴史への挑戦!

$$hv_{\text{atom}} = (E_e - E_g)$$

Light field perturbation can be eliminated, if the "Differential polarizability" is ZERO; "magic wavelength"

Katori, Ido, & Gonokami, *J. Phys. Soc. Jpn*. **68**, 2479 (1999) FORT for Rb C-QED experiment: J. McKeever *et al., Phys. Rev. Lett.* **90**, 133602 (2003).

光シフトを打ち消す魔法周波数

 周波数だけで、遷移周波数 への摂動を制御

周波数は9-12桁まで容易
 に制御可能

$$\frac{\mathrm{d}\,v_{ac}}{\mathrm{d}\,v_L} = -1 \times 10^{-9}$$

18桁精度の実現には、魔法周波数を9桁で決め、プロトコルとして共有

H. Katori, in The 6th Symposium on Frequency Standards and Metrology P. Gill, Ed. (World Scientific, 2002), pp. 323-330; Katori, Takamoto, Pal'chikov & Ovisannikov, Phys. Rev. Lett. 91,173005(2003).

光シフトを打ち消す魔法周波数

魔法波長の実証

M. Takamoto & H. Katori, Phys. Rev. Lett. 91, 223001(2003).

- 周波数だけで、遷移周波数 への摂動を制御
- 周波数は9-12桁まで容易
 に制御可能

$$\frac{\mathrm{d}\,v_{ac}}{\mathrm{d}\,v_L} = -1 \times 10^{-9}$$

18桁精度の実現には、魔法周波数を9桁で決め、プロトコルとして共有

光シフトを打ち消す魔法周波数

 周波数だけで、遷移周波数 への摂動を制御

周波数は9-12桁まで容易
 に制御可能

$$\frac{\mathrm{d}\,\boldsymbol{\nu}_{ac}}{\mathrm{d}\,\boldsymbol{\nu}_L} = -1 \times 10^{-9}$$

● 18桁精度の実現には、魔 法周波数を9桁で決め、プ ロトコルとして共有

世界3極での光格子時計の実現と 「秒の二次表現」の採択(2006.10)

A. Yamaguchi et al., Appl. Phys. Exp. 5 02270 (2

Absolute frequency - 429 228 004 229 800 (Hz)

国際度量衡委員会 (2009.10)勧告値 *f_{875r}* = 429 228 004 229 873.7 Hz 相対的不確かさ 1 x 10⁻¹⁵ →SI秒の不確かさと等価。 逆に言えば、SI秒の定義のせいで、これ以上の情報を共有することが 不可能。もう光格子時計同士で、性能を評価する他ない!

光格子時計の最適設計:光格子の幾何学と量子統計 ●フェルミ粒子を用いる「偏極1次元光格子時計」 ●ボース粒子を用いる「3次元光格子時計」

Probe

- 1次元のパンケーキ型・光格子ポテンシャ ルに複数個のフェルミ粒子を束縛
 - パウリの排他律による原子衝突の抑制
- 3次元の格子ポテンシャルにボース粒子 を1個づつ配置 - ボソンのバンチング阻止

2台の時計比較でSI秒の限界を超える

T. Akatsuka, M. Takamoto, & H.K., Nat. Phys. 2008

レーザーの周波数ノイズに埋もれて原子の量子 ノイズ限界の安定度が見えない!

- 短期(1秒以下)の安定度はレーザーに依存
- 原子をプローブするレーザー周波数が、原子と相互作用する間に も揺らぐ
- 揺らぎの原因はレーザー安定化の参照共振器の熱揺らぎ
- レーザー周波数の評価はこの揺らぎの範囲でしかできない

2台の光格子時計(⁸⁷Sr-⁸⁸Sr)の同期比較 ーレーザーノイズを相殺して量子限界に迫る一

光時計の研究動向

表1 世界中で行われている原子時計研究. 下線はすでに時計遷移の絶対周波数計測が行われている機関. Sr 光格子時計は最多の5 研究機関で 周波数の一致が検証されている. 研究機関数においては Yb 光格子時計がこれに次ぐ.

光格子時計			イオン時計 ~ S					原子核時計	
Sr	Yb	Hg	Al+	In+	Ca+	Sr+	Yb+	Hg^+	Th
東京大学-NMIJ	NIST	東京大学	NIST	MPQ	NICT	NRC	PTB	NIST	РТВ
JILA	NMIJ	SYRTE	РТВ	NICT	インスブルック大学	NPL	NPL		THOR-collaboration (米)
SYRTE	KRISS					MIKES			ウィーン工科大学
PTB	INRIM		※アルカリ土		※アルカリ原子様イオン				
NICT	デュッセルドルフ大学		類原子様イオン		S-D 電気四重極子遷移				104
NMII	FCNU		超微細混合 ¹ S。-3P。遷移		Yb ⁺ では S−F 電気八重極子遷移も観測				~ 10* S
NIN	Leito		20s		다 선생 수 소				
^{NPL} 160 s				励起 状態寿命					
NIM				au ~several yr.					
フィレンツェ大学									

- 研究のターゲットは、実験環境(レーザーの性能)とアイディア次第でどんどん変化する
- 分光線幅 $\gamma \sim 1/\tau$ とレーザースペクトル幅 $\delta \nu$ が同程度なら光シフトが少ない
- Al+、光格子時計は2001年のFMS会議で提案された
- YbのE3遷移の時計も同会議で報告されたが、あまり有望には見えなかった
- 2000年代前半に一世を風靡するかに見えた、イオンの四重極遷移は色褪せた
- 18桁のエラーバジェットが作れないと勝負にならない

時計をつなぐと面白い物理が見えてくる

Thur

L.O.

-時計と重力

- ジオイドの探索
- 物理定数の恒常性? f[Hg(α(t)²)]/f[Sr(α(t)²)]
 物理定数と重力の結合? f[Hg(α(U_a))]/f[Sr(α(U_a))]

原子の中における電子の軌道エネルギーの相対論 的補正に現れる。電磁相互作用の結合定数を表す 無次元の定数。

電磁相互作用の強さ

高安定な光時計の配信は大問題 従来の衛星による伝送10⁻¹⁵@1day 世界中で光ファイバリンクを建設中

東京圏で光格子時計のネッ トワークを作る

重**カシフトを使って測地学** ジオイド:重力の等ポテンシャ ル面、日本では東京湾の平均 海水面で定義

 $\Delta f/f=g\Delta H/c^2$

- ジオイド高は30-50 cm, or 3-5x10⁻¹⁷の不確かさでマッ ピングされている
- 時計の比較はジオイド高の測定と等価
- 地球は柔らかすぎて、長距 離にわたっての正確な時 間の共有は難しい
- 時計は、ジオイド高のセン サーになる:資源探索、地 殻の変動...

←光格子時計の周波数差を ガジェットに追加・更新間隔100秒で 1cmのジオイド差を測定

Gravity Recovery and Climate Experiment (GRACE) satellites 2台の衛星をテストマスにして重力場を図る 時間分解能1ヶ月,空間スケール数1000km程度

SCIENCE VOL 305 503 (2004) 32

18桁の周波数比較に向けて

No dead time operation of clocks

- 1/T_cより遅いレーザー
 一
 一
 ボンク

 <li
- n/T_c (< 1/ T_i)のレーザー周波数ノイズは、低周波にダウンコンバートされ ⁻ ホワイトノイズとなってレーザー安定度を劣化(Dick効果)

Frequency stability trajectory simulation

35

・光格子時計の提案と実現・17桁の測定の目処はたった

ー正確すぎて正確でなくなる新しい時間の概念一 異種原子比較による物理定数の恒常性 重力との結合の有無、…の検証 ジオイド面の揺らぎで共通の原子時の維持は不可能、時間は ローカル、測地学の新たなツール、サイエンスへ

8桁の精度をもつ究極の光格子時計

The Persistence of Memory, 1931 : Salvador Dalí

The Group

University of Tokyo/ERATO

<u>T. Takano</u>, D. Yu, K. Hashiguchi, I. Ushijima, <u>K. Yamanaka</u>, S. Okaba, T. Ohkubo, T. Oita, K. Araki, M. Tanaka / Si-cavity: <u>Y. Aso</u>, <u>N. Ohmae</u>, A. Shoda, T. Ushiba, H. K. <u>RIKEN/ERATO</u>

M. Takamoto, N. Ohmae, P. Thoumany, M. Das, B. Christensen, T. Akatsuka, M. Kobayashi, H. K.

