Observation of Coherent Quantum Phase Slip

Superconducting Quantum Cybernetics

Quantum Optics with Superconducting Atom Parallel Current Pumpimg Discrete Andreev Reflection Observation Quantum Nanomechanics Scalable Coupling Scheme Quantum Phase Slip?

Observation of Coherent Quantum Phase Slip

Riken/NEC: O. V. Astafiev, S. Kafanov, Yu. A. Pashkin, & J. S. Tsai Rutgars: L. B. loffe Jyveskyla: K. Yu. Arutyunov Weizmann: D. Shahar, O. Cohen

Exact quantum dual to Josephson tunneling ightarrow(Coulomb blockade is a "partial" dual)

M.C. Escher

Coulomb Blockade of Tunneling

tunnel junction

Exact duality

Mooij, Nazarov. Nature Physics 2, 169-172 (2006)

Phase-slip in superconducting nanowires

V

Thermal phase slip:

Finite voltage across superconducting wires

Atom in open space

MW scattering by a macroscopic

Light scattering by an atom

Natural atoms are weakly coupled to electromagnetic waves (weak scattering)

Artificial atoms are strongly coupled to electromagnetic waves

Strong scattering of propagating waves

Resonance fluorescence: Extinction at the degeneracy point

The artificial atom strongly interacts with modes of 1D open space \downarrow

Promising candidate for quantum information processing

O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Yu. A. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai. Resonance fluorescence of a single artificial atom. Science. 327 (2010).

Thank you for your attention

