FIRST夏期研修会 2011.8.13 京都大学時計台記念館 国際交流ホール

半導体中の飛行量子ビット Flying qubits in semiconductors

Yasuhiro Tokura (NTT Basic Research Laboratories)

•Introduction -flying qubit-

•Topics

•Effect of statistics

•Entanglement generation and detection

•Single electron emission and collection

•Qubit entangler

Conclusions

Self-introduction

- ・相関理化学という分野で修士課程修了。
- ・1985年 NTT入社 基礎研究所所属
- ・ 半導体物性、メゾスコピック、ナノサイエンスに従事
- ・ 1998年 オランダ・デルフトエ科大 客員研究員
- · 2004年 東京理科大 客員教授
- · 2005年 量子光物性研究部 部長
- ・興味のある研究分野
 - · 量子輸送現象、非平衡現象、量子情報処理
- 趣味等
 - ・ 音楽、バドミントン、旅行

Quantum Optical state control research group

Static qubits and flying qubits

Loss and DiVincenzo PRA (98)

Quantum wire, quantum point contact

Shot noise

For simplicity, only consider single mode, $eV >> k_BT$

Input occupation: $\langle n_{in} \rangle = 1$ Transmitted occupation: $\langle n_T \rangle = T$ Reflected occupation: $\langle n_R \rangle = R$ # fluctuation from its average $\Delta n_T \equiv n_T - \langle n_T \rangle$ Conservation of electron # $n_{in} = n_T + n_R$ 1 = T + RElectron cannot be divided $n_T = 0 \text{ or } 1$ Shot noise at zero frequency limit:

$$S_0 \propto \langle (\Delta n_T)^2 \rangle = \langle n_T^2 \rangle - \langle n_T \rangle^2$$
$$= \langle n_T \rangle - \langle n_T \rangle^2 = T(1 - T)$$

Photons - bunching

Ideal beam splitter (BS) unitary matrix (T=1/2):

$$\left(\begin{array}{c}a\\b\end{array}\right) \rightarrow \frac{1}{\sqrt{2}}\left(\begin{array}{c}1&1\\1&-1\end{array}\right)\left(\begin{array}{c}c\\d\end{array}\right)$$

Collision experiment of photon (Boson)

Shot noise in port c:

Classical limit (distinguishable particles)

BS

d

a

С

$$S_{c} \propto \langle (\Delta n_{c})^{2} \rangle \qquad \langle n_{c} \rangle = 0 \times \frac{1}{4} + 1 \times \frac{1}{2} + 2 \times \frac{1}{4} = 1$$

= $\langle n_{c}^{2} \rangle - (\langle n_{c} \rangle)^{2} \qquad \langle n_{c}^{2} \rangle = 0^{2} \times \frac{1}{4} + 1^{2} \times \frac{1}{2} + 2^{2} \times \frac{1}{4} = \frac{3}{2}$
= $2 - 1 = 1$ $S_{c} \propto \frac{1}{2}$

Electrons - anti-bunching

R.C. Liu, B. Odom, Y. Yamamoto, & S. Tarucha, Nature 391, 263 (1998).

Hanbury Brown and Twiss

W. D. Oliver, J. Kim, R. C. Liu, Y. Yamamoto, Science 284, 296 (1999).

HBT experiment with edge states

M. Henny, et al. Science 284, 296 (1999).

Quantum coherence: AB interference

T. Hatano, T. Kubo, Y. Tokura, S. Amaha, S. Teraoka, and S. Tarucha, Phys. Rev. Lett. 106, 076801 (2011).

Geometric phases

Aharonov-Bohm (AB) phase

P	=	$-i\hbar abla + eA$	Vector	potential
ϕ_{AB}	=	$\frac{1}{\hbar}\oint eoldsymbol{A}\cdot doldsymbol{l}=2\pirac{\Phi}{\Phi}$	$\frac{\dot{2}}{0}$, $\Phi_0 =$	$=\frac{h}{e}$

AB interferometer with edge states

а BS1 M1 S D1 M2 BS2 D2

Two half mirrors are made of T=1/2 QPCs. Air-bridge technology is essential.

Phase coherence length is estimated from the visibility of the AB oscillations

 $L_{\phi} \sim 24 \ \mu m @ 20 \ mK$

P. Roulleau, et al., Phys. Rev. Lett. 100, 126802 (2008).

Two-electron interference

Single electron current is independent of the flux ϕ , but current correlations are dependent on ϕ .

P. Samuelsson, E. V. Sukhorukov, and M. Buttiker, Phys. Rev. Lett. 92, 026805 (2004).

HBT experiments II

Experimental confirmation of twoelectron interference.

I. Neder, et al., Nature 448, 333 (2007).

Alternative SU(2) control of spin qubit

A. E. Popescu and R. Ionicioiu, Phys. Rev. B 69, 245422 (2004).

Two qubit interaction and C-NOT

Phys. Rev. A 63 050101(R) (2001).

Entanglement gen. with post selection

S. Bose and D. Home, Phys. Rev. Lett. 88, 050401 (2002).

Entangle source of triple quantum dots

D. S. Saraga and D. Loss, Phys. Rev. Lett. 90, 166803 (2003).

Entangler with QD and narrow-width chs.

The channels' band width should be narrow enough.

W. D. Oliver, F. Yamaguchi, and Y. Yamamoto, Phys. Rev. Lett. 88, 037901 (2002).

Robust entangler with localized spin

Rev. Lett. 87, 277901 (2001).

Verification of entanglement

$$\frac{1}{\sqrt{2}}(a^{\dagger}_{\uparrow}b^{\dagger}_{\downarrow} + a^{\dagger}_{\downarrow}b^{\dagger}_{\uparrow})|0\rangle \rightarrow -\frac{1}{\sqrt{2}}(c^{\dagger}_{\uparrow}d^{\dagger}_{\downarrow} + c^{\dagger}_{\downarrow}d^{\dagger}_{\uparrow})|0\rangle$$
$$S_{cross} = \langle \Delta I_3 \Delta I_4 \rangle > 0$$

G. Burkard, D. Loss, and E. V. Sukhorukov, Phys. Rev. B 61, R16303 (2000).

Bell inequality analysis

Bell's inequality: E(a, b) + E(a', b) + E(a, b') - E(a', b') < 2 $E(a, b) = \frac{S_{56} + S_{34} - S_{36} - S_{45}}{S_{56} + S_{34} + S_{36} + S_{45}}$

Need spin analyzer/filter.

S. Kawabata, J. Phys. Soc. Jpn 70, 1210 (2001). N. M. Chtchelkatchev, et al., Phys. Rev. B 66, 161320(R) (2002).

Perfect spin filter

A. Aharony, Y. Tokura, Guy Z. Cohen, O. Entin-Wohlman, and S. Katsumoto, Phys. Rev. B 84, 035323 (2011).

Model calculations φ T_+ T_+ π $\beta = .05\pi$ 1 1 $\beta = .15\pi$ $\frac{\pi}{2}$ 0.5 0.5 $\beta = .25\pi$ ka $\frac{3\pi}{4}$ $\frac{3\pi}{4}$ $\frac{\pi}{4}$ $\frac{\pi}{4}$ $\frac{\pi}{2}$ $\frac{\pi}{4}$ $\frac{\pi}{2}$ $\frac{\pi}{2}$ π π Condition of full fibetween Itering Transmission of the polarized electrons, T+. the AB flux ϕ and the Rashba LHS: in the band center ($\varepsilon = 0$) versus the SOI strength α AB flux ϕ . RHS: versus ka. $(n_x)'$ $(n_z)'$ $\beta = 27\pi$ 1 \ $\beta = .25\pi$ α $\frac{3\pi}{4}$ $\frac{3\pi}{4}$ $\frac{\pi}{4}$ $\frac{\pi}{4}$ π $\frac{\pi}{2}$ π $-\frac{1}{2}$ $\beta = .23\pi$

Outgoing spin components as a function of the Rashba SOI strength α . The lower panel shows the actual spin directions in the xz-plane for $\beta = \pi/4$, as a increases from zero to π (left to right).

Electron-hole entanglement

C. W. J. Beenakker, C. Emary, M. Kindermann, and J. L.van Velsen, Phys. Rev. Lett. 91, 147901 (2003).

Electron-hole interferometer

Proposed device using single edge state

D. Frustaglia and A. Cabello, Phys. Rev. B 80, 201312R (2009).

Encapsulated flying qubits

IDT: interdigitated transduser CAP: coherent acoustic phonon

Stroboscopic photoluminescence image

Piezo-electric material, like GaAs, forms moving (dynamic) quantum dots (DQDs) by the surface acoustic waves (SAWs).

J. A. H. Stotz, R. Hey, P. V. Santos and K. H. Ploog, Nature Materials 41, 585 (2005).

Spin rotates

The spin rotation is induced from the internal magnetic field originating from the spin-orbit interactions.

Spin coherence length > 100 μ m!

H. Sanada, et al., Phys. Rev. Lett. 106, 216602 (2011).

Quantized current by SAW

SAW can accommodate a few electrons per period.

$$I = nef$$

V. I. Talyanskii, et al., Phys. Rev. B 56, 15180 (1997).

Single electron source

 $\begin{array}{c|c} B & R_q = h/2e^2 & C_q & C \\ \hline & & & \\ g_q & & \\ \hline & & \\ g_q & & \\ \end{array}$

Pulse signal to the gate electrodes, release single electron/hole to the reservoir

J. Gabelli, et al., Science 313, 499 (2006). G. Feve, et al., ibid 316, 1169 (2007).

Y. Avishai and Y. Tokura, Phys. Rev. Lett. 87, 9703 (2001). *A. T. Costa, Jr., S. Bose, and Y. Omar, Phys. Rev. Lett.* 96, 230501 (2006).

Quantum teleportation with flying qubits

Trick: for (1) and $J_2=J_3$, no dynamics by $H=J(S_2+S_3)\sigma$ for spin singlet!

Usage of SAW would be promising.

F. Ciccarello, S. Bose, and M. Zarcone, Phys. Rev. A 81, 042318 (2010).

Conclusions

•*I reviewed recent progress on the research of realizing flying qubits in semiconductor systems.*

•There are many proposals to generate entangled flying qubits, but not yet experimentally confirmed.

•Singlet electron sources and spin filters are proposed and start being demonstrated.

•Surface acoustic wave is a promising technology since it generates encapsulated flying qubits with amazingly long spin coherence length.

•Using flying qubits and an entangler of localized qubits is another interesting direction of the research.

Thank you.

Collaborators:

- M. Yamamoto, A. Oiwa, S. Tarucha (Univ. Tokyo)
- Y. Avishai, A. Aharony, O. Entin-Wohlman (Ben-Gurion Univ.) T. Kubo (NTT BRL)