First Program & Quantum Cybernetics

15 December 2011 Kyoto

Development of Optical Lattice Quantum Simulator

Kyoto University, JST

Y. Takahashi

First Program :

Analogue Quantum Computer/Quantum Simulation

- Kyoto Group : ultracold atoms in optical lattice
- Osaka Group : cold ions in ion-traps
- Tokyo Group : exciton(-polaritons) in semiconductors

Quantum Cybernetics : Quantum Control of Cold AtomsKyoto Group: ultracold atoms in OLNTT(Mukai) Group : cold atoms in atom chipsGakushuin Group: BEC in optical trap

Kyoto Group:

Quantum Simulation of Hubbard Model

This presentation

Poster by Dr. Yamazaki

Quantum Feedback Control

Poster by Dr. Inoue

Poster by Mr. Taie

Collaborators

NTT: K. Inaba M.Yamashita

Geneva: A. Tokuno, T. Girmarchi

Ben Li, Y. Nakamura, R. Yamazaki, S. Sugawa, YT, Y. Takasu, R. Inoue,
H. Shimizu, S. Nakajima, S. Uetake, Y. Yoshikawa, H. Hara, (S. Kato, K. Takahashi)
H. Konishi, Y. Kikuchi, H. Yamada, R. Yamamoto, S. Taie, R. Namiki, K. Shibata,
(Undergraduate: K. Nishimura, T. Nishio, T. Seki, S. Watanabe)

Outline of Talk

Quantum Simulation of Hubbard Model

— Realization of SU(6) Mott Insulator

— High-Resolution Spectroscopy

Phase Diagram of Repulsive Fermi Hubbard Model

[T. Esslinger, Annu. Rev. Condens. Matter Phys. 2010. 1:129-152]

[T. Moriya and K. Ueda, Rep. Prog.Phys. 66(2003)1299]

Beyond SU(2) Physics: Extension to Larger Spin Degrees of Freedom

$$H_{\text{int}} = \frac{4\pi\hbar^2 a_s}{M} \delta(\vec{r}_1 - \vec{r}_2) \text{ SU(N) system}$$

<u>SU(N) algebra:</u>

spin permutation operators (generators of SU(N) rotations)

$$S_n^m = c_n^+ c_m \qquad [S_n^m, S_q^p] = \delta_{mq} S_n^p - \delta_{pn} S_q^m$$
$$\longrightarrow \qquad [H_{\text{int}}, S_n^m] = 0$$

Physics of large-spin Fermi gas:

E. Szirmai and J. Solyom, PRB71, 205108(2005), K. Buchta, et al., PRB75, 155108(2007)
M. A. Cazalilla, *et al.*, N. J. Phys11, 103033(2009), M. Hermele *et al.*, PRL 103, 135301(2009)
A. V. Gorshkov, *et al.*, Nat. Phys. 6, 289(2010), etc Valence-Bond Solid, ...

SU(6) Fermion : Realized

Spin Degrees of Freedom is Cool

Pomeranchuk Cooling [Pomeranchuk, (1950)]

- \longrightarrow Discovery of Superfluid ³He by Osheroff, Lee, Richardson
- "Pomeranchuk Cooling of an Atomic Gas"

Initial state: Spin *de*polarized and also with *degeneracy*:

Final state: Spin *de*polarized and also with *localization*

"entropy flows from **motional** degrees of freedom to **spin**, which results in the low temperature"

Next Step: If $T/T_F = 0.14$ then $s_{ini} \sim k_B \pi^2 T/T_F < s_{fin} \sim k_B \ln(N)$

Outline of Talk

Quantum Simulation of Hubbard Model

— Realization of SU(6) Mott Insulator

— High-resolution spectroscopy

New Possibility: High-Resolution Laser Spectroscopy of Strongly Correlated Quantum Many-body System

Ultra-narrow Optical Transitions in Yb

Spectroscopy of Atoms in a Mott Insulating State

Superfluid-Mott Insulator Transition

Outline of Talk

• Quantum Simulation of Hubbard Model

— Realization of SU(6) Mott Insulator

— High-resolution spectroscopy

Prospects: Simulation of Impurity in Superfluid

[F. M.Spiegelhalder, *et a*l, PR L(2009). K. Targonska and K. Sacha, PR A(2010) R. B. Diener and M. Randeria, PRA(2010) E. Vernier, *et al*, arXiv(2010).]

"Anderson Localization" T_c vs Impurities

Poster by Dr. Nakajima

Heavy Impurity (Yb) in a Superfluid (Li) " $M_{Yb}/M_{li} \sim 29$ "

 $T/T_F = 0.08 \pm 0.02$ T = 280 ± 20 nK

 $T/T_F = 0.07 \pm 0.02 T/T_F = 0.52 \pm 0.12$

[H. Hara et al., Phys. Rev. Letters 106, 205304 (2011):Editor's Suggestion]

Prospects: Super-Lattice

 174 Yb BEC N=8 × 10⁴

"decorated square lattice" [PRA**80**, 063622(2009)]

"dp model"

Summary

Quantum Simulation of Hubbard Model

— Realization of SU(6) Mott Insulator Demonstration of New Atom Cooling :Pomeranchuk Cooling

Starting Point Towards SU(6) Quantum Magnetism

— High-resolution spectroscopy Possible New Probe of Quantum Critical Behaviors

• **Prospects**

Yb-Li Quantum Mixture : Simulation of Impurity problem Super-Lattice