December 14, 2011 General meeting of FIRST Quantum Information Processing Project

Fabrication process of Al small Josephson junctions for quantum bits

Mutsuo Hidaka and *Masaaki Maezawa

International Superconductivity Technology Center *National Institute of Advanced Industrial Science and Technology

Collaborators ISTEC: T. Satoh, S. Nagasawa, K. Hinode and Y. Kitagawa AIST: R. Noguchi, M. Yamagishi, T. Horikawa and H. Akinaga NTT: T. Maruyama

First step: fabrication of Al small (~50 nm) Josephson junctions

Challenges

Conventional Contact through Via-hole

- Deposition of smooth and grain size controlled Al.
- Patterning of small JJs(~50 nm).
- Etching Al small JJs by Chlorine RIE.
- Contact formation between JJs and the counter electrode.
 - Etc.

Contact Formation by using CMP = Exposure of Counter Electrode of JJ

Contact Formation

Si

Process sequence

trilayer deposition (dc magnetron sputtering)

etching

SiO₂ deposition (bias sputtering)

CMP

COU deposition (dc magnetron sputtering)

etching

Al JJ Process Ver. 1

01/late	CAD data + AI/AIO _x /AI films sent to SCR					
	JJ: EB lithography + etching + cleaning					
02/25 02/28-03/03 03/07 03/07 03/08 03/08 03/09 03/11	wafers sent to ISTEC BAS: EB lithography + dev. BAS etching + cleaning SiO ₂ deposition CMP COU: Al deposition alignment window: EB lithography + dev. + etching cleaning					
03/30	wafer sent to Maruyama-san NTT					
May	COU: EB lithography + dev. + etching + cleaning dicing					
	Characterization: I-V, SEM, (TEM)					

Damage by the earthquake

- Unplanned stop of machines
- Mechanical damage to buildings/machines
 some need repairing
- Limited electricity supply
 - no air-conditioning in cleanrooms
- Leakage in waste-water pipelines in Tsukuba Central area

Al JJ Process Ver. 1

CAD Pattern

Endpoint Detection Trouble

Pattern Size Dependence of CMP

Pattern in Process Ver. 1

BAS Pattern: too large Endpoint Detection Trouble

➔ Under-polished or Over-polished CMP

Al-JJ Cross-sectional SEM (SCR: Yamagishi)

Optical Micrograph (NTT)

Characterization (NTT)

Optical Micrograph after Dicing

2-probe Measurement at R.T.

	_	-									
どの時には、10年に、	H	JJ径	A1	C1	C2	C3	E1	E2	E3		
6の抵抗値:4Ω程度	1	2.0	3.89	8.18	1.73	5.88	25.19	9.12	3.91		
	2	0.8	3.88	8.57	8.56	0.10	16.64	4.26	3.91		
	3	0.4	3.89	10.17	9.04	0.00	20.08	0.30	3.91		
	4	2.0	4.29	10.17	8.73	5.37	20.00	4.05	3.91		
	6	3.0	3.91	9.91	0.83	6.90	16.00	17.64	3.91		
	7	1.0	4.22	6.88	7.16	6.41	30.12	5.86	3.91		
	8	1.0	5.19	9.77	6 35	6.22	20.62	4 31	3.92		
	9	0.6	5.15	5.07	6.09	5.85	28.49	4.03	7.65		
	10	0.0	5.07	9,94	6.23	6.72	29.76	3.91	13.07		
	11	0.3	5.00	10.73	7.13	5.99	39.68	5.09	3.92		
	12	0.3	4.98	10.60	6.83	5.28	16.67	3.91	3.92		
	13	0.1	6.10	10.78	7.08	7.14	41.67	9.47	3.92		
	14	0.1	5.93	9.91	7.31	6.47	36.10	3.91	7.24		
	-										_
								1 Y Y Y			
· · · · · ·						1 1 1		1 Y Y			5 S S
	÷							1 F			
· · · · · ·						-		1 E			
· · · · · ·		- · · •						1 A A			
								1 I.			BG ·
					 .			L L.			
					. . .			L L.			
	- 1										
								1 Y Y		1.1	
· · · · ·								1 F		- 1 - 1	1 A A
	•						• • • •			· · ·	
		14	13 12	11	10 9	8 7	6	5 4	3 2	1	
— L L	· · .		1	النناك		1999 (P. 1997	i lini		less less	التقتار و	
1											

4-probe Measurement at *T* = 14 mK E1 chip

Next Process Ver. 2

We need

- Design: Small BAS Pattern to ensure end-point detection of CMP
- Ion Milling Optimization
- Readjustment of fabrication machines

Process Sequence	No.1	No.2
1) Trilayer Deposition (ISTEC)	\checkmark	\checkmark
2) JJ Etching (SCR)	\checkmark	\checkmark
3) JJ Protection (JP) Layer		\checkmark
4) BAS Etching (SCR)	\checkmark	\checkmark
5) SiO ₂ Deposition (SCR or ISTEC	2) ✓	\checkmark
6) CMP (ISTEC)	\checkmark	\checkmark
7) BC contact Etching (NPF/ISTE	C)	\checkmark
8) COU deposition (ISTEC)	\checkmark	\checkmark
9) COU Etching (NPF/ISTEC)	\checkmark	\checkmark

3) JJ Protection Layer : PCVD SiO₂ or Anordization
 5) SiO₂ Deposition : PCVD SiO₂ or Bias-sputter SiO₂

AIST facilities: status quo

- Clean rooms restarted at the end of July
- No long-term electricity cut-off
- No more electricity-saving requirement
- Restoration of most facilities and machines
- Condition changes for some machines → re-adjustment

Al/AlOx/Al JJ process ver. 2

- Feedback from ver. 1 bottom-electrode design, wiring layer etch
- Other improvements protection layer, PECVD SiO2, resist slimming
- Parallel processing of 2 variants (ver. 2-a/2-b)

Ver. 2: improvements (1)

- Narrow bottom electrode design
 - \rightarrow uniform planarization

- Wiring layer (M3) etch:
 - optimum ion-milling condition
 - additional wet etch after ion-milling

Ver. 2: improvements (2)

• Additional protection layer

- Plasma enhanced CVD (PECVD) SiO2 (Ver. 2-a)
 - better coverage, lower defect-density
 - low growth temperature < 250C

(cf. ~350C for standard semiconductor process)

Ver. 2: improvements (3)

- Resist slimming technique high-aspect pillar-shape resist
 - → tumbling during development/cleaning
 EB resist slimming by dry O2 ashing

Ver. 2: process flow

Ver. 2-a		Ver. 2-b		
process	facility	process	facility	
(1) AI/AIOx/AI deposition		(1) AI/AIOx/AI deposition	SCD	
(2) u-electrode patterning		(2) u-electrode patterning	SCR	
(3) protection layer deposition PECVD SiO2	SCR	(3) protection layer deposition anodized AlOx	Bldg. 4-4	
(4) b-electrode patterning		(4) b-electrode patterning	NPF Bldg. 4-4	
(5) insulation layer deposition				
PECVD SiO2		(5) insulation layer deposition	Bldg. 4-4	
(6) planarization	Bldg. 4-4	sputtered SiO2		
(7) via-hole patterning	NPF	(6) planarization		
(8) wiring deposition	Bldg. 2-8	(7) via-hole patterning	NPF	
(9) wiring patterning	NPF	(8) wiring deposition	Bldg. 2-8	
	Bldg. 4-4	(9) wiring patterning	NPF	
upper-electrode Al	(M2)		Bldg. 4-4	
tunnel-barri AlOx (BR)	er wiring AI (M3)			

(11)

bottom-electrode Al (M1)

SiO2 (10)

Mask design

Preliminary result

Al patterning with resist slimming

Successful fabrication of Al pillar with d < 50 nm

Short-term plan

Summary

• Integration technology for supercond. qbits

• Earthquake during process ver. 1

• Unsuccessful results of ver. 1

• Process improvements in ver. 2