Development of Optical Frequency Standards and Verification of Their Equivalence Over Long Distance

National Institute for Information and Communications Technology (NICT)

Y. Koyama, M. Fujieda, H. Hachisu, T. Ido, M. Kumagai, Y. Li, C. Locke, K. Matsubara, S. Nagano, N. Shiga, and A. Yamaguchi

Contents

- Improvement of ⁸⁷Sr lattice clock at NICT
- Absolute frequency measurement through TAI (International Atomic Time)
- Direct frequency comparison between UT and NICT over optical fiber link
- Summary and future plan

⁸⁷Sr lattice clock

UT-NICT fiber link

Sr lattice clock @ NICT

"Tentative" clock laser for lattice clock

Long cavity such as 30cm length or cold (T=120K) cavity will be standard in a few years.

For a moment, we used simple cylindrical cavity of 10cm length, which is the cheapest ULE cavity.

Short term instability: 5e-15

(limited by seismic noise)

Instead, at this point, clock laser for Ca⁺ clock has better instability of 2e-15@1s in NICT. Different way of holding the cavity has reduced vibration sensitivity

Slow excursion (0.1-2Hz) of cavity resonance was canceled by referring the Ca⁺ clock laser.

Possible future application

- One "super-good cavity" for multiple optical clocks in T&F institute
- cold cavity made of silicon in IR \rightarrow visible wavelength of atomic clock transitions

Stability of good clock laser transferred to another clock laser

Evaluation of systematic uncertainty

Contributor	Correction (10 ⁻¹⁶)	Uncertainty (10 ⁻¹⁶)
AC Stark (lattice)	2	2
AC Stark (probe)	0.2	0.2
Collision	-0.9	3
Blackbody radiation	53	2
2 nd zeeman	5	2
Gravity	-83	1
Servo error	0	0.5
Total	-24	5

Total Systematic uncertainty: 5×10^{-16}

Absolute frequency measurement

CIPM: Frequency recommended by BIPM based on the frequencies measured by UT, JILA, and SYRTE

429 228 004 229 873.9 (1.4) Hz

Absolute frequency measured in NICT

Sr lattice clocks are accurate in 10⁻¹⁶ level.

As far as we express in "Hz", however, the comparison never reaches 10⁻¹⁶ level

Hard wall at 1 × 10⁻¹⁵ in Cs-based frequency comparison

	PTB (10 ⁻¹⁶)	NICT (10 ⁻¹⁶)		
Sr	1.5	5	Sr	Sr
H-Maser—Sr	5.7	17		
Cs fountain —H-Maser	4.3		Comb	Comb
fountain	7.6	(14)	n-iviasei	H-iviaser
UTC(X) —H-Maser		26	Cs fountain	UTC(NICT)
TAI-UTC(X)		9.8		TAI
SI 1s — TAI		4		
Total	10.5	33.2		SI 1s

Cs fountain in NICT with accuracy of 1.4×10^{-15} was unfortunately in renovation... \rightarrow Instead, frequency link to International Atomic Time (TAI) via Japan Standard Time was used as the reference

Fiber link of clocks located at NICT and UT

Urban Fiber link in Tokyo

M. Kumagai *et al.*, Opt. Let. **34**, 19, 2949 (2009).
M. Musha *et al.*, Opt. Exp. **16**, 21, 16459 (2008).
N. Newbury *et al.*, Opt. Let. **32**, 21, 3056 (2007).
H. Jiang *et al.*, J. Opt. Soc. Am. B **25**,12,2029 (2008).
G. Grosche *et al.*, Opt. Lett. **34**, 2270 (2009).

Optical carrier transfer using a fiber link

Double fiber noises, 2φ , canceled at the local site

 φ = 0 at the remote site

L. S. Ma et al., Opt. Lett. 19, 1777 (1994).

EDFA is out of the phase-noise compensated path

Remaining half of the noise does not limit the performance of our system

By independent measurements

M. Fujieda *et al.*, Opt. Express. **19**, 16498 (2011).

Evaluation of the fiber link

Instability of a fiber link: Day & Night

frequency comb

Polarization stabilizer

The polarization of the light varies considerably after the transmission though 60km single mode fiber

SHG is so sensitive to polarization.

 \rightarrow

Polarization tracker and servo control was installed for the first time to our knowledge

All-optical direct comparison between NICT & UT clock

JGN2

Frequency difference & stability between distant Sr clocks

Corrections and uncertainties at UT and NICT

	UT (Hz)		NICT (Hz)	
contributor	Correction	Uncertainty	Correction	Uncertainty
AC Stark –Lattice	0.19	0.10	0.10	0.10
AC Stark -Probe	0.00	0.00	0.01	0.01
BBR	2.17	0.10	2.26	0.10
2nd Zeeman	1.24	0.10	0.23	0.10
Gravitational shift	-0.95	0.09	-3.57	0.05
Collision	0.00	0.10	-0.04	0.12
Servo error	0.00	0.01	0.00	0.01
Total	2.65	0.22	-1.01	0.22

(Link uncertainty to SI second) (0.78)

Frequency difference between two distant Sr clocks

Frequency difference after correcting systematic frequency shift

Next step

- Quieter fiber is mandatory for the improvement of the short-term stability
- Repeater laser should be installed in remote site instead of the amplification by a "free-run" EDFA

Time and Frequency Transfer Methods

	Uncertainty	Range	
GPS Dual Codes	700ps~500ps	Global	ן
GPS Carrier Phase	300ps~150ps	Global	- Currently in use
TWSTFT	500ps~200ps	∼ 5000km]
TWSTFT Dual Channel	100ps~20ps	∼ 5000km	
TWSTFT Carrier Phase	10ps~4ps	∼ 5000km	
VLBI	20~4ps	Global	
ACES	100~3ps	∼ 2000km	ESA mission
Fiber Transfer	<1ps	~ 100km	

TWSTFT : Two-Way Satellite Time and Frequency Transfer VLBI : Very Long Baseline Interferometry ACES : Atomic Clock Ensemble in Space

Summary and Future Plans

⁸⁷Sr Lattice Clock

- Total systematic uncertainty: 5×10^{-16}
- Absolute frequency measurement through TAI : 3.3 \times 10⁻¹⁵

Fiber Link

- Comparison instability : $2 \times 10^{-15} / \tau$ (7×10^{-17} @1000s)
- Good agreement of UT and NICT lattice clocks within their total systematic uncertainties

Future Plans

- Fiber Link : further noise reduction
- ⁸⁷Sr Lattice clock
 - stabilize clock laser with 30cm long cavity
 - reduce BBR with a cryogenic chamber
- Precise frequency comparisons with foreign institutes
 - Carrier Phase method & TWSTFT (Two-Way Satellite T&F Transfer)
 - VLBI (Very Long Baseline Interferometry)
 - ACES (Accurate Clock Ensemble in Space)