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1. Basic rules of guantum mechanics

How to describe the states of an ideally controlled system?
How to describe changes in an ideally controlled system?
How to describe measurements on an ideally controlled system?

How to treat composite systems?



How to describe the states of an ideally controlled system?

(Basic rule 1)
A physical system <« a Hilbert space H

A state < a ray in the Hilbert space

Usually, we use a normalized vector ¢ satisfying
(4,0) = 1 as a representative of the ray.

Distinguishability ——— Inner product
For normalized vectors ¢ and v,
(¢, v)| = 0 — perfectly distinguishable
1(¢,)| = 1 — completely indistinguishable
(the same state)

Dirac notation

‘ket’ |¢) — vector ¢ € H.
‘bra’ (¢| — linear functional (¢,-) : H — C.

(o) — (¢,¢)



How to describe the states of an ideally controlled system?

(Basic rule 1)

Set of all the states Hilbert space

A state « a ray in the Hilbert space
ray including vector a % 0 is
{aala € C, a %= 0}.



How to describe changes in an ideally controlled system?

(Basic rule II)

Inner products are preserved by
unitary operations.

Reversible evolution

A unitary operator U:
— Ul Distinguishability should never be
|¢OUt> |¢|n> improved by any operation.

!

Distinguishability should be unchanged
by any reversible operation.

v :
Inner products will be preserved in any

Infinitesimal change reversible operation.

|p(t2)) = U(ta, t1)|o(t1))
[o(t + dt)) = U(t + dt, t)|p(t))
U(t+dt,t) =1 — (i/h)H(t)dt

Schrodinger equation:

Self-adjoint operator H(t):
Hamiltonian of the system

L d i
ih—16(8)) = H(®)|$(1)) 5



Linear operators: H — H.

T is normal « T is

diagonalizable.

T =3 Xluj){uyl
it T

1
Eigenvalues
/

An orthonormal basis

(

TTT = T1T (Compléx)

N

Normal:
/Self—adjomt A= Al \
(Real)
(" Positive: N >0 )
(Positive)
Unitary: /A Projection:
OO0 =00t=1| |[1|P°=P
(Unit modulus) L (Oor1)
/

N

/

/j/




How to describe measurements on an ideally controlled system?

(Basic rule 1lI)

Orthogonal measurement on an orthonormal basis{|aj>}j=1,--- d
(von Neumann measurement, projection measurement)

Input state |¢) =3 ; |a;)(a;|®)

Probability of outcome j P(j) = |<aj|<;5)|2

Note: This is not the unique way of defining d = _dim H.
the ‘best’ measurement. We'll see later. Closure relation
>jlaj)(aj] =1

Measurement of an observable

Self-adjoint operator A
A =35 Njlaj) (aj
Measurement on {|aj>}j=1,---,d Assign 3 — A

J
(A) = ZP(j))\j = (plaj)(aj|lp)r; = (| A|)
J

j 7




How to treat composite systems?
(Basic rule V)

System A System B Subsystems
We know how to describe
each of the systems A and B.
How to describe AB as a single _ Y,
system? I

System AB Composite system
System A: Hilbert space H 4 Basis {|a;)}i=1.....d,
System B: Hﬂ)ert space Hp Basis {[b;)}j=1,.- dp
Composite system AB: Basis

Hilbert space Huyp = HA®@Hp {la;) @ [bj) bi=1,... dyj=1, dpg
Tensor product

dim(H4 @ Hp) =dimH4dimHp 8



How to treat composite systems?
(Basic rule V)

When system A and system B are independently accessed ... Q Q
State preparation Unitary evolution  Orthogonal measurement
System A ¢>A UA { ai)A}z’zl,---,dA
System B lb)B VB { bj)B}jzl,--- ,dp
Ao j=1,+,dp
SystemAB  |9)A ® |[¥)B Ua®Vp {lana®I1b)BY=1].. /4,
Separable states Local unitary
. Local measurements
operations
When system A and system B are directly interacted ... @

(WAB € HAB  Tap:Han— Hag {{Wi)aB k=12, .dAds

o &
2k oklOk) A @ V1) B Global unitary Global

Entangled states operations measurements



2. State of a subsystem

Rule for a local measurement
State after discarding a subsystem (marginal state)

Density operator
Properties of density operators
Rules in terms of density operators

Why is the density operator sufficient for description ?

Schmidt decomposition
Pure states with the same marginal state
Ensembles with the same density operator

10



Entanglement

System A System B
Suppose that the whole system
(AB) is ideally controlled
(prepared in a definite state). \_ -
Y
System AB

state: |P)lyp
Intuition in a ‘classical’ world:

If the whole is under a good control, so are the parts.

But ....

It is not always possible to assign a state vector to subsystem A.

What is the state of subsystem A?

11



Rule for a local measurement

Initial state: |®)4p

© 0.

P(J) Measurement on

V

State |¢;) 4 Outcome j

{ VP e a = B(bjl|P)aB }

P@5) = |lp(bjl|®) aplI?

_ B{bjl[P)aB
||B< ®) aBll

©5) A

1bj) B} j=1,- dp

12



Rule for a local measurement

Initial state: |®)4p

@

Q.

P(J) Measur
4 State ]ng)A A Outcome j
Measurement on .
{IG%M}@:L d l P (i)
arbitrary \\Outcome 1 /
\

P(il§) = | alai|#;) al?

l

|

ement on

{16;)B}j=1,.- dp

Measurement on

—1
{la;i)a ® |b;)BY _1

P(i,5) = | alail (b;]|P)

P(i,5) = P(l5)P(G) = | alail\/ PG o) al?

2

13
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A remark on notations

l abbreviation

= ala;| g{b;| |P)aB

B(bj|ZHB—>(C
Ta:Hs— Hag

j:A@B(bjl HARHB — H,p

14



State after discarding a subsystem (marginal state)
Initial state: |®)p

A l B
) discard
?
, Pj l Measurement on
b; =1 ...
State [¢;) 4 Outcome j tbj) BYj=1, dp

State of system A: |;) 4 With probability p; — {p;,|¢;) 4}
VPil®i)a = B(bj||P) aB

This description is correct, but dependence on

the fictitious measurement is weird... 15



Alternative description: density operator

{pj,|P;)a} ¢i)A With probability p;

PA =D PilP5) Al

Cons

Same PA
i loat —

Two different physical states could have the same density operator.
(The description could be insufficient.)

Pros VPil®5) 4 = B(b;l|P) AR
pA = 2;pjldj) anle;l = X5 /Djlbj) aaleil\/P5
= 2_ B(bjl|PN (@b} g = Trp(|®)(P[)

J
Independent of the choice of the fictitious measurement 16



Properties of density operators

p=2ipiloi) (ol
For any |¢), (¥|plv) = 3 pil(¥]¢;)|* >0  Positive
Tr(p) = X p; Tr(l9;){(®;])

— Zj Pj(¢j|¢j> —_— Zj pj = 1 Unit trace

Positive & Unit trace —— P = Ej Pj|¢j>(¢j|

This decomposition is
probability by no means unique!

Mixed state p = Zj Pj|¢j)(¢j|

Pure state p = |9)(2| (One eigenvalue is 1)

17



Rules in terms of density operators

Prepare |¢;) with probability p; Prepare p; with probability p;

=D AN p = 2.jPjP;
Unitary evolution

[Pout) = Uldin) Pout = UﬁinUT

Hint‘ﬁbout)(ﬁbout‘ — U|¢in>(¢’in‘fﬁ

Orthogonal measurement on basis {|a;)}

P(5) = [ajl¢)|? P(j) = (aj|pla;)

Hint: P(j) = (aj|#)(¢|a;)

Expectation value of an observable A

(A) = (9| Al|o) (A) = Tr(Ap)

Hint:(A) = Tr(Al$)(a|) o



Rules in terms of density operators

Independently prepared systems A and B
(W)ap = [#)a @ |¥)B PAB = PA® PB

Local measurement on system B on basis {|b;)p}

VB4 = B(bj||P)aB pipY) = p(bilAanlb) B

Discarding system B

pa = Trp(|P)(P|) pa= Trplpapl

All the rules so far can be written in terms of density operators.

19



Which is the better description?

This looks natural. The system is in one of the pure states, but we just
don’t know. Quantum mechanics may treat just the pure states, and
leave mixed states to statistical mechanics or probability theory.

Best description

p = ijj‘(bjﬂqul 7

=

All the rules so far can be written in terms of density operators.

Which description has one-to-one correspondence to physical states?

Theorem: Two states {p;,|¢;)} and {q, |[¥g)}
with the same density operator are physically
indistinguishable (hence are the same state).

20



Schmidt decomposition

Bipartite pure states have a very nice standard form.

Any orthonormal basis {la;) 4} {’bj>B}

|P)ap =D ajjlai)albj)p
]
We can always choose the two bases such that

|P)aB = Z VPilai) Albi) B schmidt decomposition
(
{|la;) 4}: Diagonalizes pgq = Trg(|P)(P|)

Proof: |®) 45 = >, a;) albi) B b;) B = alal|P)aB
unnormalized

B(b;lb:) B Trala;||P) aBaB(P||a;) Al
= Ala;|Trp[|P) apap(Plllaj)a



Entangled states and separable states
[2) A @ |Y)B >k klor) A ® |Yr) B

Separable states Entangled states

Are there any procedure to distinquish between the two classes?

—— Schmidt decomposition |<D)AB = Z VPilai) albi) B
; =1

pr2p2 2 2ps>0
Schmidt number {p;} :The eigenvalues of the marginal

Number of nonzero coefficients in density operators (the same for A and B)

Schmidt decomposition

= The rank of the marginal density operators Range and Kernel of p

‘Symmetry’ between A and B Ran p = {plz) | |z) € H}

PA, PB The same set of eigenvalues Subspace in which p > O

NS - N Ker p = {ly) | ply) = 0}
Rank(pa) = Rank(pp) = s Subspace in which p = 0

Separable states Schmidt number = 1 N N
P p1 =1 H = (Ran p) @ (Ker p)

Entangled states Schmidt number > 1 Rank(p) =dim Ranp 22
p1 2 p2 >0




Pure states with the same marginal state

pa = Tr(|P)(P|)
pa = Trp(|WV)(V|)

|P)aB

Marginal state (unique)
PA  — |®P)AB  purification
\ Pure Extension (not unique)
V) aB

[ [Py ap=(14® UB)W)AB}

Theorem: If |W),p and |®P),p are purifica-
tions of the same state py, state |W)4p can
be physically converted to state |®) p with-
out touching system A. 23



Pure states with the same marginal state

|‘U )AB

pa = Trp(|W)(V]) = TrB(lq))(CDD

Schmidt decomposition

Orthonormal basis {|a;) 4} that diagonalizes p4

WViap = ZV@%)AM)B
| P)ap = Z\/ﬁlaz’MIw)B

{|lns) B} Orthonormal basis

viYp = Uplui) B
{|Vz'>B} Orthonormal basis ' '

unitary

[ P)ap = (T4 Up)|V)ap

24



Sealed move (HLF)
Chess, Go, Shogi ...

Bb5
47}8R

N8 GO
N3 il)]

vt o e
¥l Rt 1Y o fsdivdis

Let us call it a day and shall we start over tomorrow, with Bob’s move.

While they are (suppose to be) sleeping...
 Alice should not learn the sealed move.
* Bob should not alter the sealed move.

25


http://i-aquos-blog.com/archives/omc062-s.jpg
http://ja.wikipedia.org/wiki/%E7%94%BB%E5%83%8F:Chess_Screenshot.PNG
http://images.google.co.jp/imgres?imgurl=http://ykoizumi5.cocolog-nifty.com/photos/uncategorized/kinko.gif&imgrefurl=http://ykoizumi5.cocolog-nifty.com/blog/cat5579641/index.html&h=230&w=230&sz=23&hl=ja&start=1&um=1&tbnid=GhRHqVcBf5p2JM:&tbnh=108&tbnw=108&prev=/images%3Fq%3D%25E9%2587%2591%25E5%25BA%25AB%26svnum%3D10%26um%3D1%26hl%3Dja%26safe%3Doff%26rls%3DGGLG,GGLG:2006-12,GGLG:ja%26sa%3DN

Sealed move

» Alice should not learn the sealed move.
* Bob should not alter the sealed move.

If there is no reliable safe available ...
(If there is no system out of both Alice’s and Bob’s reach ...)

‘ @ Alice has no knowledge
Bob can alter the states
pa = Trp(|W)(V]) = Trp(|P)(P|)

Function of the “safe”

{ DY = (14 ® UB)|\U>AB} cannot be realized.

Impossibility of unconditionally secure quantum bit commitment
(Lo, Mayers)
26



Ensembles with the same density operator

{pj,|Pj) A} |¢;) 4 with probability p;
{ak, |YK) A} Y1) 4 With probability gy
PA =22 Pildj)aa(Pjl = 2k arlr) A4k

A scheme to realize the ensemble {Pja ’ij)A}

Prepare system AB in state {|bj>B} Orthonormal basis
DY ap =D V/Pjilo5)albi) B
J
Measure system B on basis {|bj>B}

VPil?i) 4 = B(b;||P) AB
|#;) 4 With probability p;

pa = Tr(|P)(P|)

27



Ensembles with the same density operator
Prepare system AB in state

\W)aB = D Varlve) albr) B
k

Apply unitary operation UB to system B

(DY ap =S /B10,) alb) B WY ap =S VaRlvr) albe) s
J k

Measure system B on basis {|bj>B} Measure system B on basis {1bx) B}
|#;) 4 with probability p; 1) 4 With probability g
{pj,|Pj) A} {ak, |[VK) A}

pa = Trp(|W)(V]) = Trp(|P)(P|)
P)ap=(140Up)|V)ap

28



Ensembles with the same density operator

W) aB
A 1pj |®j)a} B
{qlﬂa |wk>A}

Alice Bob
Can Alice distinguish the two states Bob can remotely decide which of the
even partially? states the system Aiis in.

NO! Bob can postpone his decision
' indefinitely.
Theorem: Two states {p;,|¢;)} and {qy, |¢)} Density operator

with the same density operator are physically

R I One-to-one
indistinguishable (hence are the same state).

Physical state



Example

{|0) 4,|1) 4} : an orthonormal basis |+ 4
f14) 4, |=) 4 }: an orthonormal basis
1
Recipe I:  {pj,|®j) A} Po =p1 = 5
. 1
Recipe II: 14k, [¥r) A} 90 =01 =3, |9

1 1
§|O>AA(O|+§|1>AA<1|

0)A

1 1
= §|-I—>AA(-|—| + 5!—>A

T(I A £ 1))

, [¢0)a = 10) 4, |P1)A =11)4

= |+)a, 1Y1)a=1|-)a

Al—

1 meas. .
ﬁ(|O>A|O>B + |1>A|1>B) {|0>B7 |1>B} > ReCIpe I
™
U=|+)p(0| + |-)BB(1|
1 meas.
ﬁ(|0>A|+>BH+ 1) 4l-)B) ~ {IH)s, 1-)B)
\%(|+>A|O>B+|—>A|1>B> ooy Recipell 30



Example

1
—=(]0) 4]10)p + (1) 4]1) B)
o 9
A B
50% 50% measurement
{10} 4, |11) 4} w--mmmmmmm e 110)B, 1) B}
(Recipe |)
50% 50%
L) A5 | =) A} e -mmmm e {I+)B:|—)B}
(Recipe II)
1 meas. R : _
ﬁ(|O>A|O>B + |1>A|1>B) {|0>B7 |1>B} g Recipe I:
~ ™
|0 =14)550] + )51
1 meas.
ﬁ(|O>A|‘|‘>BH+ 1) al-)B) > {1+ - B}
() Al0) s + [~ all)p) — MBS, ] Recipe II "

V2 {10)B, 1) B}




Example

1
——(]0) 4|0 1)4]1
\/E(l >A|>/B+\| )Al1)B)
e 0)
A B
50% 50% measurement
{10) 4, [1) 4} srecarmcmrmcmrmscanccncccces {10),11) 5}
(Recipe 1)

50% 50%

T 1+ -)8)
(Recipe II)

If Recipes | and Il were distinguishable even partially, the causality would be violated.

For example...
O (10 - I0y/0)
i 7
O—| Somne 17 1) > J1))1)
machine O 4 o [+
=) = (=) =)

Such a machine should not exist. 32



3. Qubits

Pauli operators (Pauli matrices)
Bloch representation (Bloch sphere)
Orthogonal measurement

Unitary operation

33



Qubit
dimH =2
Take a standard basis {|0)7 |1>}

—

Linear operator A

Matrix representation (for {|0),|1)} )

A= Apo Aoz Ajj = il
A0 A1l A=Al (]
1]

4 complex parameters

A = agog + @101 + ap0p + a303

34



Pauli operators (Pauli matrices) Take a standard basis {]0), |1)}

=\o 1) 92791=11 0 )

~ ~ (0 — ~ ~ 1 O
oy=02=|( . o |, 0z=03 0o -1 /-

Unitary and self-adjoint

4 [5;,0:] = 2i€;;1.0% s Levi-Civita symbol
J (%} _ _ __
L R . €123 = €231 = €312 =1
0,0 + 0;0; = 20; ;1 {6321 = e213 = €132 = —1
R R ’ Otherwise €;;, = 0
Tr(avl) = 0, Tr(aiaj) : 25i,j- Einstein notation
\ i,j =1,2,3/ S, is omitted.
~2 =
o, =1
(62,55} = 646 + 6255 = 0
Tr(ouoy) = 26p,0 ‘Orthogonality’ with respect to

R P SN 35
(u,v =0,1,2,3; 09 = 1) (A,B) = Tr(AB)



Pauli operators (Pauli matrices)

PO
g [04,0] = 2ie€;;1,0%
37;53' -+ 33'5,,; — 257;73'1
Tr(&i) = 0, Tr(&i&j) = 251"3'.
\ /
Linear operator A 4 complex parameters ( Pp, P, Py, P,)

P = (P, Py, P)

0 = (64,0y,02)

Py =Tr(A) P =Tr(cA)



Pauli operators (Pauli matrices)

. 1 . .\ 1
A is self-adjoint. — Py and P are real.
Eigenvalues A4, \_
det(A) = ApA_ = z(P3 — | P|?)
TF(A) = )\_|_ + A = PO

|

A = (P x|P|)/2

A is positive. ~— Pgp and P are real, Py > |P)|

Py+ P, Px—iPy)

37



Bloch representation (Bloch sphere)

Density operator Positive & Unit trace
Poz|P| Po=1

p=5(1+P-5) |P|<1

Density operator for a qubit system

+<— A 3D real vector of length no greater than 1

y4

A

A point inside or on the sphere of radius 1

P:(PCI?:PyaPZ)

Bloch vector

X Ax = (Py+|P])/2
Pure states +— Ap. = 1,A_ =0

«<— On the sphere 38




Pure states 72 = |¢;) (ol
pj=73(1+P;-5)
{p1]¢2)|* = Tr[p1p2]
_1+P-P o0
2 2

Orthogonal states «— 0 = 7

Orthonormal basis <—— Aline through the origin

Py - P, = cos6

v



Examples

Spin ¥ patrticle

Bloch vector

= Spin vector

1)
Polarization of
a single photon




Orthogonal measurement

Orthonormal basis {|®1), |$2)} *— Aline through the origin

14+ PP
P(1) = (¢1|pl¢1) = Tr(p1p) = +21
P(2) = 1_1;1'13

Example

Measurement of observable O »

; l

Z axis

41



Unitary operation

|¢>a €i9|l/)> The same physical state

U, et The same physical operation

det(e?U) = €29 det U

group SU(2) :Setof U with detU = 1 U e SU(2) < —U € SU(2)
(2 to 1 correspondence to the physical unitary operations)
U = expl[iS] o e 0
\ - 0 e ¢
Self-adjoint, traceless
q —_— l P . T o — ¢ 0
S=5(P-0) S = ( 0 —o )

We can parameterize the elements of SU(2) as

U(n, ) = exp[—i(¢/2)n - &]
1

. 42
Unit vector



Unitary operation

p=3(1+p o) D =4 (14 P )

How does the Bloch vector change?
Infinitesimal change U(n, 6p) ~ 1 — i(5cp/2)’n, o
P =P — P =Tr[6p] — Tr[cp]
Tr[6T(n, 5¢)pU" (n, 5¢)] — Tr[& 7]
Tr[01(n,60)60(n,50)p] — Tr[67]

~ Tr{(iép/2)[(n-&),6]p} = —6¢Tr[ne;151)
SoTr[(n x &)p] = deon x P.

Rotation around axis i by angle o

43



Unitary operation

Ue SU(2)

U = exp[—i(p/2)n - 7]

Rotation around axis n by angle ¢

Examples

o,. m rotation around z axis
o. m rotation around x axis

1 (1 1
Hzﬁ(1—1)

Hadamard transform
7w rotation (interchanges z and x axes) 4



4. Power of an ancillary system

Kraus representation (Operator-sum rep.)

Generalized measurement
Unambiguous state discrimination

Quantum operation (Quantum channel, CPTP map)

Relation between quantum operations and bipartite states
A maximally entangled state and relative states

What can we do in principle?

45



Power of an ancilla system

Basic operations
Unitary operations +
Orthogonal measurements

An auxiliary system
(ancilla)

Q ey -
i 1
P
U probability
o j> s

O—@

46



Power of an ancilla system
e measurement

et
/ J
U probablllty
B

OO —®&

___________________________________________________

5® 10) g5 (0 :
U(5®10)gr(0))0°

pjﬁc()ju)t = p(lU(p @ 0)pe(0NTTj) g B{J| U 0)E

— D x A 3 30,

MU = p(j|U|0) g 47



Kraus representation (Operator-sum rep.)

pipsi = plU( @ |0)pp(0)T) g
l M(j) = E(j|U|O)E Kraus operators

p;pS = MWOFIDY with ¥, TODINIG) = 1

Representation with no reference to the ancilla system

> DT =37 p(010M7) pp(il010) g
9 J
= p(0|07010)

(0|14 ®1g|0)E

48



Kraus operators — Physical realization
pivgk = £(il0(7 @ 10)pp(ODTi)E
T l M) = E{7|U|0)E Kraus operators

p;pS = MWOFIDY with ¥, TODINIG) = 1

Arbitrary set {M )} satisfying 3. MUWTNU) =1

#)a® [0)r — > MP|p) 4 ® |j)k is linear.
preserves inner products.

/For any two states |q?)A and [¥) 4, N

(Z MP|g)a @ j,>E) (Z MD|g)a @ j)E)

Jf

J

| T alla=(¥)ae 0)e)" (|¢)a ®10)) - Y

There exists a unitary satisfying
U(1¢)a® |0)p) = >, MD|$) 4 @ |5)E

49



Generalized measurement

pjﬁ(ﬂ) = MW with Z.M(j)’rM(j) =1

pj = Tr[N1 D o1 T = Tr[FU) 5]
FO) = mrWiyr) > o

positive

/j

{FUY povMm

Positive operator valued measure

50



Generalized measurement

[ p; = TF[F(J)ﬁ] with Zj U =1 }

Examples

Orthogonal measurement on basis {|a;)}
FU) = |a;)(a;|

Trine measurement on a qubit
—~ . 2
) = £1b,)(bj]

b;)(bj| = 5 (1 + P; - &)

-~

|bl> \

51



Distinguishing two nonorthogonal states (bolp1) = s > O

Minimum-error discrimination

(maybe) O
qubit /
measurement \

(maybe) 1

v

|0) or |#1)

50% 50%

Unambiguous state discrimination

qubit @

|¢O> or |¢1> Prail ™ (I don’t know)
50% 50%

(surely) O

v

measurement — (Surely) 1

52



Unambiguous state discrimination

qubit @

|¢O> or |¢1>
50% 50%
(polp1) =s>0

Orthogonal measurement

{p0), |65)}
o o

2 (I don’'t know) (surely) 1

{lo1), |o1)}

v

(surely) O

measurement . (Surely) 1

Pfail ™ - (I don’t know)

If the initial state is |¢o>

it always fails.
If the initial state is |(b1>

it fails with prob. |<¢0|¢1>|2 = s

4 Prail

2

Pfail —

N
1<¢0|¢1>5



Unambiguous state discrimination

(surely) O
qubit /
@ > measurement — (surely) 1
|¢O> or |¢1> pfak« 2 (I don’t know)
50% 50%
(Pol¢p1) =s5>0
Generalized measurement The only constraint on (&t comes from FQ 2 0]
NS n n 7
B IRYNI = s (Fo+ Fy <1)
Fo = plé1) (o1 | \$o191) o

(Fo + F1)(|¢5) £ |o1))
= u(1+5)(Jég) £ 1))

The optimum: o = (1 + S)_l
1 Prail

prail = 1 — Sl{olo1)I? = L l(61160) 1y

Pfail — S |
— 1 — 1 — 32 N
H ) 1 <q5§ﬁb1>

i 1 1
by = plég) (ool
FQ L= T—Fo—ﬁl




Quantum operation (Quantum channel, CPTP map)

pjﬁc%)t = M pnrt with >, MWtirG) =13

o [
»

Pout = Zj Pjﬁc()ﬁ)t — Zj M(j)ﬁM(j)T
=3 pUlUGE |0>EE<0PUT|J'>E
= Tre[U(p® |0)gp(0])UT]

[ Pout = 3 MW i) }
= TrplU(p ® |0)gp(0))UT]

completely-positive trace-preserving map

Pout — C(P) CPTP map
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Quantum operation (Quantum channel, CPTP map)

e[ 9
NONEOE

________________________________________________________

[ Pout = 30 MWDpNIDT with 2, MO = 1 }
= Tr[U(p ® |0)pE(0)TT]

completely-positive trace-preserving map

Pout — C(P) CPTP map s



Positive maps and completely-positive maps
Linear map

pa > Cal(pa)
“‘positive”™ C4(p4) is positive whenever p4 is positive

: C A : QCA@A)

“‘completely-positive” (C4 ® Zg)(pap) IS positive
whenever p4p IS positive

e | cl

PAB % (C4aRZR)(paB)

KQ

(CA®TE)(Pan) =Y MY papit{! .
J




What can we do in principle?

We have seen what we can (at least) do by using an ancilla system.
pipS = MWDt with ¥, TD1ir0) = 1

We also want to know what we cannot do.

v
v

A

Black box with classical and quantum outputs
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This is what we can do in principle Pm MM

_—
O ;A

Any phy5|cal process should be represented in the followmg form:

m,k

Orthagonal measurement

{|%, m)E‘-}{ :/.m




What can we do in principle?

*Attach an ancilla
*Apply a unitary
*Discard the ancilla

___________________________________________

___________________________________________

A

v

Black box with guantum output
(Quantum channel)
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Maximally entangled states (MES)

Orthonormal
bases

dmHgs=dmHp =d

0, Op

(&) Ath=12...d {k)B k=124
dq
D —d|k>A ® |k)B
k=1

Maximally entangled state
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Properties of MES (I). Relative states
Fix a maximally dmHy =dimHp =d

entangled state Q Q
d
)B A B

Pp=Y %ucmk

k=1

Relative states

[Pya =D oaylk)a * > 9" p = %7“3)3
2

= Vdp(¢*||P) ap = Vd 4 (¢||P) 4B
-
Q ~ |#)a
Dhaps
AB
Orthogonal ) oqtcfmle
L measurement 1 J =
B {|vj)p}j=10,.a ELTd

|’U1>B = |¢*>B %W)A — B<¢*|¢>AB} 62




Quantum operation and bipartite state

We can remotely prepare system A in any state

l with a nonzero success probability.
At any time
-
e — (fous
X |~ *
A d X g{¢"|0ARIP") B
|CD>AR< &AR

H
" probability

N ]
O el
\_ R measurement ¢

a'AR ‘The state obtained when a half of an MES is fed to the channel.

v

If this state is known,

ﬁout — B <¢* ’OA-AR ‘ ¢* > Bd Output for every input state is known!

Characterization of a process = Characterization of a state 63



Quantum operation and bipartite state

ﬁout — \/ER<¢* |5_AR‘¢*>R\/a
\

rR(0*| =Vd ap(®llo)a  Gar= > |V;)ar ar(¥;

j unnormalized

\/gR@b*H\Ifj)AR = M(j)]qﬁ>A (A linear map)

)
ot = ;MU)\@M@IM o AR <(I)| \D] >AR

64




What we can do in principle

*Attach an ancilla
*Apply a unitary
*Discard the ancilla

> > 15out
A A

Black box with quantum output
(Quantum channel)

Pout = X NG pr T 65




Universal NOT ? Spin reversal ?

Bloch vector
P— —-P
linearmap p — C(p)
C(1)=1 C(0z) =02
C(oy) = —0y C(52) = —02

c(lo)(0]) = [1)(1] 52 = [1)(0] +[0)(1
c(|1)(1)) = 0)(0] 5, = il1)(0] - i10) (1
C(|0)(1]) = —|0)(1 G2 = |0)(0f — |1)(1]
c(|1)(0]) = —[1)(0| Lo

This map is positive, but...
66



Universal NOT ? Spin reversal ?

C(10){0[) = [1)(1]
C(]1)(1]) = 10)(0]
C(10)(1]) = —|0)(1]
C(11)(0]) = —[1)(0|

RO

|®) AR

PAR ?

noy

Universal NOT

2|®) (| = (]00) 4 |11))({00] + (11|)
= ]00)(00| + [00)(11| + |11)(00] + |11)(11]

2p0AR=2(CRIL)|P)(P| =

= [10)(10| — |00)(11| — |11)(00| 4 |01)(01]

2pARr(]00)+[11)) = —|11)—|00) = —(|00)+|11))

PAR has anegative eigenvalue! (The map is not completely positive.)

» Universal NOT is impossible.
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Distinguishability Examples
S5 -l

Measure of distinguishability between two states D(p, o)

A guantity describing how we can distinguish
between the two states in principle.

The distinguishability should never be
improved by a quantum operation.

Monotonicity under quantum operations

. x(p

; Eﬁ(p)
Quantum channel (CPTP map) X E@

&

x (o)
D(5,5) > D(x(5),x(5)) o8



Distinguishability

*Attach an ancilla
*Apply a unitary

Measure of distingt «Discard the ancilla

________________________________________________

A quantity des | ;
between the 1y f> Q ;

________________________________________________

Q)

Quantum channel (CPTP map) X

Q)

D(p,5) > D(x(p),x(5)) °



Trace distance | - || :trace norm

1. Zerowhen p = o (the same state)
1l -]
Unity when po = O  (perfectly distinguishable)
ontoniciy? | |5~ 3| > () — x(@| |
‘Attachanancila p—>pQ T c—>0QRT

Tr|A® B| = Tr(\VATA @ V BIB) = Tr|A|Tr|B|

|p@T—o@7|| = |[(p—0)Q7|| = |lp—aol|x||7|| = [[p—a]|
Apply a unitary p — ﬁﬁUT & — UsUT
max |Tr(AV)| = max|Tr(TDATTV)
V V

|00 —T50T|| =105 —3)TT|| = |5 - 3|

p,0
Discard the ancilla p — Trp(p) o — Trr(o) ! )
! fA r(P) Trele) QAOR
max [ Tr[(Trrp—Trro)Vall = max I Tr[(p—0)(Va@1R)]
A A ~
< max|Tr[(p — 5)U4R]| 70
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Fidelity

F(5,5) = max|(gylon) 2 = |V3V3I12 = (Tr/Vap/s)
F(p,0) =1 when p=2g¢ F(p,0) = 0 when po =
F(p, |¥)(¥]) =
1 — F(p,0) isameasure of distinguishability. (not a distance)
Monotonicity | F(5,5) < F(x(p),x(#)) |
*Attach an ancilla
F(p7,0®7) = F(p,0)F(7,7) = F(p,0)
*Apply a unitary
F(Op0%, 050" = |0,/sva01 12 = ||\/3VGI1? = F(5,5)
-Discard the ancilla |Dp) |¢p)
F(p,5) = max[{¢pldo)|?

F(Trgrp, Trpa) = max [(¢),|dy)| Q O
E

max |{(@p|do)|? < max [(¢)|¢))

0
(Ylple)




