量子情報基礎

Masato Koashi，Univ．of Tokyo
1．Basic rules of quantum mechanics 2．State of subsystems
3．Qubits
4．Power of ancilla system
5．Communication resources
6．Quantum error correcting codes

1. Basic rules of quantum mechanics

How to describe the states of an ideally controlled system?
How to describe changes in an ideally controlled system?
How to describe measurements on an ideally controlled system?
How to treat composite systems?

How to describe the states of an ideally controlled system?

(Basic rule I)
A physical system \leftrightarrow a Hilbert space \mathcal{H}
A state \leftrightarrow a ray in the Hilbert space
Usually, we use a normalized vector ϕ satisfying
$(\phi, \phi)=1$ as a representative of the ray.
Distinguishability _ Inner product
For normalized vectors ϕ and ψ,
$|(\phi, \psi)|=0$ - perfectly distinguishable
$|(\phi, \psi)|=1$ - completely indistinguishable
(the same state)
Dirac notation
‘ket' $|\phi\rangle$ - vector $\phi \in \mathcal{H}$.
'bra’ $\langle\phi|$ - linear functional $(\phi, \cdot): \mathcal{H} \rightarrow \mathbb{C}$.

$$
\langle\phi \mid \psi\rangle-(\phi, \psi)
$$

How to describe the states of an ideally controlled system?

(Basic rule I)

Set of all the states
Hilbert space
A state \leftrightarrow a ray in the Hilbert space ray including vector $a \neq 0$ is $\{\alpha a \mid \alpha \in \mathbb{C}, \alpha \neq 0\}$.

How to describe changes in an ideally controlled system?

(Basic rule II)

Reversible evolution
A unitary operator \hat{U} :

$$
\left|\phi_{\text {out }}\right\rangle=\hat{U}\left|\phi_{\text {in }}\right\rangle
$$

Inner products are preserved by unitary operations.

Distinguishability should be unchanged by any reversible operation.

Inner products will be preserved in any reversible operation.

Infinitesimal change

$$
\begin{aligned}
& \left|\phi\left(t_{2}\right)\right\rangle=\widehat{U}\left(t_{2}, t_{1}\right)\left|\phi\left(t_{1}\right)\right\rangle \\
& |\phi(t+d t)\rangle=\widehat{U}(t+d t, t)|\phi(t)\rangle \\
& \quad \widehat{U}(t+d t, t) \cong \widehat{1}-(i / \hbar) \hat{H}(t) d t
\end{aligned}
$$

Self-adjoint operator $\hat{H}(t)$: Hamiltonian of the system

Schrödinger equation:

$$
i \hbar \frac{d}{d t}|\phi(t)\rangle=\widehat{H}(t)|\phi(t)\rangle
$$

Linear operators: $\mathcal{H} \rightarrow \mathcal{H}$.
\widehat{T} is normal $\leftrightarrow \hat{T}$ is diagonalizable.

$$
\hat{T}=\sum_{j} \lambda_{j}\left|u_{j}\right\rangle\left\langle u_{j}\right|
$$

Eigenvalues

Añ orthonormal basis

How to describe measurements on an ideally controlled system?

 (Basic rule III)Orthogonal measurement on an orthonormal basis $\left\{\left|a_{j}\right\rangle\right\}_{j=1, \cdots, d}$ (von Neumann measurement, projection measurement)

Input state $|\phi\rangle=\sum_{j}\left|a_{j}\right\rangle\left\langle a_{j} \mid \phi\right\rangle$
Probability of outcome $j \quad P(j)=\left|\left\langle a_{j} \mid \phi\right\rangle\right|^{2}$

Note: This is not the unique way of defining the 'best' measurement. We'll see later.
$d=\operatorname{dim} \mathcal{H}$. Closure relation

$$
\Sigma_{j}\left|a_{j}\right\rangle\left\langle a_{j}\right|=\hat{1}
$$

Measurement of an observable

$$
\widehat{A}=\sum_{j} \lambda_{j}\left|a_{j}\right\rangle\left\langle a_{j}\right|
$$

Measurement on $\left\{\left|a_{j}\right\rangle\right\}_{j=1, \cdots, d} \quad$ Assign $j \rightarrow \lambda_{j}$

$$
\langle\widehat{A}\rangle \equiv \sum_{j} P(j) \lambda_{j}=\sum_{j}\left\langle\phi \mid a_{j}\right\rangle\left\langle a_{j} \mid \phi\right\rangle \lambda_{j}=\langle\phi| \widehat{A}|\phi\rangle
$$

How to treat composite systems?

(Basic rule IV)

System AB Composite system

System A: Hilbert space \mathcal{H}_{A} System B: Hilbert space \mathcal{H}_{B}

Composite system AB:
Hilbert space $\mathcal{H}_{A B}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$

How to treat composite systems?

(Basic rule IV)
When system A and system B are independently accessed ...

State preparation
System A $|\phi\rangle_{A}$ $|\psi\rangle_{B}$
System B

System AB
$|\phi\rangle_{A} \otimes|\psi\rangle_{B}$ Separable states

Unitary evolution

\widehat{V}_{B}
$\left\{\left|b_{j}\right\rangle_{B}\right\}_{j=1, \cdots, d_{B}}$
$\left\{\left|a_{i}\right\rangle_{A}\right\}_{i=1, \cdots, d_{A}}$
Orthogonal measurement
$\widehat{U}_{A} \otimes \widehat{V}_{B}$ Local unitary operations
$\left\{\left|a_{i}\right\rangle_{A} \otimes\left|b_{j}\right\rangle_{B}\right\}_{i=1, \cdots, d_{A}}^{j=1, \cdots, d_{B}}$
Local measurements

When system A and system B are directly interacted ...

$|\Psi\rangle_{A B} \in \mathcal{H}_{A B} \quad \hat{U}_{A B}: \mathcal{H}_{A B} \rightarrow \mathcal{H}_{A B} \quad\left\{\left|\Psi_{k}\right\rangle_{A B}\right\}_{k=1,2, \ldots, d_{A} d_{B}}$
$\sum_{k} \alpha_{k}\left|\phi_{k}\right\rangle_{A} \otimes\left|\psi_{k}\right\rangle_{B}$
Entangled states

Global unitary operations

Global measurements

2. State of a subsystem

Rule for a local measurement
State after discarding a subsystem (marginal state)
Density operator
Properties of density operators
Rules in terms of density operators
Why is the density operator sufficient for description?
Schmidt decomposition
Pure states with the same marginal state
Ensembles with the same density operator

Entanglement

Suppose that the whole system (AB) is ideally controlled (prepared in a definite state).

System AB

state: $|\Phi\rangle_{A B}$
Intuition in a 'classical' world:
If the whole is under a good control, so are the parts.
But
It is not always possible to assign a state vector to subsystem A.

What is the state of subsystem A?

Rule for a local measurement Initial state: $|\Phi\rangle_{A B}$

State $\left|\phi_{j}\right\rangle_{A}$

$$
\sqrt{P(j)}\left|\phi_{j}\right\rangle_{A}={ }_{B}\left\langle b_{j} \| \Phi\right\rangle_{A B}
$$

$$
\begin{aligned}
P(j) & =\left\|_{B}\left\langle b_{j} \| \Phi\right\rangle_{A B}\right\|^{2} \\
\left|\phi_{j}\right\rangle_{A} & =\frac{{ }_{B}\left\langle b_{j} \| \Phi\right\rangle_{A B}}{\left\|_{B}\left\langle b_{j} \| \Phi\right\rangle_{A B}\right\|}
\end{aligned}
$$

Rule for a local measurement

A remark on notations

$$
\begin{aligned}
& { }_{A}\left\langle a_{i}\right| \otimes_{B}\left\langle b_{j}\right||\Phi\rangle_{A B} \\
= & { }_{A}\left\langle a_{i}\right| \\
\underbrace{\left(\hat{1}_{A} \otimes_{B}\left\langle b_{j}\right|\right.}_{\text {abbreviation }}) & \Phi\rangle_{A B} \\
= & { }_{A}\left\langle a_{i}\right|{ }_{B}\left\langle b_{j}\right||\Phi\rangle_{A B}
\end{aligned}
$$

$$
\begin{aligned}
&{ }_{B}\left\langle b_{j}\right|: \mathcal{H}_{B} \\
& \rightarrow \mathbb{C} \\
& \hat{1}_{A}: \mathcal{H}_{A} \rightarrow \mathcal{H}_{A} \\
& \widehat{1}_{A} \otimes{ }_{B}\left\langle b_{j}\right|: \mathcal{H}_{A} \otimes \mathcal{H}_{B} \rightarrow \mathcal{H}_{A}
\end{aligned}
$$

State after discarding a subsystem (marginal state) Initial state: $|\Phi\rangle_{A B}$

discard

Outcome j

$$
\left\{\left|b_{j}\right\rangle_{B}\right\}_{j=1, \cdots, d_{B}}
$$

State of system A: $\left|\phi_{j}\right\rangle_{A}$ with probability $p_{j} \quad \rightarrow\left\{p_{j},\left|\phi_{j}\right\rangle_{A}\right\}$

$$
\sqrt{p_{j}}\left|\phi_{j}\right\rangle_{A}={ }_{B}\left\langle b_{j}\right||\Phi\rangle_{A B}
$$

This description is correct, but dependence on the fictitious measurement is weird...

Alternative description: density operator

$$
\begin{gathered}
\left\{p_{j},\left|\phi_{j}\right\rangle_{A}\right\} \quad\left|\phi_{j}\right\rangle_{A} \text { with probability } p_{j} \\
\hat{\rho}_{A} \equiv \sum_{j} p_{j}\left|\phi_{j}\right\rangle_{A A}\left\langle\phi_{j}\right|
\end{gathered}
$$

Cons

$$
\begin{aligned}
& \left\{q_{k},\left|\psi_{k}\right\rangle_{A}\right\} \\
& \left\{p_{j},\left|\phi_{j}\right\rangle_{A}\right\}
\end{aligned} \longrightarrow \text { Same } \hat{\rho}_{A}
$$

Two different physical states could have the same density operator. (The description could be insufficient.)

Pros

$$
\begin{gathered}
\sqrt{p_{j}}\left|\phi_{j}\right\rangle_{A}={ }_{B}\left\langle b_{j}\right||\Phi\rangle_{A B} \\
\hat{\rho}_{A}=\sum_{j} p_{j}\left|\phi_{j}\right\rangle_{A A}\left\langle\phi_{j}\right|=\sum_{j} \sqrt{p_{j}}\left|\phi_{j}\right\rangle_{A A}\left\langle\phi_{j}\right| \sqrt{p_{j}} \\
=\sum_{j}{ }_{B}\left\langle b_{j} \| \Phi\right\rangle\left\langle\Phi \| b_{j}\right\rangle_{B}=\operatorname{Tr}_{B}(|\Phi\rangle\langle\Phi|)
\end{gathered}
$$

Independent of the choice of the fictitious measurement

Properties of density operators

$\hat{\rho} \equiv \sum_{j} p_{j}\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right|$
For any $|\psi\rangle,\langle\psi| \hat{\rho}|\psi\rangle=\sum_{j} p_{j}\left|\left\langle\psi \mid \phi_{j}\right\rangle\right|^{2} \geq 0 \quad$ Positive

$$
\begin{aligned}
\operatorname{Tr}(\hat{\rho}) & =\sum_{j} p_{j} \operatorname{Tr}\left(\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right|\right) \\
& =\sum_{j} p_{j}\left\langle\phi_{j} \mid \phi_{j}\right\rangle=\sum_{j} p_{j}=1
\end{aligned}
$$

Unit trace

Positive \& Unit trace $\longrightarrow \hat{\rho}=\sum_{j} p_{j}\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right|$
probability

This decomposition is by no means unique!

Mixed state $\quad \hat{\rho}=\sum_{j} p_{j}\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right|$
Pure state $\quad \hat{\rho}=|\phi\rangle\langle\phi| \quad$ (One eigenvalue is 1)

Rules in terms of density operators

Prepare $\left|\phi_{j}\right\rangle$ with probability p_{j}

$$
\hat{\rho} \equiv \sum_{j} p_{j}\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right|
$$

Prepare $\hat{\rho}_{j}$ with probability p_{j}

$$
\hat{\rho}=\sum_{j} p_{j} \hat{\rho}_{j}
$$

Unitary evolution

$$
\left|\phi_{\text {out }}\right\rangle=\widehat{U}\left|\phi_{\text {in }}\right\rangle \quad \hat{\rho}_{\text {out }}=\hat{U} \widehat{\rho}_{\text {in }} \hat{U}^{\dagger}
$$

$$
\text { Hint: }\left|\phi_{\text {out }}\right\rangle\left\langle\phi_{\text {out }}\right|=\widehat{U}\left|\phi_{\text {in }}\right\rangle\left\langle\phi_{\text {in }}\right| \widehat{U}^{\dagger}
$$

Orthogonal measurement on basis $\left\{\left|a_{j}\right\rangle\right\}$

$$
\begin{aligned}
P(j)= & \left|\left\langle a_{j} \mid \phi\right\rangle\right|^{2} \\
& \text { Hint: } P(j)=\left\langle a_{j} \mid \phi\right\rangle\left\langle\phi \mid a_{j}\right\rangle
\end{aligned}
$$

Expectation value of an observable \hat{A}

$$
\langle\widehat{A}\rangle=\langle\phi| \widehat{A}|\phi\rangle \quad\langle\widehat{A}\rangle=\operatorname{Tr}(\hat{A} \widehat{\rho})
$$

$$
\text { Hint: }\langle\widehat{A}\rangle=\operatorname{Tr}(\widehat{A}|\phi\rangle\langle\phi|)
$$

Rules in terms of density operators

Independently prepared systems A and B

$$
|\Psi\rangle_{A B}=|\phi\rangle_{A} \otimes|\psi\rangle_{B} \quad \hat{\rho}_{A B}=\hat{\rho}_{A} \otimes \hat{\rho}_{B}
$$

Local measurement on system B on basis $\left\{\left|b_{j}\right\rangle_{B}\right\}$

$$
\sqrt{p_{j}}\left|\phi_{j}\right\rangle_{A}={ }_{B}\left\langle b_{j}\right||\Phi\rangle_{A B} \quad \quad p_{j} \hat{\rho}_{A}^{(j)}={ }_{B}\left\langle b_{j}\right| \widehat{\rho}_{A B}\left|b_{j}\right\rangle_{B}
$$

Discarding system B

$$
\hat{\rho}_{A}=\operatorname{Tr}_{B}(|\Phi\rangle\langle\Phi|) \quad \hat{\rho}_{A}=\operatorname{Tr}_{B}\left[\hat{\rho}_{A B}\right]
$$

All the rules so far can be written in terms of density operators.

Which is the better description?

$\left\{p_{j},\left|\phi_{j}\right\rangle\right\}$
This looks natural. The system is in one of the pure states, but we just don't know. Quantum mechanics may treat just the pure states, and leave mixed states to statistical mechanics or probability theory.

All the rules so far can be written in terms of density operators.

Which description has one-to-one correspondence to physical states?
Theorem: Two states $\left\{p_{j},\left|\phi_{j}\right\rangle\right\}$ and $\left\{q_{k},\left|\psi_{k}\right\rangle\right\}$ with the same density operator are physically indistinguishable (hence are the same state).

Schmidt decomposition

Bipartite pure states have a very nice standard form.
Any orthonormal basis $\left\{\left|a_{i}\right\rangle_{A}\right\} \quad\left\{\left|b_{j}\right\rangle_{B}\right\}$

$$
|\Phi\rangle_{A B}=\sum_{i j} \alpha_{i j}\left|a_{i}\right\rangle_{A}\left|b_{j}\right\rangle_{B}
$$

We can always choose the two bases such that

$$
|\Phi\rangle_{A B}=\sum_{i} \sqrt{p_{i}}\left|a_{i}\right\rangle_{A}\left|b_{i}\right\rangle_{B} \quad \text { Schmidt decomposition }
$$

$\left\{\left|a_{i}\right\rangle_{A}\right\}$: Diagonalizes $\hat{\rho}_{A}=\operatorname{Tr}_{B}(|\Phi\rangle\langle\Phi|)$
Proof: $|\Phi\rangle_{A B}=\sum_{i}\left|a_{i}\right\rangle_{A}\left|\tilde{b}_{i}\right\rangle_{B} \quad\left|\tilde{b}_{i}\right\rangle_{B} \equiv{ }_{A}\left\langle a_{i}\right||\Phi\rangle_{A B}$ unnormalized

$$
\begin{aligned}
{ }_{B}\left\langle\tilde{b}_{j} \mid \tilde{b}_{i}\right\rangle_{B} & =\operatorname{Tr}\left[{ }_{A}\left\langle a_{i}\right||\Phi\rangle_{A B A B}\langle\Phi|\left|a_{j}\right\rangle_{A}\right] \\
& ={ }_{A}\left\langle a_{i}\right| \operatorname{Tr}_{B}\left[|\Phi\rangle_{A B A B}\langle\Phi|\right]\left|a_{j}\right\rangle_{A} \\
& ={ }_{A}\left\langle a_{i}\right| \hat{\rho}_{A}\left|a_{j}\right\rangle_{A}=p_{j} \delta_{i j} . \quad \sqrt{p_{j}}\left|b_{j}\right\rangle \equiv\left|\tilde{b}_{j}\right\rangle_{B}
\end{aligned}
$$

Entangled states and separable states

$$
|\phi\rangle_{A} \otimes|\psi\rangle_{B} \quad \sum_{k} \alpha_{k}\left|\phi_{k}\right\rangle_{A} \otimes\left|\psi_{k}\right\rangle_{B}
$$

Separable states
Entangled states
Are there any procedure to distinquish between the two classes?
\longrightarrow Schmidt decomposition $|\Phi\rangle_{A B}=\sum_{i=1}^{s} \sqrt{p_{i}}\left|a_{i}\right\rangle_{A}\left|b_{i}\right\rangle_{B}$

$$
p_{1} \geq p_{2} \geq \cdots \geq p_{s}>0
$$

Schmidt number
Number of nonzero coefficients in Schmidt decomposition
$=$ The rank of the marginal density operators
‘Symmetry’ between A and B
$\hat{\rho}_{A}, \hat{\rho}_{B}$ The same set of eigenvalues $\operatorname{Rank}\left(\hat{\rho}_{A}\right)=\operatorname{Rank}\left(\hat{\rho}_{B}\right)=s$

Separable states Schmidt number $=1$

$$
p_{1}=1
$$

Entangled states Schmidt number > 1

$$
p_{1} \geq p_{2}>0
$$

Range and Kernel of $\hat{\rho}$

$$
\operatorname{Ran} \hat{\rho} \equiv\{\widehat{\rho}|x\rangle||x\rangle \in \mathcal{H}\}
$$

Subspace in which $\hat{\rho}>0$

$$
\operatorname{Ker} \hat{\rho} \equiv\{|y\rangle .|\hat{\rho}| y\rangle=0\}
$$

$$
\text { Subspace in which } \hat{\rho}=0
$$

$$
\mathcal{H}=(\operatorname{Ran} \hat{\rho}) \oplus(\operatorname{Ker} \hat{\rho})
$$

$\operatorname{Rank}(\hat{\rho}) \equiv \operatorname{dim} \operatorname{Ran} \hat{\rho} \quad 22$

Pure states with the same marginal state

$|\Phi\rangle_{A B} \longrightarrow \hat{\rho}_{A} \quad$ Marginal state \quad (unique)
$\hat{\rho}_{A} \quad \longrightarrow|\Phi\rangle_{A B} \quad$ Purification
Pure Extension (not unique)

$$
|\Phi\rangle_{A B}=\left(\hat{1}_{A} \otimes \widehat{U}_{B}\right)|\Psi\rangle_{A B}
$$

Theorem: If $|\Psi\rangle_{A B}$ and $|\Phi\rangle_{A B}$ are purifications of the same state $\hat{\rho}_{A}$, state $|\Psi\rangle_{A B}$ can be physically converted to state $|\Phi\rangle_{A B}$ without touching system A.

Pure states with the same marginal state

Schmidt decomposition
Orthonormal basis $\left\{\left|a_{i}\right\rangle_{A}\right\}$ that diagonalizes $\hat{\rho}_{A}$

$$
\begin{aligned}
|\Psi\rangle_{A B} & =\sum_{i} \sqrt{p_{i}}\left|a_{i}\right\rangle_{A}\left|\mu_{i}\right\rangle_{B} \\
|\Phi\rangle_{A B} & =\sum_{i} \sqrt{p_{i}}\left|a_{i}\right\rangle_{A}\left|\nu_{i}\right\rangle_{B}
\end{aligned}
$$

$\left\{\left|\mu_{i}\right\rangle_{B}\right\} \quad$ Orthonormal basis

$$
\begin{gathered}
\left|\nu_{i}\right\rangle_{B}=\hat{U}_{B}\left|\mu_{i}\right\rangle_{B} \\
\text { unitary }
\end{gathered}
$$

$$
|\Phi\rangle_{A B}=\left(\widehat{1}_{A} \otimes \hat{U}_{B}\right)|\Psi\rangle_{A B}
$$

Sealed move（封じ手）

Chess，Go，Shogi ．．．

Let us call it a day and shall we start over tomorrow，with Bob＇s move．
While they are（suppose to be）sleeping．．．
－Alice should not learn the sealed move．
－Bob should not alter the sealed move．

Sealed move

- Alice should not learn the sealed move.
- Bob should not alter the sealed move.

If there is no reliable safe available ...
(If there is no system out of both Alice's and Bob's reach ...)

Impossibility of unconditionally secure quantum bit commitment (Lo, Mayers)

Ensembles with the same density operator

$$
\begin{array}{ll}
\left\{p_{j},\left|\phi_{j}\right\rangle_{A}\right\} & \left|\phi_{j}\right\rangle_{A} \text { with probability } p_{j} \\
\left\{q_{k},\left|\psi_{k}\right\rangle_{A}\right\} & \left|\psi_{k}\right\rangle_{A} \text { with probability } q_{k}
\end{array}
$$

$$
\hat{\rho}_{A} \equiv \sum_{j} p_{j}\left|\phi_{j}\right\rangle_{A A}\left\langle\phi_{j}\right|=\sum_{k} q_{k}\left|\psi_{k}\right\rangle_{A A}\left\langle\psi_{k}\right|
$$

A scheme to realize the ensemble $\left\{p_{j},\left|\phi_{j}\right\rangle_{A}\right\}$

Prepare system AB in state

$$
|\Phi\rangle_{A B} \equiv \sum_{j} \sqrt{p_{j}}\left|\phi_{j}\right\rangle_{A}\left|b_{j}\right\rangle_{B}
$$

$\left\{\left|b_{j}\right\rangle_{B}\right\} \quad$ Orthonormal basis

$$
\hat{\rho}_{A}=\operatorname{Tr}_{B}(|\Phi\rangle\langle\Phi|)
$$

Measure system B on basis $\left\{\left|b_{j}\right\rangle_{B}\right\}$

$$
\sqrt{p_{j}}\left|\phi_{j}\right\rangle_{A}={ }_{B}\left\langle b_{j} \| \Phi\right\rangle_{A B}
$$

$\left|\phi_{j}\right\rangle_{A}$ with probability p_{j}

Ensembles with the same density operator

Prepare system AB in state

$$
|\Psi\rangle_{A B} \equiv \sum_{k} \sqrt{q_{k}}\left|\psi_{k}\right\rangle_{A}\left|b_{k}\right\rangle_{B}
$$

Apply unitary operation \widehat{U}_{B} to system B

$$
|\Phi\rangle_{A B} \equiv \sum_{j} \sqrt{p_{j}}\left|\dot{\phi_{j}}\right\rangle_{A}\left|b_{j}\right\rangle_{B}
$$

Measure system B on basis $\left\{\left|b_{j}\right\rangle_{B}\right\}$

$$
|\Psi\rangle_{A B} \equiv \sum_{k} \sqrt{q_{k}}\left|\psi_{k}\right\rangle_{A}\left|b_{k}\right\rangle_{B}
$$

$\left|\phi_{j}\right\rangle_{A}$ with probability p_{j}

$$
\begin{gathered}
\left\{p_{j},\left|\phi_{j}\right\rangle_{A}\right\} \mid \\
\hat{\rho}_{A}=\operatorname{Tr}_{B}(|\Psi\rangle\langle\Psi|)=\operatorname{Tr}_{B}(|\Phi\rangle\langle\Phi|) \\
\left.|\Phi\rangle_{A B}=\left(\hat{1}_{A} \otimes \hat{U}_{B}\right)|\Psi\rangle_{A B}\right\}
\end{gathered}
$$

Ensembles with the same density operator

Can Alice distinguish the two states even partially?

Bob can remotely decide which of the states the system A is in.

Bob can postpone his decision indefinitely.

Theorem: Two states $\left\{p_{j},\left|\phi_{j}\right\rangle\right\}$ and $\left\{q_{k},\left|\psi_{k}\right\rangle\right\}$ with the same density operator are physically indistinguishable (hence are the same state).

Density operator
\downarrow One-to-one

Example

$\left\{|0\rangle_{A},|1\rangle_{A}\right\}$: an orthonormal basis $\quad| \pm\rangle_{A} \equiv \frac{1}{\sqrt{2}}\left(|0\rangle_{A} \pm|1\rangle_{A}\right)$

Recipe I: $\left\{p_{j},\left|\phi_{j}\right\rangle_{A}\right\} \quad p_{0}=p_{1}=\frac{1}{2},\left|\phi_{0}\right\rangle_{A}=|0\rangle_{A},\left|\phi_{1}\right\rangle_{A}=|1\rangle_{A}$
Recipe II: $\left\{q_{k},\left|\psi_{k}\right\rangle_{A}\right\} \quad q_{0}=q_{1}=\frac{1}{2},\left|\psi_{0}\right\rangle_{A}=|+\rangle_{A},\left|\psi_{1}\right\rangle_{A}=|-\rangle_{A}$

$$
\frac{1}{2}|0\rangle_{A A}\langle 0|+\frac{1}{2}|1\rangle_{A A}\langle 1|=\frac{1}{2}|+\rangle_{A A}\langle+|+\frac{1}{2}|-\rangle_{A A}\langle-|=\frac{1}{2} \hat{1}
$$

$$
\begin{array}{cc}
\frac{1}{\sqrt{2}}\left(|0\rangle_{A}|0\rangle_{B}+|1\rangle_{A}|1\rangle_{B}\right) \frac{\text { meas. }}{\left\{|0\rangle_{B},|1\rangle_{B}\right\}} & \text { Recipe I: } \\
\qquad \hat{U}=|+\rangle_{B B}\langle 0|+|-\rangle_{B B}\langle 1| \\
\frac{1}{\sqrt{2}}\left(|0\rangle_{A}|+\rangle_{B}+|1\rangle_{A}|-\rangle_{B}\right) & \\
\left.\frac{1}{\sqrt{2}}\left(|+\rangle_{A}|0\rangle_{B}+|-\rangle_{A}|1\rangle_{B}\right) \xrightarrow{\text { meas. }} \begin{array}{r}
\text { meas } \\
\left\{|0\rangle_{B},|1\rangle_{B}\right\}
\end{array}\right\} \text { Recipe II: }
\end{array}
$$

Example

$$
\begin{aligned}
& \frac{1}{\sqrt{2}}\left(|0\rangle_{A}|0\rangle_{B}+|1\rangle_{A}|1\rangle_{B}\right) \xrightarrow{\text { meas. }} \text { Recipe I: } \\
& \downarrow \hat{U}=|+\rangle_{B B}\langle 0|+|-\rangle_{B B}\langle 1| \\
& \left.\begin{array}{l}
\frac{1}{\sqrt{2}}\left(|0\rangle_{A}|+\rangle_{B}+|1\rangle_{A}|-\rangle_{B}\right) \\
\frac{1}{\sqrt{2}}\left(|+\rangle_{A}|0\rangle_{B}+|-\rangle_{A}|1\rangle_{B}\right) \xrightarrow[\left\{|0\rangle_{B},|1\rangle_{B}\right\}]{\text { meas. }}
\end{array}\right\} \begin{array}{r}
\text { meas } \\
\left\{|+\rangle_{B},|-\rangle_{B}\right. \\
\text { Recipe II: }
\end{array}
\end{aligned}
$$

Example

If Recipes I and II were distinguishable even partially, the causality would be violated.
For example...

Such a machine should not exist.

3. Qubits

Pauli operators (Pauli matrices)

Bloch representation (Bloch sphere)

Orthogonal measurement

Unitary operation

Qubit

$\operatorname{dim} \mathcal{H}=2$
Take a standard basis $\{|0\rangle,|1\rangle\}$
Linear operator \widehat{A}
Matrix representation (for $\{|0\rangle,|1\rangle\}$)

$$
\hat{A}=\left(\begin{array}{ll}
A_{00} & A_{01} \\
A_{10} & A_{11}
\end{array}\right) \quad \begin{aligned}
& A_{i j}=\langle i| \widehat{A}|j\rangle \\
& \widehat{A}=\sum_{i j} A_{i j}|i\rangle\langle j|
\end{aligned}
$$

4 complex parameters

$$
\widehat{A}=\alpha_{0} \widehat{\sigma}_{0}+\alpha_{1} \widehat{\sigma}_{1}+\alpha_{2} \widehat{\sigma}_{2}+\alpha_{3} \widehat{\sigma}_{3}
$$

Pauli operators (Pauli matrices)

Take a standard basis $\{|0\rangle,|1\rangle\}$

$$
\begin{array}{r}
\hat{1} \equiv\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right), \quad \hat{\sigma}_{x}=\hat{\sigma}_{1} \equiv\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \\
\hat{\sigma}_{y}=\widehat{\sigma}_{2} \equiv\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \hat{\sigma}_{z}=\widehat{\sigma}_{3} \equiv\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
\end{array}
$$

Unitary and self-adjoint

$$
\begin{aligned}
& {\left[\hat{\sigma}_{i}, \widehat{\sigma}_{j}\right]=2 i \epsilon_{i j k} \widehat{\sigma}_{k} \ldots \ldots \text { Levi-Civita symbol }} \\
& \hat{\sigma}_{i} \hat{\sigma}_{j}+\hat{\sigma}_{j} \hat{\sigma}_{i}=2 \delta_{i, j} \hat{1} \\
& \operatorname{Tr}\left(\hat{\sigma}_{i}\right)=0, \operatorname{Tr}\left(\widehat{\sigma}_{i} \widehat{\sigma}_{j}\right)=2 \delta_{i, j} . \\
& i, j=1,2,3 \\
& \left\{\begin{array}{l}
\epsilon_{123}=\epsilon_{231}=\epsilon_{312}=1 \\
\epsilon_{321}=\epsilon_{213}=\epsilon_{132}=-1 \\
\text { Otherwise } \epsilon_{i j k}=0
\end{array}\right. \\
& \text { Einstein notation } \\
& \sum_{k} \text { is omitted. } \\
& {\left[\widehat{\sigma}_{x}, \widehat{\sigma}_{y}\right]=2 i \widehat{\sigma}_{z}} \\
& \widehat{\sigma}_{x}^{2}=\widehat{1} \\
& \left\{\hat{\sigma}_{x}, \widehat{\sigma}_{z}\right\} \equiv \hat{\sigma}_{x} \widehat{\sigma}_{z}+\hat{\sigma}_{z} \widehat{\sigma}_{x}=0 \\
& \operatorname{Tr}\left(\widehat{\sigma}_{\mu} \widehat{\sigma}_{\nu}\right)=2 \delta_{\mu, \nu} \quad \text { 'Orthogonality' with respect to } \\
& \left(\mu, \nu=0,1,2,3 ; \sigma_{0} \equiv \widehat{1}\right) \quad(\widehat{A}, \widehat{B}) \equiv \operatorname{Tr}\left(\widehat{A}^{\dagger} \widehat{B}\right)
\end{aligned}
$$

Pauli operators (Pauli matrices)

$$
\begin{array}{r}
{\left[\hat{\sigma}_{i}, \widehat{\sigma}_{j}\right]=2 i \epsilon_{i j k} \widehat{\sigma}_{k}} \\
\widehat{\sigma}_{i} \widehat{\sigma}_{j}+\widehat{\sigma}_{j} \widehat{\sigma}_{i}=2 \delta_{i, j} \widehat{1} \\
\operatorname{Tr}\left(\hat{\sigma}_{i}\right)=0, \operatorname{Tr}\left(\hat{\sigma}_{i} \widehat{\sigma}_{j}\right)=2 \delta_{i, j} .
\end{array}
$$

Linear operator $\hat{A} \quad 4$ complex parameters $\left(P_{0}, P_{x}, P_{y}, P_{z}\right)$

$$
\begin{gathered}
\widehat{A}=\frac{1}{2}\left(P_{0} \widehat{1}+\boldsymbol{P} \cdot \hat{\boldsymbol{\sigma}}\right)=\frac{1}{2}\left(\begin{array}{cc}
P_{0}+P_{z} & P_{x}-i P_{y} \\
P_{x}+i P_{y} & P_{0}-P_{z}
\end{array}\right) \\
\boldsymbol{P}=\left(P_{x}, P_{y}, P_{z}\right) \\
\widehat{\boldsymbol{\sigma}}=\left(\hat{\sigma}_{x}, \hat{\sigma}_{y}, \hat{\sigma}_{z}\right) \\
P_{0}=\operatorname{Tr}(\widehat{A}) \quad \boldsymbol{P}=\operatorname{Tr}(\widehat{\boldsymbol{\sigma}} \widehat{A})
\end{gathered}
$$

Pauli operators (Pauli matrices)

$$
\widehat{A}=\frac{1}{2}\left(P_{0} \hat{1}+\boldsymbol{P} \cdot \hat{\boldsymbol{\sigma}}\right)=\frac{1}{2}\left(\begin{array}{cc}
P_{0}+P_{z} & P_{x}-i P_{y} \\
P_{x}+i P_{y} & P_{0}-P_{z}
\end{array}\right)
$$

\hat{A} is self-adjoint. $\longleftrightarrow P_{0}$ and \boldsymbol{P} are real.
Eigenvalues λ_{+}, λ_{-}

$$
\begin{aligned}
\operatorname{det}(\widehat{A}) & =\lambda_{+} \lambda_{-}=\frac{1}{4}\left(P_{0}^{2}-|\boldsymbol{P}|^{2}\right) \\
\operatorname{Tr}(\widehat{A}) & =\lambda_{+}+\lambda_{-}=P_{0} \\
& \downarrow \\
\lambda_{ \pm}= & \left(P_{0} \pm|\boldsymbol{P}|\right) / 2
\end{aligned}
$$

\hat{A} is positive. $\longleftrightarrow P_{0}$ and \boldsymbol{P} are real, $P_{0} \geq|\boldsymbol{P}|$

Bloch representation (Bloch sphere)

Density operator
Positive \& Unit trace

$$
P_{0} \geq|\boldsymbol{P}| \quad P_{0}=1
$$

$$
\hat{\rho}=\frac{1}{2}(\hat{1}+\boldsymbol{P} \cdot \hat{\sigma}) \quad|\boldsymbol{P}| \leq 1
$$

Density operator for a qubit system

Pure states $\hat{\rho}_{j}=\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right|$

$$
\hat{\rho}_{j}=\frac{1}{2}\left(\hat{1}+P_{j} \cdot \hat{\boldsymbol{\sigma}}\right)
$$

$$
\begin{aligned}
& \begin{aligned}
\left|\left\langle\phi_{1} \mid \phi_{2}\right\rangle\right|^{2} & =\operatorname{Tr}\left[\hat{\rho}_{1} \hat{\rho}_{2}\right] \\
& =\frac{1+\boldsymbol{P}_{1} \cdot \boldsymbol{P}_{2}}{2}=\cos ^{2} \frac{\theta}{2}
\end{aligned} \\
& \text { Orthogonal states } \longleftrightarrow \theta=\pi
\end{aligned}
$$

$$
\boldsymbol{P}_{1} \cdot \boldsymbol{P}_{2}=\cos \theta
$$

Orthonormal basis \longleftrightarrow A line through the origin

Orthogonal measurement

Orthonormal basis $\left\{\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle\right\} \longleftrightarrow$ A line through the origin

$$
\begin{aligned}
& P(1)=\left\langle\phi_{1}\right| \hat{\rho}\left|\phi_{1}\right\rangle=\operatorname{Tr}\left(\hat{\rho}_{1} \hat{\rho}\right)=\frac{1+\boldsymbol{P}_{1} \cdot \boldsymbol{P}}{2} \\
& P(2)=\frac{1-\boldsymbol{P}_{1} \cdot \boldsymbol{P}}{2}
\end{aligned}
$$

Example
Measurement of observable $\widehat{\sigma}_{z}$

Unitary operation

$|\psi\rangle, e^{i \theta}|\psi\rangle \quad$ The same physical state
$\hat{U}, e^{i \theta} \hat{U} \quad$ The same physical operation $\operatorname{det}\left(e^{i \theta} \widehat{U}\right)=e^{2 i \theta} \operatorname{det} \hat{U}$
group $\quad S U(2):$ Set of \hat{U} with $\operatorname{det} \hat{U}=1 \quad \hat{U} \in S U(2) \leftrightarrow-\hat{U} \in S U(2)$
(2 to 1 correspondence to the physical unitary operations)

$$
\begin{array}{cc}
\widehat{U}=\exp [i \widehat{S}]_{\text {Self-adjoint, traceless }} & \hat{U}=\left(\begin{array}{cc}
e^{i \phi} & 0 \\
0 & e^{-i \phi}
\end{array}\right) \\
\widehat{S}=\frac{1}{2}(\boldsymbol{P} \cdot \widehat{\boldsymbol{\sigma}}) & \widehat{S}=\left(\begin{array}{cc}
\phi & 0 \\
0 & -\phi
\end{array}\right)
\end{array}
$$

We can parameterize the elements of $\mathrm{SU}(2)$ as

$$
\widehat{U}(\boldsymbol{n}, \varphi) \equiv \exp [-i(\varphi / 2) \boldsymbol{n} \cdot \widehat{\boldsymbol{\sigma}}]
$$

Unitary operation

$$
\hat{\rho}=\frac{1}{2}(\widehat{1}+\boldsymbol{P} \cdot \hat{\boldsymbol{\sigma}}) \xrightarrow{\hat{U}(\boldsymbol{n}, \varphi)} \hat{\rho}^{\prime}=\frac{1}{2}\left(\widehat{1}+\boldsymbol{P}^{\prime} \cdot \hat{\boldsymbol{\sigma}}\right)
$$

How does the Bloch vector change?
Infinitesimal change $\hat{U}(\boldsymbol{n}, \delta \varphi) \sim \widehat{1}-i(\delta \varphi / 2) \boldsymbol{n} \cdot \hat{\boldsymbol{\sigma}}$

$$
\begin{aligned}
\delta \boldsymbol{P} & \equiv \boldsymbol{P}^{\prime}-\boldsymbol{P}=\operatorname{Tr}\left[\hat{\boldsymbol{\sigma}} \hat{\rho}^{\prime}\right]-\operatorname{Tr}[\hat{\boldsymbol{\sigma}} \widehat{\rho}] \\
& =\operatorname{Tr}\left[\hat{\boldsymbol{\sigma}} \widehat{U}(\boldsymbol{n}, \delta \varphi) \widehat{\rho} \widehat{U}^{\dagger}(\boldsymbol{n}, \delta \varphi)\right]-\operatorname{Tr}[\hat{\boldsymbol{\sigma}} \hat{\rho}] \\
& =\operatorname{Tr}\left[\widehat{U}^{\dagger}(\boldsymbol{n}, \delta \varphi) \hat{\boldsymbol{\sigma}} \widehat{U}(\boldsymbol{n}, \delta \varphi) \hat{\rho}\right]-\operatorname{Tr}[\hat{\boldsymbol{\sigma}} \widehat{\rho}] \\
& \sim \operatorname{Tr}\{(i \delta \varphi / 2)[(\boldsymbol{n} \cdot \widehat{\boldsymbol{\sigma}}), \widehat{\boldsymbol{\sigma}}] \hat{\rho}\}=-\delta \varphi \operatorname{Tr}\left[n_{i} \epsilon_{i j k} \widehat{\sigma}_{k} \hat{\rho}\right] \\
& =\delta \varphi \operatorname{Tr}[(\boldsymbol{n} \times \hat{\boldsymbol{\sigma}}) \hat{\rho}]=\delta \varphi \boldsymbol{n} \times \boldsymbol{P} .
\end{aligned}
$$

Rotation around axis \boldsymbol{n} by angle $\delta \varphi$

Unitary operation

$\widehat{U} \in S U(2)$

$$
\hat{U}=\exp [-i(\varphi / 2) \boldsymbol{n} \cdot \hat{\boldsymbol{\sigma}}]
$$

Rotation around axis n by angle φ

Examples

$\hat{\sigma}_{z}: \pi$ rotation around z axis $\hat{\sigma}_{x}: \pi$ rotation around x axis

$$
\hat{H}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

Hadamard transform

4. Power of an ancillary system

Kraus representation (Operator-sum rep.)
Generalized measurement
Unambiguous state discrimination
Quantum operation (Quantum channel, CPTP map)
Relation between quantum operations and bipartite states
A maximally entangled state and relative states
What can we do in principle?

Power of an ancilla system

Basic operations Unitary operations Orthogonal measurements

An auxiliary system (ancilla)

Power of an ancilla system

Kraus representation (Operator-sum rep.)

$$
\begin{aligned}
p_{j} \hat{\rho}_{\text {out }}^{(j)} & ={ }_{E}\langle j| \widehat{U}\left(\hat{\rho} \otimes|0\rangle_{E E}\langle 0|\right) \widehat{U}^{\dagger}|j\rangle_{E} \\
& \downarrow \widehat{M}^{(j)} \equiv{ }_{E}\langle j| \widehat{U}|0\rangle_{E} \text { Kraus operators } \\
p_{j} \hat{\rho}_{\text {out }}^{(j)} & =\widehat{M}^{(j)} \widehat{\rho} \widehat{M}^{(j) \dagger} \text { with } \sum_{j} \hat{M}^{(j) \dagger} \hat{M}^{(j)}=\widehat{1}
\end{aligned}
$$

Representation with no reference to the ancilla system

$$
\begin{aligned}
\sum_{j} \hat{M}^{(j) \dagger} \hat{M}^{(j)} & =\sum_{j}{ }_{E}\langle 0| \hat{U}^{\dagger}|j\rangle_{E E}\langle j| \widehat{U}|0\rangle_{E} \\
& ={ }_{E}\langle 0| \hat{U}^{\dagger} \hat{U}|0\rangle_{E} \\
& ={ }_{E}\langle 0| \widehat{1}_{A} \otimes \widehat{1}_{E}|0\rangle_{E} \\
& =\widehat{1}_{A}
\end{aligned}
$$

Kraus operators \longrightarrow Physical realization

$$
p_{j} \hat{\rho}_{\text {out }}^{(j)}={ }_{E}\langle j| \widehat{U}\left(\hat{\rho} \otimes|0\rangle_{E E}\langle 0|\right) \hat{U}^{\dagger}|j\rangle_{E}
$$

$$
\uparrow \downarrow \widehat{M}^{(j)} \equiv{ }_{E}\langle j| \widehat{U}|0\rangle_{E} \text { Kraus operators }
$$

$$
p_{j} \hat{\rho}_{\text {out }}^{(j)}=\hat{M}^{(j)} \widehat{\rho} \widehat{M}^{(j) \dagger} \text { with } \sum_{j} \widehat{M}^{(j) \dagger} \hat{M}^{(j)}=\widehat{1}
$$

Arbitrary set $\left\{\hat{M}^{(j)}\right\}$ satisfying $\sum_{j} \hat{M}^{(j) \dagger} \hat{M}^{(j)}=\hat{1}$
$|\phi\rangle_{A} \otimes|0\rangle_{E} \mapsto \sum_{j} \hat{M}^{(j)}|\phi\rangle_{A} \otimes|j\rangle_{E}$ is linear. preserves inner products.

$$
\begin{aligned}
& \begin{array}{l}
\text { For any two states }|\phi\rangle_{A} \text { and }|\psi\rangle_{A}, \\
\left(\sum_{j^{\prime}} \hat{M}^{\left(j^{\prime}\right)}|\psi\rangle_{A} \otimes\left|j^{\prime}\right\rangle_{E}\right)^{\dagger}\left(\sum_{j} \hat{M}^{(j)}|\phi\rangle_{A} \otimes|j\rangle_{E}\right) \\
={ }_{A}\langle\psi \mid \phi\rangle_{A}=\left(|\psi\rangle_{A} \otimes|0\rangle_{E}\right)^{\dagger}\left(|\phi\rangle_{A} \otimes|0\rangle_{E}\right) .
\end{array} .
\end{aligned}
$$

There exists a unitary satisfying
$\tilde{U}\left(|\phi\rangle_{A} \otimes|0\rangle_{E}\right)=\sum_{j} \tilde{M}^{(j)}|\phi\rangle_{A} \otimes|j\rangle_{E}$

Generalized measurement

$$
\begin{aligned}
& p_{j} \hat{\rho}_{\text {out }}^{(j)}=\hat{M}^{(j)} \widehat{\rho} \hat{M}^{(j) \dagger} \text { with } \sum_{j} \hat{M}^{(j) \dagger} \hat{M}^{(j)}=\hat{1}
\end{aligned}
$$

$$
\begin{aligned}
& p_{j}=\operatorname{Tr}\left[\widehat{F}^{(j)} \widehat{\rho}\right] \text { with } \sum_{j} \widehat{F}^{(j)}=\widehat{1} \\
& \left\{\widehat{F}^{(j)}\right\} \text { POVM } \\
& \text { Positive operator valued measure }
\end{aligned}
$$

Generalized measurement

$$
p_{j}=\operatorname{Tr}\left[\widehat{F}^{(j)} \hat{\rho}\right] \text { with } \sum_{j} \widehat{F}^{(j)}=\hat{1}
$$

Examples

Orthogonal measurement on basis $\left\{\left|a_{j}\right\rangle\right\}$

$$
\widehat{F}^{(j)}=\left|a_{j}\right\rangle\left\langle a_{j}\right|
$$

Trine measurement on a qubit

$$
\begin{gathered}
\widehat{F}^{(j)}=\frac{2}{3}\left|b_{j}\right\rangle\left\langle b_{j}\right| \\
\left|b_{j}\right\rangle\left\langle b_{j}\right|=\frac{1}{2}\left(\widehat{1}+\boldsymbol{P}_{j} \cdot \hat{\boldsymbol{\sigma}}\right) \\
\sum_{j} \boldsymbol{P}_{j}=0 \longrightarrow \sum_{j} \widehat{F}^{(j)}=\widehat{1}
\end{gathered}
$$

Distinguishing two nonorthogonal states

$$
\left\langle\phi_{0} \mid \phi_{1}\right\rangle=s>0
$$

Minimum-error discrimination

Unambiguous state discrimination

Unambiguous state discrimination

Orthogonal measurement
If the initial state is $\left|\phi_{0}\right\rangle$
it always fails.

If the initial state is $\left|\phi_{1}\right\rangle$
it fails with prob. $\left|\left\langle\phi_{0} \mid \phi_{1}\right\rangle\right|^{2}=s^{2}$

$$
\left\{\left|\phi_{1}\right\rangle,\left|\phi_{1}^{\perp}\right\rangle\right\}
$$

$$
\left\{\left|\phi_{0}\right\rangle,\left|\phi_{0}^{\perp}\right\rangle\right\}
$$

2 (I don't know) (surely) 1

$$
p_{\text {fail }}=\frac{1+s^{2}}{2} \underbrace{\overbrace{\text { fail }}^{p_{\text {fail }}}}_{\underbrace{53}_{\left\langle\phi_{0} \mid \phi_{1}\right\rangle}}
$$

Unambiguous state discrimination

Generalized measurement

$$
\begin{aligned}
& \hat{F}_{0}:=\mu\left|\phi_{1}^{\perp}\right\rangle\left\langle\phi_{1}^{\perp}\right| \\
& \widehat{F}_{1}:=\mu\left|\phi_{0}^{\perp}\right\rangle\left\langle\phi_{0}^{\perp}\right| \\
& \widehat{F}_{2}:=\widehat{1}-\widehat{F}_{0}-\widehat{F}_{1}
\end{aligned}
$$

The only constraint on μ comes from $\widehat{F}_{2} \geq 0$

$$
\begin{aligned}
& \left\langle\left.\phi \frac{\perp}{\mathrm{D}} \right\rvert\, \phi_{1}^{\perp}\right\rangle=s \\
& \left(\widehat{F}_{0}+\widehat{F}_{1}\right)\left(\left|\phi_{0}^{\perp}\right\rangle \pm\left|\phi_{1}^{\perp}\right\rangle\right) \\
& =\mu(1 \pm s)\left(\left|\phi_{0}^{\perp}\right\rangle \pm\left|\phi_{1}^{\perp}\right\rangle\right)
\end{aligned}
$$

The optimum: $\mu=(1+s)^{-1}$

$$
\begin{aligned}
p_{\text {fail }} & =1-\frac{\mu}{2}\left|\left\langle\phi_{0} \mid \phi_{1}^{\perp}\right\rangle\right|^{2}-\frac{\mu}{2}\left|\left\langle\phi_{1} \mid \phi_{\mathrm{D}}\right\rangle\right|^{2} \\
& =1-\mu\left(1-s^{2}\right)
\end{aligned}
$$

$$
p_{\text {fail }}=s
$$

Quantum operation (Quantum channel, CPTP map)

$$
p_{j} \hat{\rho}_{\text {out }}^{(j)}=\hat{M}^{(j)} \widehat{\rho} \widehat{M}^{(j) \dagger} \text { with } \sum_{j} \hat{M}^{(j) \dagger} \widehat{M}^{(j)}=\widehat{1}
$$

$$
\begin{aligned}
& \hat{\rho} \longrightarrow \longrightarrow \hat{\rho}_{\text {out }} \\
& \hat{\rho}_{\text {out }}=\sum_{j} p_{j} \hat{\rho}_{\text {out }}^{(j)}=\sum_{j} \widehat{M}^{(j)} \widehat{\rho} \widehat{M}^{(j) \dagger} \\
& =\sum_{j E}\langle j| \hat{U}\left(\hat{\rho} \otimes|0\rangle_{E E}\langle 0|\right) \hat{U}^{\dagger}|j\rangle_{E} \\
& =\operatorname{Tr}_{E}\left[\hat{U}\left(\hat{\rho} \otimes|0\rangle_{E E}\langle 0|\right) \hat{U}^{\dagger}\right] \\
& \hat{\rho}_{\text {out }}=\sum_{j} \widehat{M}^{(j)} \widehat{\rho} \widehat{M}^{(j) \dagger} \\
& =\operatorname{Tr}_{E}\left[\hat{U}\left(\hat{\rho} \otimes|0\rangle_{E E}\langle 0|\right) \hat{U}^{\dagger}\right]
\end{aligned}
$$

$$
\hat{\rho}_{\text {out }}=\mathcal{C}(\hat{\rho}) \quad \begin{aligned}
& \text { completely-positive trace-preserving map } \\
& \text { CPTP map }
\end{aligned}
$$

Quantum operation (Quantum channel, CPTP map)

$$
\begin{aligned}
\hat{\rho}_{\text {out }} & =\sum_{j} \widehat{M}^{(j)} \widehat{\rho} \widehat{M}^{(j) \dagger} \text { with } \sum_{j} \hat{M}^{(j) \dagger} \widehat{M}^{(j)}=\widehat{1} \\
& =\operatorname{Tr}_{E}\left[\hat{U}\left(\hat{\rho} \otimes|0\rangle_{E E}\langle 0|\right) \widehat{U}^{\dagger}\right]
\end{aligned}
$$

$\hat{\rho}_{\text {out }}=\mathcal{C}(\hat{\rho}) \quad$ completely-positive trace-preserving map CPTP map

Positive maps and completely-positive maps

Linear map
$\hat{\rho}_{A} \mapsto \mathcal{C}_{A}\left(\hat{\rho}_{A}\right)$
"positive": $\mathcal{C}_{A}\left(\hat{\rho}_{A}\right)$ is positive whenever $\hat{\rho}_{A}$ is positive

"completely-positive": $\left(\mathcal{C}_{A} \otimes \mathcal{I}_{B}\right)\left(\hat{\rho}_{A B}\right)$ is positive whenever $\hat{\rho}_{A B}$ is positive

What can we do in principle?

We have seen what we can (at least) do by using an ancilla system.

$$
p_{j} \hat{\rho}_{\text {out }}^{(j)}=\hat{M}^{(j)} \widehat{\rho} \hat{M}^{(j) \dagger} \text { with } \sum_{j} \hat{M}^{(j) \dagger} \hat{M}^{(j)}=\hat{1}
$$

We also want to know what we cannot do.

Black box with classical and quantum outputs

This is what we can do in principle $p_{m} m$

Any physical process should be represented in the following form:
$p_{m} \hat{\rho}_{\text {Out }}^{(m)}=\sum_{k} \hat{M}^{(k, m)} \hat{\rho} \hat{M}^{(k, m) \dagger} \sum_{m, k} \hat{M}^{(k, m) \dagger} \hat{M}^{(k, m)}=\widehat{1}_{A}$

What can we do in principle?

Maximally entangled states (MES)

$$
\operatorname{dim} \mathcal{H}_{A}=\operatorname{dim} \mathcal{H}_{B}=d
$$

Orthonormal bases

$$
\begin{aligned}
& \left\{|k\rangle_{A}\right\}_{k=1,2, \ldots, d} \\
& \sum_{k=1}^{d} \frac{1}{\sqrt{d}}|k\rangle_{A} \otimes|k\rangle_{B}
\end{aligned}
$$

$$
\left\{|k\rangle_{B}\right\}_{k=1,2, \ldots, d}
$$

Maximally entangled state

Properties of MES (I): Relative states

Fix a maximally $\operatorname{dim} \mathcal{H}_{A}=\operatorname{dim} \mathcal{H}_{B}=d$ entangled state
$|\Phi\rangle_{A B}=\sum_{k=1}^{d} \frac{1}{\sqrt{d}}|k\rangle_{A}|k\rangle_{B}$

Relative states

$$
\begin{aligned}
|\phi\rangle_{A} & =\sum_{k} \alpha_{k}|k\rangle_{A} \longleftrightarrow\left|\phi^{*}\right\rangle_{B}
\end{aligned}=\sum_{k} \overline{\alpha_{k}}|k\rangle_{B}, ~=\sqrt{d}_{A}\langle\phi||\Phi\rangle_{A B}
$$

Quantum operation and bipartite state

We can remotely prepare system A in any state with a nonzero success probability.
At any time

$\widehat{\sigma}_{A R}$:The state obtained when a half of an MES is fed to the channel.
If this state is known,
$\hat{\rho}_{\text {out }}={ }_{B}\left\langle\phi^{*}\right| \hat{\sigma}_{A R}\left|\phi^{*}\right\rangle_{B} d \quad$ Output for every input state is known!
Characterization of a process $=$ Characterization of a state

Quantum operation and bipartite state

$$
\begin{gathered}
\hat{\rho}_{\text {out }}=\sqrt{d}_{R}\left\langle\phi^{*}\right| \hat{\sigma}_{A R}\left|\phi^{*}\right\rangle_{R} \sqrt{d} \\
{ }_{R}\left\langle\phi^{*}\right|=\sqrt{d}{ }_{A R}\langle\Phi \| \phi\rangle_{A} \quad \hat{\sigma}_{A R}=\sum_{j}\left|\Psi_{j}\right\rangle_{A R A R}\left\langle\Psi_{j}\right| \\
\text { unnormalized } \\
\sqrt{d}_{R}\left\langle\phi^{*}\right|\left|\Psi_{j}\right\rangle_{A R}=\hat{M}^{(j)}|\phi\rangle_{A} \quad \text { (A linear map) } \\
\hat{\rho}_{\text {out }}=\sum_{j} \hat{M}^{(j)}|\phi\rangle_{A A}\langle\phi| \hat{M}^{(j)^{\dagger}} \quad A R\langle\Phi| \left\lvert\, \begin{array}{l}
|\phi\rangle_{A} \\
\left.\Psi_{j}\right\rangle A R
\end{array}\right.
\end{gathered}
$$

What we can do in principle

Universal NOT ? Spin reversal ?

Bloch vector

$$
\boldsymbol{P} \rightarrow-\boldsymbol{P}
$$

linear map $\hat{\rho} \rightarrow \mathcal{C}(\hat{\rho})$

$$
\begin{array}{rl}
\mathcal{C}(\hat{1})=\widehat{\mathcal{1}} & \mathcal{C}\left(\hat{\sigma}_{x}\right)=-\hat{\sigma}_{x} \\
\mathcal{C}\left(\hat{\sigma}_{y}\right)=-\hat{\sigma}_{y} & \mathcal{C}\left(\hat{\sigma}_{z}\right)=-\widehat{\sigma}_{z}
\end{array}
$$

$\mathcal{C}(|0\rangle\langle 0|)=|1\rangle\langle 1|$
$\mathcal{C}(|1\rangle\langle 1|)=|0\rangle\langle 0|$
$\mathcal{C}(|0\rangle\langle 1|)=-|0\rangle\langle 1|$
$\mathcal{C}(|1\rangle\langle 0|)=-|1\rangle\langle 0|$

$$
\begin{gathered}
\widehat{\sigma}_{x}=|1\rangle\langle 0|+|0\rangle\langle 1| \\
\hat{\sigma}_{y}=i|1\rangle\langle 0|-i|0\rangle\langle 1| \\
\widehat{\sigma}_{z}=|0\rangle\langle 0|-|1\rangle\langle 1| \\
\widehat{1}=|0\rangle\langle 0|+|1\rangle\langle 1|
\end{gathered}
$$

This map is positive, but...

Universal NOT ? Spin reversal ?

$$
\begin{aligned}
& \mathcal{C}(|0\rangle\langle 0|)=|1\rangle\langle 1| \\
& \mathcal{C}(|1\rangle\langle 1|)=|0\rangle\langle 0| \\
& \mathcal{C}(|0\rangle\langle 1|)=-|0\rangle\langle 1| \\
& \mathcal{C}(|1\rangle\langle 0|)=-|1\rangle\langle 0| \\
& 2|\Phi\rangle\langle\Phi|=(|00\rangle+|11\rangle)(\langle 00|+\langle 11|) \\
& =|00\rangle\langle 00|+|00\rangle\langle 11|+|11\rangle\langle 00|+|11\rangle\langle 11| \\
& 2 \hat{\rho}_{A R} \equiv 2(\mathcal{C} \otimes \mathcal{I})|\Phi\rangle\langle\Phi|= \\
& =|10\rangle\langle 10|-|00\rangle\langle 11|-|11\rangle\langle 00|+|01\rangle\langle 01| \\
& 2 \widehat{\rho}_{A R}(|00\rangle+|11\rangle)=-|11\rangle-|00\rangle=-(|00\rangle+|11\rangle) \\
& \rho_{A R} \text { has a negative eigenvalue! (The map is not completely positive.) }
\end{aligned}
$$

\longrightarrow Universal NOT is impossible.

Distinguishability

Measure of distinguishability between two states $D(\hat{\rho}, \widehat{\sigma})$ Examples

A quantity describing how we can distinguish between the two states in principle.

The distinguishability should never be improved by a quantum operation.

Monotonicity under quantum operations

Distinguishability

Measure of disting
A quantity des between the t

Trace distance $\|\cdot\|$: trace norm

$$
\frac{1}{2}\|\hat{\rho}-\hat{\sigma}\|
$$

Zero when $\hat{\rho}=\hat{\sigma} \quad$ (the same state)
Unity when $\hat{\rho} \hat{\sigma}=0 \quad$ (perfectly distinguishable)
Monotonicity?

$$
\|\hat{\rho}-\hat{\sigma}\| \geq\|\chi(\hat{\rho})-\chi(\widehat{\sigma})\|
$$

-Attach an ancilla $\quad \hat{\rho} \rightarrow \hat{\rho} \otimes \widehat{\tau} \quad \widehat{\sigma} \rightarrow \widehat{\sigma} \otimes \widehat{\tau}$

$$
\begin{array}{r}
\operatorname{Tr}|\hat{A} \otimes \hat{B}|=\operatorname{Tr}\left(\sqrt{\hat{A}^{\dagger} \hat{A}} \otimes \sqrt{\hat{B}^{\dagger} \hat{B}}\right)=\operatorname{Tr}|\hat{A}| \operatorname{Tr}|\hat{B}| \\
\|\hat{\rho} \otimes \hat{\tau}-\hat{\sigma} \otimes \hat{\tau}\|=\|(\hat{\rho}-\widehat{\sigma}) \otimes \hat{\tau}\|=\|\hat{\rho}-\widehat{\sigma}\| \times\|\hat{\tau}\|=\|\hat{\rho}-\widehat{\sigma}\|
\end{array}
$$

-Apply a unitary

$$
\hat{\rho} \rightarrow \hat{U} \widehat{\rho} \widehat{U}^{\dagger} \quad \hat{\sigma} \rightarrow \hat{U} \hat{\sigma} \widehat{U}^{\dagger}
$$

$$
\max _{\widehat{V}}|\operatorname{Tr}(\widehat{A} \widehat{V})|=\max _{\widehat{V}}\left|\operatorname{Tr}\left(\hat{U} \widehat{A} \hat{U}^{\dagger} \widehat{V}\right)\right|
$$

$$
\left\|\widehat{U} \hat{\rho} \widehat{U}^{\dagger}-\widehat{U} \hat{\sigma} \widehat{U}^{\dagger}\right\|=\left\|\widehat{U}(\hat{\rho}-\hat{\sigma}) \hat{U}^{\dagger}\right\|=\|\hat{\rho}-\widehat{\sigma}\|
$$

 $\max _{\widehat{V}_{A}}\left|\operatorname{Tr}\left[\left(\operatorname{Tr}_{R} \hat{\rho}-\operatorname{Tr}_{R} \hat{\sigma}\right) \widehat{V}_{A}\right]\right|=\max _{\widehat{V}_{A}}\left|\operatorname{Tr}\left[(\hat{\rho}-\hat{\sigma})\left(\hat{V}_{A} \otimes \widehat{\mathrm{I}}_{R}\right)\right]\right|$

$$
\leq \max _{\widehat{U}_{A R}}^{\widehat{V}_{A}}\left|\operatorname{Tr}\left[(\hat{\rho}-\widehat{\sigma}) \widehat{U}_{A R}\right]\right|
$$

Fidelity

$$
\begin{aligned}
& F(\hat{\rho}, \widehat{\sigma}) \equiv \max \left|\left\langle\phi_{\rho} \mid \phi_{\sigma}\right\rangle\right|^{2}=\|\sqrt{\widehat{\rho}} \sqrt{\hat{\sigma}}\|^{2}=(\operatorname{Tr} \sqrt{\sqrt{\hat{\sigma}} \widehat{\rho} \sqrt{\hat{\sigma}}})^{2} \\
& \quad F(\hat{\rho}, \widehat{\sigma})=1 \text { when } \hat{\rho}=\hat{\sigma} \quad F(\hat{\rho}, \widehat{\sigma})=0 \text { when } \hat{\rho} \widehat{\sigma}=0 \\
& \quad F(\hat{\rho},|\psi\rangle\langle\psi|)=\langle\psi| \hat{\rho}|\psi\rangle \\
& 1-F(\hat{\rho}, \widehat{\sigma}) \text { is a measure of distinguishability. } \quad \text { (not a distance) }
\end{aligned}
$$

Monotonicity

$$
F(\hat{\rho}, \hat{\sigma}) \leq F(\chi(\hat{\rho}), \chi(\hat{\sigma}))
$$

-Attach an ancilla

$$
F(\hat{\rho} \otimes \widehat{\tau}, \widehat{\sigma} \otimes \widehat{\tau})=F(\hat{\rho}, \widehat{\sigma}) F(\widehat{\tau}, \widehat{\tau})=F(\widehat{\rho}, \widehat{\sigma})
$$

-Apply a unitary

$$
F\left(\widehat{U} \hat{\rho} \widehat{U}^{\dagger}, \widehat{U} \hat{\sigma} \widehat{U}^{\dagger}\right)=\left\|\widehat{U} \sqrt{\hat{\rho}} \sqrt{\hat{\sigma}} \hat{U}^{\dagger}\right\|^{2}=\|\sqrt{\hat{\rho}} \sqrt{\hat{\sigma}}\|^{2}=F(\hat{\rho}, \widehat{\sigma})
$$

-Discard the ancilla

$$
\begin{aligned}
& F(\hat{\rho}, \hat{\sigma})=\max \left|\left\langle\phi_{\rho} \mid \phi_{\sigma}\right\rangle\right|^{2} \\
& F\left(\operatorname{Tr}_{R} \hat{\rho}, \operatorname{Tr}_{R} \hat{\sigma}\right)=\max \left|\left\langle\phi_{\rho}^{\prime} \mid \phi_{\sigma}^{\prime}\right\rangle\right|^{2} \\
& \max \left|\left\langle\phi_{\rho} \mid \phi_{\sigma}\right\rangle\right|^{2} \leq \max \left|\left\langle\phi_{\rho}^{\prime} \mid \phi_{\sigma}^{\prime}\right\rangle\right|^{2}
\end{aligned}
$$

