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1. Basic rules of quantum mechanics

How to describe the states of an ideally controlled system?

How to describe changes in an ideally controlled system?

How to describe measurements on an ideally controlled system?

How to treat composite systems?
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How to describe the states of an ideally controlled system?

(Basic rule I)

Dirac notation

Distinguishability Inner product
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Set of all the states

How to describe the states of an ideally controlled system?

(Basic rule I)

Hilbert space

0

a

2a

b
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How to describe changes in an ideally controlled system?

(Basic rule II)

Reversible evolution Inner products are preserved by 

unitary operations.

Distinguishability should never be 

improved by any operation.

Distinguishability should be unchanged 

by any reversible operation.

Infinitesimal change

Inner products will be preserved in any 

reversible operation.
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Linear operators:             . 

(Real)

(Positive)

(0 or 1)(Unit modulus)

(Complex)

An orthonormal basisEigenvalues
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How to describe measurements on an ideally controlled system?

(Basic rule III)

Orthogonal measurement on an orthonormal basis 

(von Neumann measurement, projection measurement)

Measurement of an observable

Measurement on Assign  

Closure relation
Note: This is not the unique way of defining 

the „best‟ measurement. We‟ll see later. 
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How to treat composite systems?

System A System B

System AB Composite system

Subsystems

We know how to describe 

each of the systems A and B.

How to describe AB as a single 

system?

(Basic rule IV)

Tensor product

Basis
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How to treat composite systems?

(Basic rule IV)
When system A and system B are independently accessed … 

State preparation

System A

System B

System AB

Separable states

Unitary evolution Orthogonal measurement

Local unitary 

operations
Local measurements

When system A and system B are directly interacted … 

Entangled  states
Global unitary 

operations

Global 

measurements
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2. State of a subsystem

Rule for a local measurement

State after discarding a subsystem (marginal state)

Properties of density operators

Rules in terms of density operators

Why is the density operator sufficient for description ?

Density operator

Schmidt decomposition
Pure states with the same marginal state
Ensembles with the same density operator
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Entanglement

System A System B

System AB 

Suppose that the whole system 

(AB) is ideally controlled 

(prepared in a definite state). 

Intuition in a „classical‟ world: 

If the whole is under a good control, so are the parts.  

But ….

It is not always possible to assign a state vector to subsystem A.

What is the state of subsystem A?
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Rule for a local measurement

A B

Measurement on 
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Rule for a local measurement

A B

Measurement on 

Measurement on 

arbitrary

Measurement on 
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abbreviation

A remark on notations
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State after discarding a subsystem (marginal state)

A B

Measurement on 

?
discard

State of system A:

This description is correct, but dependence on

the fictitious measurement is weird…
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Alternative description: density operator

Cons

Same 

Two different physical states could have the same density operator.

(The description could be insufficient.)

Pros

Independent of the choice of the fictitious measurement
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Properties of density operators

Positive

Unit trace

Positive & Unit trace 

probability

Mixed state

Pure  state (One eigenvalue is 1)

This decomposition is 

by no means unique!
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Rules in terms of density operators

Hint:

Hint:

Hint:
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Rules in terms of density operators

All the rules so far can be written in terms of density operators.
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Which is the better description?

This looks natural. The system is in one of the pure states, but we just 

don‟t know. Quantum mechanics may treat just the pure states, and 

leave mixed states to statistical mechanics or probability theory.

All the rules so far can be written in terms of density operators.

Which description has one-to-one correspondence to physical states?

Best description
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Schmidt decomposition

Bipartite pure states have a very nice standard form. 

Any orthonormal basis 

We can always choose the two bases such that

Schmidt decomposition

Proof:

unnormalized
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Entangled states and separable states

Separable states Entangled  states

Are there any procedure to distinguish between the two classes?

Schmidt decomposition

Separable states

Entangled  states

Schmidt number 

Number of nonzero coefficients in 

Schmidt decomposition

The eigenvalues of the marginal 

density operators (the same for A and B)

= The rank of the marginal density operators

Schmidt number = 1

Schmidt number > 1

Range and Kernel of 

Subspace in which 

Subspace in which 

„Symmetry‟ between A and B

The same set of eigenvalues
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Pure states with the same marginal state

A B

Marginal state

Purification

Pure Extension

(unique)

(not unique)
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Pure states with the same marginal state

A B

Schmidt decomposition

Orthonormal basis

Orthonormal basis
unitary
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Sealed move (封じ手)

Bb5

４六銀

Chess, Go, Shogi …

• Alice should not learn the sealed move.

Let us call it a day and shall we start over tomorrow, with Bob‟s move.

• Bob should not alter the sealed move.

While they are (suppose to be) sleeping...

http://i-aquos-blog.com/archives/omc062-s.jpg
http://ja.wikipedia.org/wiki/%E7%94%BB%E5%83%8F:Chess_Screenshot.PNG
http://images.google.co.jp/imgres?imgurl=http://ykoizumi5.cocolog-nifty.com/photos/uncategorized/kinko.gif&imgrefurl=http://ykoizumi5.cocolog-nifty.com/blog/cat5579641/index.html&h=230&w=230&sz=23&hl=ja&start=1&um=1&tbnid=GhRHqVcBf5p2JM:&tbnh=108&tbnw=108&prev=/images%3Fq%3D%25E9%2587%2591%25E5%25BA%25AB%26svnum%3D10%26um%3D1%26hl%3Dja%26safe%3Doff%26rls%3DGGLG,GGLG:2006-12,GGLG:ja%26sa%3DN
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A B

Sealed move

If there is no reliable safe available …

(If there is no system out of both Alice‟s and Bob‟s reach …)

Alice has no knowledge

Bob can alter the states

Function of the “safe” 

cannot be realized. 

Impossibility of unconditionally secure quantum bit commitment
(Lo, Mayers)

• Alice should not learn the sealed move.

• Bob should not alter the sealed move.
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Ensembles with the same density operator

A scheme to realize the ensemble

Orthonormal basisPrepare system AB in state

Measure system B on basis 
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Ensembles with the same density operator

Measure system B on basis Measure system B on basis 

Prepare system AB in state

Apply unitary operation        to system B
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A
B

BobAlice

Bob can remotely decide which of the 

states the system A is in.

Can Alice distinguish the two states 

even partially?

Bob can postpone his decision 

indefinitely.

Ensembles with the same density operator

NO!

Density operator

Physical state

One-to-one



30

Example

: an orthonormal basis

meas.

meas.

Recipe I:

Recipe II:

Recipe I:

Recipe II:

: an orthonormal basis

meas.
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Example

meas.

meas.

Recipe I:

Recipe II:

meas.

A B
measurement50% 50%

50% 50%
(Recipe I)

(Recipe II)
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Example

A B
measurement50% 50%

50% 50%
(Recipe I)

(Recipe II)

If Recipes I and II were distinguishable even partially, the causality would be violated. 

For example...

Cloning 

machine

Such a machine should not exist.
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3. Qubits

Pauli operators (Pauli matrices)

Bloch representation (Bloch sphere)

Orthogonal measurement

Unitary operation



34

Qubit

Take a standard basis 

Linear operator 

Matrix representation (for                   )

4 complex parameters
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Pauli operators (Pauli matrices)
Take a standard basis 

Unitary and self-adjoint

„Orthogonality‟ with respect to 

Levi-Civita symbol 

Einstein notation 
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Pauli operators (Pauli matrices)

Linear operator 4 complex parameters
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Pauli operators (Pauli matrices)

Eigenvalues 
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Bloch representation (Bloch sphere)

Density operator Positive & Unit trace

Density operator for a qubit system

A 3D real vector of length no greater than 1 

A point inside or on the sphere of radius 1  

x

y

z

Pure states

On the sphere

Bloch vector
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Pure states

x

y

z

Orthogonal states 

Orthonormal basis A line through the origin
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Examples

x

y

z

x

y

z

x

y

z

Spin ½ particle

Bloch vector = Spin vector

Polarization of 

a single photon
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Orthogonal measurement

x

y

z

Orthonormal basis

Example

Measurement of observable 

Z axis

A line through the origin
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Unitary operation

The same physical state

The same physical operation

: Set of       with               

(2 to 1 correspondence to the physical unitary operations)

group

Self-adjoint, traceless

We can parameterize the elements of SU(2) as

Unit vector
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Unitary operation

How does the Bloch vector change? 

Infinitesimal change
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x

y

z

Unitary operation

Examples

Hadamard transform
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4. Power of an ancillary system

Kraus representation (Operator-sum rep.) 

Generalized measurement 

Unambiguous state discrimination

Quantum operation (Quantum channel, CPTP map) 

A maximally entangled state and relative states 

Relation between quantum operations and bipartite states 

What can we do in principle?
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Power of an ancilla system 

Unitary operations

Orthogonal measurements

Basic operations

measurement

An auxiliary system 

(ancilla)+

probability
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Power of an ancilla system 
measurement

probability



48

Kraus representation (Operator-sum rep.) 

Kraus operators

Representation with no reference to the ancilla system
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Kraus operators        Physical realization 

Kraus operators
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Generalized measurement 

POVM

Positive operator valued measure

positive
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Generalized measurement 

Examples

x

y

z
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Minimum-error discrimination

?

or

50% 50%

measurement

(maybe) 0

(maybe) 1

qubit

Distinguishing two nonorthogonal states

Unambiguous state discrimination

?

or

50% 50%

measurement

(surely) 0

(surely) 1

2 (I don‟t know)

qubit
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Unambiguous state discrimination

?

or

50% 50%

measurement

(surely) 0

(surely) 1

2 (I don‟t know)

Orthogonal measurement

(surely) 12 (I don‟t know)

qubit

If the initial state is 

it always fails. 

If the initial state is 

it fails with prob. 

1

1
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Unambiguous state discrimination

?

or

50% 50%

measurement

(surely) 0

(surely) 1

2 (I don‟t know)

Generalized measurement

qubit

The only constraint on      comes from

1

1

The optimum: 
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Quantum operation (Quantum channel, CPTP map) 

completely-positive trace-preserving map

CPTP map 
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Quantum operation (Quantum channel, CPTP map) 

completely-positive trace-preserving map

CPTP map 
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Positive maps and completely-positive maps 

Linear map

“positive”: 

“completely-positive”: 
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What can we do in principle?

We have seen what we can (at least) do by using an ancilla system. 

We also want to know what we cannot do.

Black box with classical and quantum outputs
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This is what we can do in principle

Any physical process should be represented in the following form:

Orthogonal measurement
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What can we do in principle?

Black box with quantum output

(Quantum channel)

The distinguishability should never be 

improved by a quantum operation.

•Attach an ancilla

•Apply a unitary

•Discard the ancilla
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Maximally entangled states (MES) 

Orthonormal 

bases 

Maximally entangled state
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Properties of MES (I): Relative states 

Fix a maximally 

entangled state

Relative states

Orthogonal 

measurement 

outcome
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Quantum operation and bipartite state

We can remotely prepare system A in any state 

with a nonzero success probability.  

At any time

measurement

:The state obtained when a half of an MES is fed to the channel.

Output for every input state is known!

Characterization of a process = Characterization of a state

probability

If this state is known,
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Quantum operation and bipartite state

(A linear map)

unnormalized
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What we can do in principle

Black box with quantum output

(Quantum channel)

The distinguishability should never be 

improved by a quantum operation.

•Attach an ancilla

•Apply a unitary

•Discard the ancilla



66

x

y

zUniversal NOT ? Spin reversal ?

Bloch vector

linear map

This map is positive, but...
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Universal NOT

?

has a negative eigenvalue!  (The map is not completely positive.)

Universal NOT is impossible.

Universal NOT ? Spin reversal ?
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Distinguishability

A quantity describing how we can distinguish 

between the  two states in principle.

Measure of distinguishability between two states

Quantum channel (CPTP map)

The distinguishability should never be 

improved by a quantum operation.

Monotonicity under quantum operations

Examples
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Distinguishability

A quantity describing how we can distinguish 

between the  two states in principle.

Measure of distinguishability between two states

Quantum channel (CPTP map)

The distinguishability should never be 

improved by a quantum operation.

•Attach an ancilla

•Apply a unitary

•Discard the ancilla
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Trace distance

Zero when

Unity when

(the same state)

(perfectly distinguishable)

Monotonicity?

•Discard the ancilla

•Attach an ancilla

•Apply a unitary

A R

: trace norm
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Fidelity

is a measure of distinguishability. (not a distance)

•Discard the ancilla

•Attach an ancilla

•Apply a unitary

R

Monotonicity


