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Scalability issue

of quantum computer

 How many qubits are available?
— Are quantum operations still possible?

* Isn’'t quantum benefit lost?

— Controls and measurements not exponentially
hard

— Success probability not exponentially decreased?
* Initialization
» Fault-tolerance
« Control-induced decoherence

 Architecture
— Individual control €<—-> Global control



Individual control of spatially
addressed qubits

« Spatial addressing

— lon trap, quantum dots,
superconducting qubits
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— At least one classical control S I f\,’
system per qubit #
— Control induced decoherence?

» Spatio-spectral mapping by field |
gradient
— At least one frequency per qubit

Jomjeﬁmea
uonnl!a



Global control
A Potentially Realizable Quantum Computer
Seth Lloyd, Science Vol. 261, 1569 (1993)

JAB JBC JCA JAB JBC

s+~ A-B-C-A-B-C----

End qubit A End qubit C

® Only 16 frequencies are required to build universal
quantum circuit on (ABC)n regardless of n

® |ess harmful control-induced decoherence

® Overhead is O(n) and not exponentially hard

® Other quantum cellular automaton like architecture



Potentially Scalable Molecular Spin
Quantum Computer

Supramolecular chemistry approach
Triple-stranded metallo-helicates
based on oligo(imidazole)s ligands

Mn(ll) for guest
Zn(ll) for host

non-equivalent
g-tensor

.

0 = metal cation

g-tensor engineering

Y. Morita, Y. Yakiyama, et. al.

Possible realization with nuclear
spins

ideal: (F, 'H, P), (F, 'H, 3C)
realistic: ('H, 'H, 13C), ('H, 13C, 3C)



Chirp-free hyper-precision pulse
anywhere in the resonator bandwidth
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Frequency

Homo-nuclear qubits (chemical shifts)

Electron spin qubits (g-tensor engineering)
16 frequencies for (ABC), scalable qubits

Precision pulse irradiation with arbitrary detuning
for quantum optical experiments



A: Header bit

B: Register bit 1D Lloyd MOdeI

qubit 1 - _
C: Memory bit

@ Initialization
® Selective NOT 4, 5 (Only edge becomes 1, Header)
€ 1qubit rotation
» SWAP,_.g SWAPg.. SWAP._, (Moving Header into Data)
» Controlled,-SWAPg .
» Controlled,-Rotationg
» Controlled,-SWAPg .
¢ CNOT
» SWAP (Moving Header to Control qubit)
» Controlled,-SWAPg .
» SWAP (Moving Header and Control qubit to Target qubit)
» Controlled,-Controlledg-NOT
» SWAP (Moving Control qubit to the original position)
€ Selective Measurement

qubit 2

qubit 3

qubit 4 -

edge-A

~P@»0@>»0@>»@®@



Global Control of 1D Lloyd Model

« SWAP,.gz SWAP;.- SWAP .,
Moving Header arround

» Controlled,-SWAPg.,
 Controlled,-Rotationg

« Controlled,-Controlled;-NOT

Data and Register with Header are quantum
Others are classical

A —Z(6)-91Z(8)—
A —Z(e)|TZ(e)|—
B Vs suffice

C




Fault-Tolerant QC

Measured iff Header
is 1

« Controlled,, 4o,-Measurement

HeaderT
* Without Measurement N o
— QEC [Nielsen & Chuang QCQI]

W) ? xI- vy QEC w projective meas.
10y D § =Controlled operation

10) :
Bit Flip Channel +Cooling
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Fault-tolerant w/o measurement

week ending

PRL 105, 100501 (2010) PHYSICAL REVIEW LETTERS 3 SEPTEMBER 2010

Fault Tolerance with Noisy and Slow Measurements and Preparation

Gerardo A. Paz-Silva,” Gavin K. Brennen, and Jason Twamley

Centre for Quantum Computer Technology, Macquarie University, Sydney, NSW 2109, Australia
(Received 8 March 2010; published 30 August 2010)

It is not so well known that measurement-free quantum error correction protocols can be designed to
achieve fault-tolerant quantum computing. Despite their potential advantages in terms of the relaxation of
accuracy, speed, and addressing requirements, they have usually been overlooked since they are expected
to yield a very bad threshold. We show that this is not the case. We design fault-tolerant circuits for the
9-qubit Bacon-Shor code and find an error threshold for unitary gates and preparation of p, o)thresh =
3.76 X 107> (30% of the best known result for the same code using measurement) while admitting up to
1/3 error rates for measurements and allocating no constraints on measurement speed. We further show
that demanding gate error rates sufficiently below the threshold pushes the preparation threshold up to

P (p)thresh — ]/3



Spin Amplification



Readout of spin qubit
Z

A

Free Induction Decay

st

POV
AT AT

—sinw,t
FID signal from single nuclear spin is too weak to detect
108~10"* nuclear spins are required

Projective measurement is not available




Spin Amplification by Copying

Copying arbitrary unknown state is prohibited by no-
cloning theorem, but copying whether the state is |0>
or |1> is not. A spin component can be amplified.

[D. DiVincenzo, Fortschr Phys. 48, 771 (‘00)]
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* " A = H 4 surrounded by m abundant H spins is [0)or |1)
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Minimum detectable number of spins
(106 : induction, 102: MRFM)
can be reduced by spin amplification




Spin Amplification by SWAPs

Input

[¥)=a|0)+5[1)
[ )
()> _QLﬁ(,ancillary
10) (10)—
0)—— N 0)—

m< | m< |

0) \ 0) ®

Still difficult to build quantum circuits for large m,
say, m=100, 1000, ...
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PRL 107, 050503 (2011) PHYSICAL REVIEW LETTERS 20 JULY 2011
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FIG. 1 (color online). (a) Spin amplification referred to by
DiVincenzo [1]. (b) Spin amplification of the S spin response
signal using selective SWAP gates and (c¢) that using the hetero-
SD process. (d) Scalable version of (a). The 7 spins are initialized
to |0) for simplicity, although they do not have to be in practice.



Sample system: doubly doped crystal

) S
N\
/7

4 2.5 mg

riplet guest: pentacene
0.005 mol%

-fluoronaphthalene
1 mol%

H:F =799 : 1
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FIG. 2 (color online). The top dashed line shows the gain G of
the SNR of ideal spin amplification [Figs. 1(a) and 1(b)] with
respect to the number of SWAP gates N. The solid lines show the
expected gain [Eq. (2)] of the proposed one [Fig. 1(c)] with
respect to the number of the hetero-SD process gates N for
different system sizes. The bottom dashed line shows the gain of

the direct simple repetitive detection with respect to the number
of repetitions N.
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FIG. 3 (color online). (a) An experimental procedure of spin
amplification using the hetero-SD process [15]. (b) A DNP
sequence with integrated solid effect [16]. (¢) A schematic
diagram of an experimental setup where the sample position at
each stage 1s indicated.
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FIG. 4 (color online). (a) The behaviors of the 'H spin polar-
ization with respect to the number of steps N of spin amplifica-

tion without rf pulse (U = I) and wi

th on-resonance 7 pulses

(U = NOT). The dashed line is the theoretical decay. (b) The
circles show the spin-amplified frequency response spectra ob-

tained for N = 40 and 200. They were

obtained with the rf pulse

with a peak amplitude of 45 kHz (the pulse length is ~3 times as
long as that of 140 kHz). The squares show the spin-amplified

frequency response spectra obtained

for N = 200 with the rf

pulse with a peak amplitude of 140 kHz. Directly detected '°F
spectrum vertically magnified is also shown for comparison.



QND meas. with Spin Amplification

1-13C, 1-Fluoro-p-terphenyl : p-terphenyl = 1: 20
Polarization @RT > 10% [M. Negoro, et al., J. Chem. Phys. (2011)]
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Only this part is modified



Noiseless Quantum Amplification

Photon (Boson) * Spin
Degenerate Parametric | * Spin Squeezing
Amplifier Amplifier

— Amplify a, — Amplify S,

— De-amplity a, — De-amplify S,
Number Amplifier o Spin Amplifier

— Amplify N — Amplify S,

— Erase ¢ — Erase S, and S,

Laser (isotropic & noisy)

Non-degenerate Paramp| ¢ Isotropic Spin Amplifier
— Amplify both a, and a, — Amplify S,, S, and S,
— Inevitable quantum noise — Inevitable quantum noise
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