

量子情報処理プロジェクト全体会議2011 京都国際ホテル 12月9日

光格子時計と光周波数コムによる 量子標準の開発

Development of Quantum Standard Using Optical Lattice Clocks and Combs

洪 鋒雷、安田正美、赤松大輔、稲場 肇、保坂一元

Feng-Lei Hong, Masami Yasuda, Daisuke Akamatsu, Hajime Inaba, and Kazumoto Hosaka

産業技術総合研究所

National Institute of Advanced Industrial Science and Technology (AIST)

- "Redefinition of the second"
- Yb optical lattice clock
- Sr/Yb dual optical lattice clock
- Narrow linewidth lasers and optical frequency combs

- "Redefinition of the second"
- Yb optical lattice clock
- Sr/Yb dual optical lattice clock
- Narrow linewidth lasers and optical frequency combs

CIPM recommended laser frequencies

Wavele nght	Laser and reference	Frequency	Uncertainty
237 nm	¹¹⁵ In ⁺ , $5s^2 {}^{1}S_0 - 5s5p {}^{3}P_0$ transition	1267402452899.92 kHz	3.6×10 ⁻¹³
243 nm	¹ H, 1S - 2S, 2 photon transition	1233030706593.55 kHz	2.0×10 ⁻¹³
282 nm	¹⁹⁹ Hg ⁺ , 5d ¹⁰ 6s ² S _{1/2} (F=0) - 5d ⁹ 6s ^{2 2} D _{5/2} (F=2) transition	1064721609899145 Hz	3×10 ⁻¹⁵
436 nm	¹⁷¹ Yb ⁺ , $6s^2S_{1/2}$ (F=0) - $5d^2D_{3/2}$ (F=2) transition	688358979309308 Hz	9×10 ⁻¹⁵
467 nm	¹⁷¹ Yb ⁺ , ² S _{1/2} (F=0) - ² F _{7/2} (F=3) transition	642121496772657 Hz	6×10 ⁻¹⁴
532 nm	Nd:YAG laser, ¹²⁷ I ₂ , R(56)32-0:a ₁₀	563260223513 kHz	8.9×10 ⁻¹²
543 nm	He-Ne laser, ¹²⁷ I ₂ , R(106)28-8:b ₁₀	551580162400 kHz	4.5×10 ⁻¹¹
578 nm	171 Yb, $6s^2 {}^{1}S_0$ (F=1/2) - $6s6p {}^{3}P_0$ (F=1/2) transition	518295836590864 Hz	1.6×10 ⁻¹³
633 nm	He-Ne laser, ¹²⁷ l ₂ , R(127)11-5:a ₁₆	473612353604 kHz	2.1×10 ⁻¹¹
657 nm	${}^{40}\text{Ca}, {}^{1}\text{S}_{0} - {}^{3}\text{P}_{1}, \Delta m_{J} = 0$	455986240494140 Hz	1.8×10 ⁻¹⁴
674 nm	⁸⁸ Sr ⁺ , 5^2 S _{1/2} - 4^2 D _{5/2}	444779044095484 Hz	7×10 ⁻¹⁵
698 nm	87 Sr, 5s ² 1 S ₀ - 5s5p 3 P ₀ transition	429228004229873.7 Hz	1×10 ⁻¹⁵
698 nm	⁸⁸ Sr, $5s^2 {}^1S_0 - 5s5p {}^3P_0$ transition	429228066418012 Hz	1×10 ⁻¹⁴
729 nm	$^{40}Ca^+$, 4s $^2S_{1/2}$ – 3d $^2D_{5/2}$ transition	411042129776393 Hz	4×10 ⁻¹⁴
778 nm	⁸⁵ Rb, 5S _{1/2} (F=3) - 5D _{5/2} (F=5), 2 photon transition	385285142375 kHz	1.3×10 ⁻¹¹
1.5mm	${}^{13}C_{2}H_{2}$, P(16)(v ₁ + v ₃) transition	194369569384 kHz	2.6×10 ⁻¹¹
3.39mm	He-Ne laser, CH_4 , n ₃ , P(7), $F_2^{(2)}$	88376181600.18 kHz	3×10 ⁻¹²

"Redefinition of the second"

- Yb optical lattice clock
- Sr/Yb dual optical lattice clock
- Narrow linewidth lasers and optical frequency combs

Background

We have demonstrated ¹⁷¹Yb optical lattice clock in 2009.

Applied Physics Express 2 (2009) 072501

One-Dimensional Optical Lattice Clock with a Fermionic ¹⁷¹Yb Isotope

Takuya Kohno, Masami Yasuda*, Kazumoto Hosaka, Hajime Inaba, Yoshiaki Nakajima, and Feng-Lei Hong

National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8563, Japan

CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan

Received May 15, 2009; accepted May 26, 2009; published online June 19, 2009

We demonstrate a one-dimensional optical lattice clock with ultracold ¹⁷¹ Vb atoms, which is free from the linear Zeeman effect. The absolute frequency of the ¹ S₀(F = 1/2)– $^{3P}_{0}$ (F = 1/2) clock transition in ¹⁷¹ Vb is determined to be 518 295 836 590 864(28) Hz with respect to the SI second. \odot 2009 The Japan Society of Applied Physics

DOL: 10 11 40/ADEV 0 070E0	
UU: 10.114.9APEX.2.0/250	2.072501

Effect	Correction (Hz)	Uncertainty (Hz)
Blackbody radiation shift	+ 1.32	0.13
Gravitational shift	- 1.19	0.03
2nd order Zeeman shift	+ 0.4	0.05
Scalar light shift	0	14
Clock laser light shift	- 0.04	< 0.01
Paper lock error	0	23
UTC (NMIJ)	0	5
Total	+ 0.49	27

 $S_0(F = 1/2)^{-3}P_0(F = 1/2)$ transition in ¹⁷¹Yb **f = 518 295 836 590 864 (28) Hz** (Fractional uncertainty 5.4 × 10⁻¹⁴)

CIPM Recommended frequency list (June, 2009)

cf. NIST group's GREAT result:

N. D. Lemke *et al.*, "Spin-1/2 Optical Lattice Clock" Phys. Rev. Lett., vol. 103, pp. 063001, August 2009 $f = 518\ 295\ 836\ 590\ 865.2(0.7)\ Hz$ (Fractional uncertainty 1.4 x 10⁻¹⁵)

Yb OLC can be so good!

To reduce the uncertainty,

we have to lock the clock laser to the clock transition.

We improve the spectroscopy signal by normalizing the atom number.

Timing chart of the spectroscopy w/ atom # normalization

Locking to the atomic transition

Future Prospects

- Lock the clock laser to the center of $\sigma(\pi)$ transitions
- Next absolute frequency measurement in a few month. (the result will be limited by our Cs clock.)

¹⁷¹ Yb clock uncertainty	x10 ⁻¹⁶	How to tackle?
BBR	2.5	Cooling the environment
Lattice polarizability	2.0	Well-define the lattice laser.
		(Freq., Power. Pol.)
Density	0.8	Further cooling atoms
		-> Collision suppression
Hyperpolarizability	0.7	Further cooling atoms
		-> Less lattice laser power

(excerpt from "Spin-1/2 Optical Lattice Clock", PRL 103, 063001 (2009))

Sr optical lattice clock project has been started. → opt.-opt. comparison beyond our Cs-limit

- "Redefinition of the second"
- Yb optical lattice clock
- Sr/Yb dual optical lattice clock
- Narrow linewidth lasers and optical frequency combs

Dual Optical Lattice Clock

Yb OLC and Sr OLC in a same chamber

- 1) Contribution to the Sr lattice clock community;
- 2) As a second optical clock to be used for the evaluation of the Yb lattice clock;
- 3) Measurement of the Sr/Yb frequency ratio with an uncertainty beyond the Cs limit;
- 4) Contribution to the experimental demonstration of alpha variation;
- 5) Demonstration an atomic clock with suppressed BBR shift.

A diode laser for intercombination cooling

The frequency of the cooling laser has to be locked to a frequency reference.

The linewidth has to be sub-kHz to cool the atoms down to μ K level.

AIST

a heat pipe and a high finesse cavity are conventionally used for narrowing the linewidth.

NMJ 計量標準総合センター

Y. Li et al., Appl. Phys. B 78, 315

We employ "a linewidth transfer method" with optical freq. comb.

Linewidth transfer for Strontium OLC

Optical Dipole Trapping of Sr at a magic wavelength

Optical Dipole Trap of 88Sr

tionem

813.4nm (magic wavelength) 120mW g

- "Redefinition of the second"
- Yb optical lattice clock
- Sr/Yb dual optical lattice clock
- Narrow linewidth lasers and optical frequency combs

AIST

ULE cavity

578 nm & 1064 nm reference cavities

- Ultra-low expansivity glass (ULE) etalon
- Length : 75 mm
- Finesse : ~400,000 (+/- 150,000)
- The cavity was bonded to an AI disc using silicon RTV
- Turning point of thermal expansivity is around room temp
- Two-layer temperature control (± 1 mK)
- Vacuum : ~10⁻⁵ Pa

AIST

Applications to optical lattice clocks using narrow linewidth combs

Linewidth transfer using narrow linewidth combs

Fiber combs are not only very reliable for long-term operation but also useful to transfer linewidth and frequency stability from one wavelength to another.

Out-of-loop beat signal of 2 fiber combs commonly phase-locked to a narrow linewidth laser

The energy concentration to the coherent carrier is 99 %

Relative linewidth < 30 mHz

Conclusion: frequency combs can be used to transfer laser linewidth at mHz level!

