ナノ機械構造の物理と応用 - ナノ機械計算の可能性 -

NTT 物性科学基礎研究所 山口 浩司

What is the minimum energy required to carry out a computation ?

The computation can actually be done with no minimal loss of energy !!

The energy cost comes in the step of erasure of the information; $E = kT\log 2$ per one bit.

If your computer is reversible, the energy loss could be made as small as you want.

C. H. Bennett, R. Landauer etc.

Two Types of Mechanical Reversible Logic

Bistable MEMS memory using buckled beams

B. Charlot et al. J. Micromech. Microeng. 18, 045005 (2008)

D. Roodenburg et al. Appl. Phys. Lett. 94, 183501 (2009)

Mechanical resonators

D. Rugar et al. Nature

Ultrasensitive Force/Mass Detection

- Displacement detection up to femtometer scale (UCSB)
- Zeptogram mass sensing (Caltech)
- Single spin sensing (IBM)

Logic Applications

- Bistability in nonlinear Duffing resonators (Boston, APL 2004)
- Mechanical XOR by coupled resonators (Caltech, Science 2007)

2010.08.19 量子情報+S元C-MasmanidisTet/all) Science

Strain-voltage transduction

Strain-voltage transduction

Electrical actuation, detection and frequency control

Strain-voltage transduction

Electrical actuation, detection and frequency control

Fabricated device (top view)

Gate 1: Application of AC voltage → Actuation through bending moment

Gate 2: Measurement of generated voltage → Beam-motion detection

Gate 3: Application of DC voltage → Resonance frequency modulation

Applied AC voltage induces the vibration. ($f_{res} \sim 140$ kHz, amplitude: 10 nm_{rms})

Fabricated device (top view)

Gate 1: Application of AC voltage → Actuation through bending moment

Gate 2: Measurement of generated voltage → Beam-motion detection

Gate 3: Application of DC voltage → Resonance frequency modulation

I. Mahboob and H. Y., Appl. Phys. 16ett. 192, 173109 (2008) [17) Slide-#10

Parametric actuation of mechanical resonance

$$f_{act} = 2f_{res}$$

NTT

Frequency response for parametric actuation

Nonlinear Mathieu-equation

Frequency response for parametric actuation

Nonlinear Mathieu-equation

$$\left[m\frac{d^{2}}{dt^{2}} + m\omega_{0}Q^{-1}\frac{d}{dt} + m\omega_{0}^{2}[1 + \beta x(t)^{2} - 2\Gamma\sin(2\omega t)]\right]x(t) = 0$$

Rotating frame approximation: $x(t) = X_s(t)\sin(\omega t) + X_c(t)\cos(\omega t)$

$$\frac{2}{\omega_0}\dot{X}_s = -Q^{-1}X_s + \Gamma X_s - \left(\frac{2\delta\omega}{\omega_0} + \frac{3}{4}\beta\left(X_s^2 + X_c^2\right)\right)X_c, \quad \frac{2}{\omega_0}\dot{X}_c = -Q^{-1}X_c - \Gamma X_c - \left(\frac{2\delta\omega}{\omega_0} + \frac{3}{4}\beta\left(X_s^2 + X_c^2\right)\right)X_s$$

Frequency response for parametric actuation

Simulation

Bi- and tri-stabilities in parametric resonator

Hamiltonian in the rotating frame for parametric resonator

_

$$\left[m\frac{d^{2}}{dt^{2}} + m\omega_{0}\gamma\frac{d}{dt} + m\omega_{0}^{2}[1 + \beta x(t)^{2} - 2\Gamma\cos(2\omega t)]\right]x(t) = 0$$

$$H = \frac{p^{2}}{2m} + \frac{1}{2}m\omega_{0}^{2}x^{2}[1 - 2\Gamma\cos(2\omega t)] + \frac{1}{4}m\omega_{0}^{2}\beta x^{4} \qquad (\gamma = 0)$$

Canonical transformation by a time-dependent generator:

$$F(x,Q,t) = (m\omega x^2 / 2\tan \omega t - \sqrt{m\omega}xQ / \sin \omega t + Q^2 / 2\tan \omega t)$$

 $x(t) = [P(t)\sin(\omega t) + Q(t)\cos(\omega t)]/\sqrt{m\omega}, \quad p(t) = \sqrt{m\omega} [P(t)\cos(\omega t) - Q(t)\sin(\omega t)]$

$$H'(P,Q) = H(p,x) + \frac{\partial F}{\partial t}$$

$$\sim \frac{3\beta}{32m} (P^2 + Q^2)^2 + \frac{\omega_0 \Gamma}{4} (P^2 - Q^2) + \frac{\delta \omega}{4} (P^2 + Q^2)$$

Hamiltonian in the rotating frame for parametric resonator

M. Marthaler and M. I. Dykman 2010.08.19 Phys. Rev. A76, 010102 (2007)

Analogies between buckled beams and parametrically-driven resonators NTT ()

Driving stress: static

Threshold: yes (Euler's condition)

Driving stress: periodic

Estimation of Barrier Height

Estimation of Barrier Height

Symmetry Lifting

Symmetry Lifting

I. Mahboob, C. Froitier, and H. Yamaguchi, Appl. Phys. Lett. 96, 213103 (2010) 2010.08.19 量子情報サマースクール (NTT 山口) Slide-#23

Electromechanical implementation of Parametron

I. Mahboob and H. Yamaguchi, Nature Nanotechnol. 3, 275 (2008)

2010.08.19 量子情報サマースクール (NTT 山口) Slide-#24

NTT

Similarity between buckled beams and parametrically-driven resonators NTT (9)

Driving stress: static Threshold: yes (Euler's condition) Symmetry lifting: small lateral force

Parametron computer (Musashino-1)

- used for practical calculation

Concept of "Majority Voter"

Can we use it for energy-efficient mechanical logic systems ?

Power consumption

- Mechanical energy dissipation

 $P_{mech} = mQf_{res}^3 x_{act}^2 \sim [L^2]$

Our device (250 x 90 x 1.4 μ m³) : $P_{mech} \sim 0.1 \text{ pW/bit}$

Operation speed and integration:

Submicron-long resonators $\rightarrow f_{res} \sim \text{several GHz}$ Graphene resonators $\rightarrow f_{res} \sim 500 \text{GHz}$? Integration density $\rightarrow 1 \text{Gbits/cm}^2$

We fabricated a GaAs/AIGaAs piezoelectric micromechanical resonator and demonstrated its possible applications.

- Effective strain-voltage transduction
- -Realizing of electromechanical Parametron
- -Non-degenerate parametric amplification
- -Multiple and parallel logic gates using f-conversion