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Quantum Simulation

Idea: Use quantum mechanics to simulate quantum 
mechanics! Feynman, Int. J. Theo. Phys. 

21, 467 (1982)

The aim of Quantum Simulation is to provide an 
alternative method to solving quantum many body 
problems to simulations on a classical computer. 

Spin, electronic, 
bosonic models 
(e.g. Heisenberg, 
Hubbard, t-J, etc.), 

High energy physicsSolid state physics

QCD lattice gauge theory

Quantum chemistry

Electronic structure 
of molecules

Applications 

Why aren’t classical computers very good at simulation?

N=40 S=1/2 spins need a Hilbert space dimension of 12dim( ) 2 10NH = ≈



3

Approaches to quantum simulation

“Digital” QS

ψ

“Analogue” QS

There are two main approaches to quantum simulation, analogue and 
digital. 

In analogue QS, an experimental 
system with similar properties to a 
material of interest is created in the 
laboratory.  The created system is 
studied directly to extract 
information about the original 
material. 

In digital QS, a quantum computer 
is used to simulate a particular 
Hamiltonian, much like classical 
computers simulate systems today. 
Quantities of interest are calculated 
using a suitable algorithm. 

?
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Outline

1) Quantum simulation using exciton-polaritons (Analogue) 
– BECs of exciton-polariton introduction
– Interactions of exciton-polaritons
– Bose-Hubbard models of exciton-polaritons
– 1D and 2D arrays
– BCS-BEC crossover

2) Digital Quantum Simulation
– Phase estimation algorithm
– Efficiency
– Simulatable Hamiltonians

3) Computation by quantum simulation (Analogue) 
– General principle
– Using BECs to speed up computation
– Feedback control
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(1) Quantum simulation using 
exciton-polaritons
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Excitons
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Laser excitation forms bound state excitation made of a hole and electron (=exciton)
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A quantum well is produced by sandwiching a narrow band gap material (e.g. GaAs) 
with a wide band gap material (e.g. AlAs). 
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1 exciton case
Gives an Schrodinger equation for 1 electron and 1 hole

2 2
2 2 ( ') ( , ') ( , ')

2 2e h

U x x x x E x x
m m

ψ ψ
⎡ ⎤
− ∇ − ∇ + − =⎢ ⎥
⎣ ⎦

h h

Same equation as Hydrogen atom in 2D

Lowest energy state (for relative coordinate) is

R=center of mass coordinate

r=relative coordinate
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+

Bohr radius Reduced mass
h

e

10nmBa ≈(In 2D, this is ½ the 
Bohr radius in 3D) 

An exciton is a hydrogen atom in a 
semiconductor made of an electron and a hole
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Low density excitons
In the low density limit, we can have many excitons in the same sample

)2/()2/()(      

)'()()',('

1
2

22

kKhkKekkd

xhxexxxdxdC

s

KK

+−=

=

++

+++

∫
∫

ψ
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Assuming all the excitons are in their ground states, define an exciton creation operator

( )221
1

1)(
k

ks
+

=ψ

1s exciton wavefunction

We can write an effective Hamiltonian

∑ +=
K

KK
exc

exc CC
m
kH

2

22h
00.2exc e hm m m m= + ≈

Since excitons are composed of two fermions, 
excitons are approximate bosons: [ ] )(1,

2

A
aOCC B

KK +=+

0m =free electron mass
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Bose-Einstein condensation of excitons

Bose-Einstein condensation has NOT been observed for excitons, despite many years of 
trying. 

Quasi-boson nature of excitons means that 
they are candidates for BEC!

In 3D, BEC occurs at the critical temperature
2/322

2.612B
nk T

m
π ⎛ ⎞= ⎜ ⎟

⎝ ⎠
h

In 2D, BEC doesn’t occur for an infinite system, but for a finite system of area L2 

22
T

Bmk T
πλ =
h3 2.62Tnλ =

Enemies of BEC: 1) Anderson localization  2) Disassociation of excitons 3) Mott transition

2 2 ln( / )T Tn Lλ λ=

or
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Exciton-polaritons

Distributed 
Bragg 
Reflectors 
(DBR)

Quantum wells

DBRs

...
...

substrate

GaAlAs

AlAs

AlAs

GaAs

AlAs

GaAlAs

la s e r

By placing the exciton in a cavity, we can form a superposition statie of a cavity photon 
and an exciton. This is an exciton-polariton. 

º

mirror

mirror

photonbexcitonapolariton +=
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Many-body Hamiltonian for exciton-polaritons
Cavity photons

z

x

y
In z-direction, the wavelength is fixed by the cavity resonance
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K

KK
exc
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m
kH
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22h

Excitons

∑ ++
− +=

K
KKKKKphexc CaaCgH h

Exciton-photon Coupling

2 2

2ph K K
K ph

KH a a
m

+=∑ h

c
hm ph λ

= photon acquires a mass!

Originates from the dipole approximation 
interaction Hamiltonian

intH e= − ⋅r E
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1
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Lower and upper polaritons are superposition states of excitons and cavity photons.
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Bose-Einstein condensation of polaritons
There is an increasing concensus that a BEC of exciton-polaritons has been realized

• allows for Tc~10-100K and lower critical density for BEC

• Can overcome localization due to disorder in semiconductors

• Can read out k-distribution of condensate due 
to momentum conservation of in x-y plane.

410pol excm m−≈

Due to short polariton lifetime                    , condensation is dynamical~ 10pspolτ

2 2 ln( / )T Tn Lλ λ=

22
T

Bmk T
πλ =
h

The controversy:

xk

yk
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DBRs...
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Properties of exciton-polariton BECs

Bogoliubov
excitations

Utsunomiya et al. Nature Phys. 4, 700 (2008)

Amo et al. Nature 457, 291 (2009)

Lagoudakis et al. Nature Phys. 4, 706 (2008)

Superfluidity

A variety of BEC related phenomena have already been observed

Opens door for many atomic physics-type quantum simulation experiments

Vortices
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Bose-Hubbard model

M. Greiner et al. Nature 415, 39 (2002)

87RbApplication to quantum simulation:

Perform analogue of optical lattice superfluid to Mott 
insulator quantum phase transition experiment:

( ) ( 1)
2BH i j j i i i

ij i

UH t b b b b n n+ += − + + −∑ ∑

We need two main ingredients for this:

1) Strong enough trapping potential so that we can make the Hubbard model 
approximation in the first place

2) Interactions strong enough that U/t>23 in 2D

In 1 dimension, with large enough interactions a Fermi-like Tonks gas is formed. 
Paredes et al. Nature 429 277 (2004)
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Trapping potentials
Lai et al. Nature 450, 529 (2007)

Young Phys. Stat. Sol. (b), 245, 1076 (2008)Metal gate
Metal patterning on surface 
modifies photonic boundary 
conditions, effectively 
creating a potential

Surface acoustic wave (SAW)
refractive index of 
material changed, as 
well as physical 
microcavity thickness.

c

c

ph

ph

λ
λ

ε
ε ∆

=
∆

cc
ph n

c
λ
πε 2h

=

Cavity etching Daif Appl. Phys. Lett. 88, 061105 (2006)
Loffler Appl. Phys. Lett 86, 111105 (2005)

Lima et al. PRL 97, 045501 (2006)
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Interactions of exciton-polaritons

The effective interaction results from electron-electron and hole-hole exchange effects:

Direct contribution Exchange contribution

hole
electron

The interaction of polaritons originate from the non-linear interaction of the exciton
components. 

( ', ) ( , ') ( , ) ( ', ')e h e h Coul e h e hr r r r H r r r rψ ψ ψ ψ( ', ') ( , ) ( , ) ( ', ')e h e h Coul e h e hr r r r H r r r rψ ψ ψ ψ

With the presence of a microcavity, there is also a contribution due to anomalous 
recombination of electron hole pairs

photon

“Saturation” contribution

( ', ) ( , ) ( ', ')e h ph e h e hr r a H r r r rψ ψ ψ

† † † † † †
' ' ' ' ' ' ' '

, ',

1 2
2

ee eh hh
Coul q k q k q k k q k q k q k k q k q k q k k

k k q
H V e e e e V e h h e V h h h h− + + − − +⎡ ⎤= − +⎣ ⎦∑

† † † †
ph k k k k

k
H e h a a h e a aω− −= Ω + +∑
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Hubbard parameters

Bqa

)(qIdir

Bqa

( )exchI q−

2
2 2

2

4( , ', ) ( ) ( ( ') 2( ') cos ) ( ', , , / ) ( ', , , / )B
exc dir dir exch e exch h

e aH Q Q q I q I Q Q q Q Q q I Q Q q m M I Q Q q m M
A

θ θ θ
επ

⎡ ⎤= + − + − − − − − −
⎣ ⎦

direct exciton-exciton exchange electron exchange hole exchange

Ciuti et al. PRB 58, 7926 (1998)
de-Leon PRB 63, 125306 (2001)
Rochat PRB 61, 13856 (2000)

( ) ( )2
kint d xw x H w x λ= −∫ 4 2 4(0,0,0) | ( ) |excU u H d k w k≈ ∫

Using standard derivation of Hubbard parameters via wannier functions

Putting in current 
experimental 
parameters we 
get U/t<<1.
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06 10polm m−≈ ×
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0 2 4 6 8 10 12
V0 HmeVL

0

1

2

3

4

U
,t

H
Ve

m
L

Reaching the transition point

So we have two choices remaining

1) Increase the lattice potential 

2) Make the polariton mass heavier

λDoes reducing        improve this ratio? 
42

2
Be a u

U
ελ

≈
2

2
pol

t
m λ

≈
h

Doesn’t help U/t ratio

polm

Exciton fraction

for small potentials we require heavy “blue-detuned”
polaritons with masses

Byrnes, Recher, Yamamoto,
Phys. Rev. B 81, 205312 (2010)

U

t

0.1 mλ µ=

0.01pol excm m≈

J U

12 2

pol
ph exc

u v
m

m m

−
⎡ ⎤

= +⎢ ⎥
⎢ ⎥⎣ ⎦
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p-state condensation in periodic potentials
Using the metal trapping technique, a metastable condensate was formed 

Lai et al. Nature 450, 529 (2007)

Band gap causes metastable
condensation in 1st excited 
band states 

adjacent states are pi out of phase

uncondensed

condensed
Bottleneck 
metastable
condensate 
(p-state)

Ground 
state 
condensate 
(s-state)

Uncondensed

Increasing density
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BCS-BEC crossover
For an excitonic system, it is known that as the density is increased in the system 
crosses over from tightly bound exciton pairs to loosely bound Cooper pairs

BEC BCS

Regal. Adv. Atom. Mol. Opt. Phys. 54, 1 (2006)

Kjeldysh Sov. Phys. JETP 27, 521 (1968)

Comte J. Physique 43, 1069 (1982)

By adjusting the fermionic interaction by Feshbach
resonances, the BCS-BEC crossover in atomic gases 
has been observed:

† † 0k k k k
k

u v e h−⎡ ⎤Φ = +⎣ ⎦∏

0 2 4 6 8 10
k

0

0.2

0.4

0.6

0.8

1

»vH
kL

»2

n=1
n=10

n=47
n=188
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polariton BCS-BEC crossover theory

With respect to the Hamiltonian
2 2 2 2

† † † † † † † †
' ' ' ' ' ' ' '

, ',

1 2
2 2 2

ee eh hh
exc k k k k q k q k q k k q k q k q k k q k q k q k k

k k k qe h

k kH e e h h V e e e e V e h h e V h h h h
m m

µ µ − + + − − +

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎡ ⎤= − + − + − +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎣ ⎦⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑ ∑h h

We can extend this to a coupling to cavity photon field by simply adding

† † †exp[ ] 0k k k k
k

a u v e hλ −⎡ ⎤Φ = +⎣ ⎦∏

( ) † † † †
ph k k k k

k
H a a e h a a h eω µ − −= − +Ω +∑

exc phH H H= +

λ

Keeling Phys. Rev. B 72, 115320 (2005)
Eastham Phys. Rev. B 64, 235101 (2001)
Byrnes, Horikiri, Ishida, Yamamoto arxiv 1005.3141

BEC BCS-like 
state

photon BEC
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Including Coulomb interactions

0 1 2 3 4 5
k

0
0.1
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0.3
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0.5

»vH
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Ntot=106

0 2 4 6 8 10
k

0

0.2

0.4

0.6
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1

»vH
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»2

n=1
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n=47
n=188

exciton-polaritons c.f. excitons

† † †exp[ ] 0k k k k
k

a u v e hλ −⎡ ⎤Φ = +⎣ ⎦∏
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Why the flat distribution?

quantum well cavity

λΩ

Due to saturation effect, there are many 
more photons than excitons. Enhanced Rabi 
splitting due to bosonic statistics.  

0 1 2 3 4 5
k

0
0.1
0.2
0.3
0.4
0.5

»vH
kL»

2

Ntot=1 Ntot=102

Ntot=104

Ntot=106

Flat distribution of 
electron and hole 
momenta

λΩ λ

We are in a regime where bindingE λ< Ω

The excitonic wavefunction is overwhelmed by the 
cavity coupling

( ) † † † †
k k k k

k
H a a e h a a h eω µ − −= − +Ω +∑

Dominant part of Hamiltonian: 
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PL spectrum including interactions

cavity photon energy

LP energy

• peak energy gradually shifts from LP to cavity photon energy

• linewidth increases at first, but then decreases. 

E
ne

rg
y 

(u
ni

ts
 o

f E
B=

11
m

eV
) Extracting single and two particle 
energy from BCS calculation givescavity photon

lower polariton

dE
dn

µ =

Using simple single particle theory with interactions 
(Porras PRB 67,161310(R) (2003))

2

2

d EVn
dn

=
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(2) “Digital” Quantum Simulation

ψ
H
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Algorithm approach to solving quantum 
many-body physics

Assumptions (necessary)

• A quantum computer is available (full unitary control and measurements are 
possible)

• Operation is perfect (i.e. error correction is already implemented)

Assumptions (not necessary, but typical)

• Control of the quantum computer is via one and two qubit gates 

• Quantum computer is made of qubits (as opposed to qudits or other schemes)

10 ba +
Aim

Simulate a given quantum Hamiltonian and 
extract quantities of interest

Provide an alternative to simulations on 
classical computers, in the style of Feynman’s 
original idea
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Simulating on a classical computer
What does “simulate and extract quantities of interest” mean exactly?

z z x
i j i

ij i
H J σ σ λ σ

< >

= +∑ ∑
Typical quantum many body problem: transverse Ising model

Usually this means the task is to diagonalize a given Hamiltonian H and obtain its 
eigenvalues and eigenvectors

Example

1) Choose a basis (for two sites:                               ) 
2) Contruct Hamiltonian in matrix form
3) Diagonalize!

0
0

0
0

J
J

H
J

J

λ λ
λ λ
λ λ

λ λ

⎛ ⎞
⎜ ⎟−⎜ ⎟=
⎜ ⎟−
⎜ ⎟
⎝ ⎠

From eigenvalues and eigenvectors we can extract everything we want to know: correlation 
functions, time evolution, etc.. 

Hamiltonian matrix scales exponentially with lattice size

( )225 152 10≈

Jaguar Oak Ridge supercomputer
(No. 1 on top 500 6/2010)

360 TB Memory=3.6 x 1014 B
1750 teraflops =1.75 x 1015 flops

No. matrix elements for 
N=25 sites

↑↑ ↓↑ ↑↓ ↓↓

↑↑ ↓↑ ↑↓ ↓↓

↑↑

↓↑

↑↓

↓↓



29

Simulating Hamiltonians using quantum gates
Assuming we have a quantum computer, how do we use it for simulation?

Simplistic approach: Evolve the system in time according to the Hamiltonian

( 0)tψ = ( )tψ/iHte− h

We can’t directly do this since the target Hamiltonian H can be quite complicated 
(assumption of using only one and two qubit gates)

z z x
i j i

ij i
H J σ σ λ σ

< >

= +∑ ∑e.g.
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Trotter decomposition

( )1 2

2
/ / /( ) M

miH t m iH t m iH t miHt tU t e e e e O
m

− − −− ⎛ ⎞
= ≈ + ⎜ ⎟

⎝ ⎠
L

Ok, we can evolve the system just like the real system. But how do we get what we want 
(i.e. eigenvalues & eigenvectors) out of it?

We can however approximately perform the evolution

where                            and              are simulatable Hamiltonians   i
i

H H=∑ iH

Example
z z x
i j i

ij i
H J σ σ λ σ

< >

= +∑ ∑

/
1 2 1

2 1 2

( ) exp[ / ]exp[ 2 / ]

                        exp[ 2 / ]exp[ / ]

iHt z z x

x z z

U t e i t i t

i t i t

σ σ σ

σ σ σ

−= ≈ − ∆ − ∆

− ∆ − ∆

h h h

h h

Say we would like to simulate

/ 2t t∆ =

By making         small we can get arbitarily good precision of the evolutiont∆
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Method 1: Phase Estimation Algorithm

ψ

The phase estimation algorithm is a way of reading out the phase of a given operator

Assume we can prepare qubits in an eigenstate of H

The phase estimation algorithm estimates the phase 

exp[ ] exp[ ]iHt i tψ ε ψ=

Taking an inverse Quantum Fourier Transform gives the energy ε

QFT-1 ε
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= Controlled-U gate

exp[2 ]U iHtπ=

This is performed using the 
Trotter decomposition

A single qubit controlled-U is performed by the decomposition (p.181 Nielsen & Chuang)

( ) ( /2)

( /2) ( ( ) / 2)

(( ) / 2)

z y

y z

z

A R R

B R R

C R

β γ

γ δ β

δ β

=

= − − +

= −

1
( ) ( ) ( )z y z

ABC
AXBXC R R Rβ γ δ

=
=

An arbitrary U can be performed by the decomposition ( ) ( ) ( )i
z y zU e R R Rα β γ δ=

2-qubit controlled-U by similar techniques

Phase Estimation Algorithm components

(factor of 2π for convenience)
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= Inverse Quantum Fourier    
Transform

21

0

1 nN i k
N

k
e k n

N

π−

=

→∑

( )( )1 100 0 1 0 1 00 01 10 11
2 2

⎡ ⎤→ + + = + + +⎣ ⎦

superposition of every binary combination

is an eigenstate of H with energy ε

2 2exp[2 ] exp[2 2 ]
j j jU iHt i tψ π ψ π ε ψ= =
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QFT-1 ε

Phase Estimation Algorithm

( ) [ ]
1

1

0 exp[2 2 ] 1 exp 2
n QFT

l

kl

i i k kπ ε πε ε
−

=

⎡ ⎤+ = →⎣ ⎦ ∑∏

(1) (2)

(1)  0 1 0 1ψ ψ ψ⎡ ⎤+ = +⎣ ⎦

(2)  20 1 0 1iU e π εψ ψ ψ⎡ ⎤+ = +⎣ ⎦

02 (2 )0 1ie π ε+

12 (2 )0 1ie π ε+

22 (2 )0 1ie π ε+

2 (2 )0 1
jie π ε+

(3)

(3)
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Initial state

2
nΛ

init n n
n

EΨ = Λ∑

The phase estimation algorithm gives the energy given the eigenstate. 
But we usually don’t know the eigenstate!!

Approximate method

Prepare state of high overlap with states of interest.

QFT-1 ε0000initΨ n n n
n

E εΛ∑

estimated energy

Performing a measurement on the computational basis on ancilla
qubits gives the correct result with probability 
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Methods for preparing the initial state
(1) Use some analytical or numerical approximation scheme

(2) Perform a quantum adiabatic evolution initially

( ) (1 ( ))prob knownH t H t Hλ λ= + −

-4 -2 0 2 4
t

0
0.2
0.4
0.6
0.8

1

l

probH

knownH

= problem Hamiltonian 

= a Hamiltonian where the ground state is known

1) Prepare qubits in ground state of 
2) Slowly sweep              such that at the Hamiltonian changes 
from                to   
3) By the adiabatic theorem, the final state should be in the 
ground state of 

knownH
( )tλ

knownH probH

probH

• Mean field theory

• Approximate wavefunction

• Numerical schemes (Monte Carlo/DMRG etc.)

λ

E
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1) Prepare initial state

2) By repeated measurements for various t,  find function

3) Take Fourier transform of f(t)

Method 2: Post processing Fourier transform

1 1(1 ) (1 )
2 2

i t i t
init inite eε ε− −= + + Ψ + − − Ψ initΨ

+

U

X

exp[ ]U iHt= −

The second method is similar, but performs the Fourier transform classically. 

( ) exp[ ]
      

init initf t iHt= Ψ − Ψ

initΨ

(if we prepare              perfectly)initΨ

How to measure f(t)?
1 10 1
2 2init initUΨ + Ψ

Somma et al. PRA 65, 042323 (2002)

2cosX tε=



38

What if we don’t have the perfect eigenstate?

2
0 0( ) exp[ ] ni t

n
n

f t iHt e εγ −= Ψ − Ψ =∑

Hubbard model 4x2 lattice, U=4, t=1

0.05t∆ =

Again, use a guess state:

init n n
n

EΨ = Λ∑
Then

Peaks give the energy levels. 

Somma et al. PRA 65, 042323 (2002)
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Efficiency with respect to site number

( )1 2/ / /M
miH t m iH t m iH t miHtU e e e e− − −−= = L

Number of gates ∝

The algorithm is polynomial in the number of sites

QFT-1 ε
no qubits=no of 
digits of binary 
precision

no qubits=no of sites to 
be simulated

QFT is polynomial 
with no. sites

U is Trotter decomposed individual gates.  

No. terms in Hamiltonian (scales 
polynomially with no. sites)

The algorithm itself has an exponential speedup over classical computers
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Efficiency with respect to error
Repeated measurements are necessary for the Fourier transform step (N steps)

Width of peak of energy estimate

2~
Q t
πε∆
∆
h

Error scaling due to Trotter decomposition

Brown et al. Phys.Rev. Lett. 97, 050504 (2007)

-10 -5 0 5 10
e-e0

0
0.2
0.4
0.6
0.8

1
1.2

»F»

Q=5

Q=50

Q=500

0exp[ ]nF i tnε= − ∆
Estimated function

Fourier transform

0

1( ) exp[ ]
Q

n
n

F F i tn
Q

ε ε
=

= − ∆∑

2
t
π
∆
h

ε∆

To get an M extra digits of precision, we 
need exponentially increasing Q and an 
exponential number of gates

( )
2

( ) / / ki A B t iA t k iB t k te e e O
k

+ ∆ ∆ ∆ ⎡ ⎤∆
= + ⎢ ⎥

⎣ ⎦

Number of gates ~ 2k
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Fermionic Hamiltonians

{ }† ,i j ijc c δ=∑∑ ↓↑

><

++ ++−=
m

mm
nm

nmmnHubbard nnUcccctH σσσσ

Up to now we have assumed spin based Hamiltonians. What about other forms?

† z
i j i

j i

c σ σ +

<

= −∏

Use a Jordan-Wigner tranformation map fermionic Hamiltonian onto spin Hamiltonian

no electron

electron † 0c

0

↑

↓

1234

5678

†
1 5 1 2 3 4 5

z z zc c σ σ σ σ σ+ −=Ortiz et al. PRA 64, 022319 (2001) e.g.

Example

Jordan-Wigner transform
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( 1)
2Bose Hubbard n m m n m m

nm m

UH t b b b b n n+ +
−

< >

= − + + −∑ ∑

...

0

†[ , ]i j ijb b δ=

†1 0b=

† 33 ( ) 0b=
† 22 ( ) 0b=

↑↓↓↓

↓↑↓↓

↓↓↑↓

↓↓↓↑

Keep track of state on each site by 
qubit register

†
, 1,1n j n j n

j
b j σ σ− +

+↔ +∑ ,( 1)
2

z
m j

m
j

n j
σ +

↔∑

Somma et al., quant-ph 0304063 (2003)

Bosonic Hamiltonians
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More exotic Hamiltonians
U(1) Lattice gauge theory

( )∑ ∑
∈ ∈

++−=
linksn plaquettesp

U pZpZxnEH )()()(2
)1(

+
4U

+
3U

2U

1U

++= 4321)( UUUUpZ [ ]ii igAU exp=

ijji iAE δ=],[

∑
−=

+
+

−=
max

max

1
~ e

en
nnU σσ ∑

−=

+=
max

max

2/)1(~ 22
e

en

z
inE σ

qubit implementation

each link is a qubit register, and use the mapping 

Byrnes & Yamamoto, Phys. Rev. A 73, 022328 (2006)

SU(2) and SU(3) Lattice gauge theories can also be implemented. SU(3) 
theory with fermions is thought to be the theory of strong interactions 



44 Comparison of analogue and digital 
quantum simulation

“Digital” QS

ψ

“Analogue” QS

We have seen two different approaches of simulation. What are their differences and 
similarities?

• Experimentally duplicate system 
of interest

• Open system

• One simulator per model

• No need for individual qubit
control, so is easier to realize than 
quantum computer..

• Use a quantum algorithm to solve 
Hamiltonian

• Closed system

• Can simulate (just about) any 
system

• Requires a quantum computer so 
is experimentally challenging.

?
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(3) Computing by quantum simulation
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Where is the computation in analogue 
quantum simulation?

In the ideal case, both analogue and digital quantum computation “solves” a given 
Hamiltonian. 

How does analogue quantum computation find the ground state exactly?

• Laser & evaporative cooling 

• Adiabatic evolution to desired Hamiltoinan

• Cooling via phonon emission

• Stimulated scattering to ground 
state

Cold atoms Exciton-polaritons

Both procedures involves a cooling, i.e. dissipation to an 
environment. So the “computation” being done by the 
reservoir. 

H

Bk T H<
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Computation by analogue quantum simulation

In analogue quantum simulation, typically only one Hamiltonian can be simulated per device. 

• Easier experimental realization than building a quantum computer. Having an open 
system is in fact a necessary part of the operation. 

• No complicated algorithms need to be invented. 

Can we perform a computation using the ideas of quantum simulation?

This kind of scheme is attractive from a technological perspective because

Is it possible to extend this kind of idea to a more general setting?

Is it possible to extend this so that we can control more than just one (or a few) 
parameters?
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Computational problems as optimization
Many difficult computation problems (including NP-complete problems) can be formulated as 
an optimization problem

E

configurations ~ exp[N]

For example, the travelling salesman problem is known to be NP-complete

z z
ij i j

i j
H J σ σ

<

=∑

These problems can be 
mapped onto a combinatorial 
cost function (Hamiltonian) 
to be minimized
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Example: the Graph Partitioning Problem
Given 2N points with arbitrary connections 
between them, the objective is to divide the 
points into two groups (A and B) of N points, 
minimizing the number of connections between 
them. 

BA

ijJ ={  if  and  connectedJ i j
0  otherwise

iσ ={ 1  if site  in group Ai
1  if site  in group Bi−

This can be recast into a cost function to be minimized

Label each site i and assign a variable 

Define a connectivity matrix

(1 ) .z z z z
GPP ij i j ij i j

i j i j
H J J constσ σ σ σ

< <

= − = − +∑ ∑

Given a particular pair (i,j), the pair is 

i jσσ ={1  if (i,j) are in the same group
1  if (i,j) are in different groups−

The cost function is 
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Fundamental properties of bosons

We know that in a BEC, the system has a large 
concentration of particles in the system ground state. 

Can these properties of bosons be used to find the ground state 
of a given Ising model problem?

Bosonic particles “like” to accumulate 
in the ground state

E

N

×(N+1)

Bosonic particles also possess the property of final 
state stimulation. Given N particles in the final state, the 
transition rate is enhanced by a factor N+1. 

Bosonic particles have an enhanced 
cooling rate
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Bosonic Ising model
Each site of Ising model has N bosons, each which can be in one of two states 
(red/blue). 

Interactions between sites are modified externally such as to follow the 
Hamiltonian

1

N
k

i i
k

S σ
=

=∑

1k
iσ = ±

, 1

M
z z

ij i j
i j

H J S S
=

= ∑

For now, assume the Hamiltonian is “magically” put into place. Later, I will 
discuss a feedback control implementation. 
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Look at a two site system at thermal equilibrium

1

N
k

i i
k

S σ
=

=∑1σ = +

1σ = −

Look at 2 site model, for the parameters

the “solution” is Æ Æ
10J = 0.5λ =

↑↑

↓↓
↑↓

↓↑

S2

S1 S1

S2

E E

↑↑

↓↓

↑↓

↓↑
N=1 N=10

Energy spectrum:

The ground spin 
configuration of the 
original Ising model is 
the ground state of the 
bosonic Ising model

Energy spectrum of Bosonic Ising model
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bosons distinguishable

Properties at thermal equilibrium
Calculate the average spin of the system at thermal equilibrium

To see the effect of using bosons, compare usage of normal distinguishable particles

These have different counting factors

Example

N=2 bosons in a single two level site

{

extra         combinations2
1C

2i iS N k= −

Calculate             using partition functioniS
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For the same temperature, Bosons have an 
enhanced ground state population, similar to 
BEC effect 

bosons

This gives a improved signal-to-noise ratio for the 
ground state. 

E=+J

E=-J+2λE=-J-2λ

distinguishable

Properties at thermal equilibrium

1σ = +

1σ = −
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Cooling to ground state
Look at time required from cooling from T=∞ state. 

Simplest example: 2 levels. 

E

γ factors determined such that the levels are occupied with the thermal equilibrium 
distributions for 

0idn
dt

=

1
2 1 1 2

2
1 2 2 1

(1 )( 1) (1 )( 1)

(1 )( 1) (1 )( 1)

dn n n n n
dt
dn n n n n
dt

α γ α γ

α γ α γ

= − + + + − +

= − − + + + +

1Ø2 2Ø1

2Ø1 1Ø2

n+1 amplification factors originate from bosonic final state stimulation

† 1 1a N N N= + +
Transition rates determined from 
Fermi’s golden rule

22
i f transitionT f H iπ ρ→ =

h

pi=probability of 
occupation of level i

1 2

1 2 1 22
p p

Np p p p
γ −
=

+ +

1

2
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0 2 4 6 8 10
t

0
0.2
0.4
0.6
0.8

1

<
S>

êN
2 level system 

Fixed temperature (kT=10)

Using large boson numbers N, we get 
both an accuracy and time improvement.

Fixed N=1

kT=20

kT=10

kT=1

Without the use of bosons the 
equilibriation time is independent of 
temperature
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Simulation of Ising models
To study the two level system we evolved just the populations on each of the sites. 

This is ok for one site, but fails for more than one site

Use Glauber’s kinetic Ising model theory
Glauber, J. Math. Phys. 4, 294 (1963)

Instead of a fixed population, assign a probability distribution to each state

↑↑

↓↓

↑↓

↓↑

S2

S1

P

For the pure Ising model case, evolve probability distribution in 
time according to 

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2
, , 1 2 , , 1 2

, , 1 2 , , 1 2

( , ) ( , ) ( , )

( , ) ( , )

dp w p w p
dt

w p w p

σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ

σ σ σ σ σ σ

σ σ σ σ

→− → −

− → − →

= − −

+ − + −

Choose transition rates according to thermal equilibrium  

1 2( , ) 0dp
dt
σ σ

=
1 2 1 2

1 2 1 2

, , 1 2

, , 1 2

( , )
( , )

equil

equil

w p
w p
σ σ σ σ

σ σ σ σ

σ σ
σ σ

→−

− →

−
=

from partition function
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Simulation of bosonic Ising model

A general state is written

The probability distribution evolves according to 

S1

S2

-N
-N

N

N

Now want to simulate equilibration of 
, 1

M

ij i j
i j

H J S S
=

= ∑

1 2 3, , ...S S S=S

S2S1

( , ) ( , )
i

i

i i i
i S

dp w p w p
dt δ

δ

δ δ δ += − + + −∑∑S
S S SS S S S S

iδS

( )
1 2

2

detailed balance final state stimulation

Fermi golden rule

( , ) 1 ( )
(( 1)!)

S
S

i i i tw S H
S

δ
δξδ α γ δ δ

δ

−

= + +
−

S S S S S
14243 144424443

1444442444443

Final state stimulation factors in transition rates are calculated 
from Fermi’s golden rule

( ) tanh[ ]i ij j
jB

SS J S
k T
δγ δ = − ∑

ξ=suppression coefficient of 
higher order transitions

Faisal, J. Phys. B: Atom. Molec. Phys. 9, 3009 (1976). 
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Typical kinetic Monte Carlo datasets

20 40 60 80 100

0.25

0.3

0.35

0.4

0.45

0.5

t

N=10 
kT=130

40

2

-2

-116
-124

energystate

↑↑↑↑

↑↑↑↓
+ 3 others

↓↓↓↑
+ 3 others

↑↑↓↓
+5 others

P

t

-<S2>

N=5 
kT=19

0 1000 2000 3000 4000 5000
0

1

0.8

0.6

0.4

0.2

-<S1>

<S3>

t

i
i

S∏

90% equilibrium defines 

τ

τ

10ijJ = 1λ =

,
ij i j i

i j i
H J S S N Sλ= +∑ ∑

To break S→-S symmetry, introduce second term

↓↓↓↓
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Simulation of 4 site bosonic Ising model

E

times increase at 
low temperature 
due to local 
minimum effect

(low 
temp)

(high 
temp)

bo
so

n 
nu

m
be

r p
er

 s
ite

 N

eq
ui

lib
ra

tio
n 

tim
e
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t

0.2
0.4
0.6
0.8

1

<
S 1
>
êN

Annealing

010 210 410 610 810

Perform annealing of temperature according to schedule:

= temperature corresponding to error rate of 0.7ε =

10J = 0.5λ =2 site Ising model:

E residual energy= 
average energy 
above ground state 
post-annealing
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What is the origin of the speedup?
1) Energy scales

By increasing the number of bosons from 1 to N we increase the overall energy scale of 
the problem.

Just because one site cools faster doesn’t mean the whole goes to equilibrium faster 

2) Spin flip time

0 100 200 300 400 500 600 700

Unit Time

2

1

0

t

S 1

-1

0

N=2 4 site Ising model

J=10 λ=1

g g N
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How to implement H?

, 1 1
( ) ( ) ( ) ( )

M M

ij i j i i
i j i

H J S t S t B t S t
= =

= =∑ ∑

1
( ) ( )

N

i ij j
j

B t J S t
=

=∑

, 1

M
z z

ij i j
i j

H J S S
=

= ∑

Everything until now assumed that we have a 
perfect implementation of the Hamiltonian

How to do this? 

Proposal: Feedback control.
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Quantum feedback control

Wiseman, and Milburn, Phys. Rev. Lett. 70, 548 (1993). 

bare system 
evolution decoherence due to 

measurement

induced evolution 
due to feedback

detector

applied 
control

qubit

0 [ ] [ , ] [ ]d D C i F D F
dt
ρ ρ ρ η ρ ρ= + − +ML

( )I t
current

( )FBH I t F=

The quantum state of a system can be controlled by a method of continuous measurement and 
feedback

In a Markovian approximation with respect to the feedback, the equation of motion is 
determined by the Wiseman-Milburn feedback master equation

C

L0

= Back action operatorM using y-driving field 
and dissipation

Wiseman, et al, Phys. Rev. A. 66, 013807 (2002). 



65

Measurement of the z-
component of the spin: 

Back action operator due to z-
measurement: 

Applied feedback Hamiltonian:  

Simulating interaction by feedback

Equation of motion

, 1

M

ij i j
i j

H J S S
=

= ∑

In our case, we wish to affect the state on site busing the measurement result on another site

In the Wiseman-Milburn feedback equations we have

2[ ] , [ ] ( ) [ ] ( ) [ ]z z z z z
i ij i j j ij i j i j i

i j i j i

d D S i J S S S J D S I D S I D S
dt
ρ γ ρ η λ ρ ρ λ ρ − − + +

≠ ≠

⎡ ⎤
⎡ ⎤= − + + +Ω +Ω⎢ ⎥⎣ ⎦

⎣ ⎦
∑ ∑ ∑

2 2[ , ] ( ) [ ] ( ) [ ] [ ]z
j i j i ij j

i i j i
i H I D S I D S J D Sλ η ρ λ γ ρ− − + +

≠

⎛ ⎞
= − + Ω +Ω + +⎜ ⎟

⎝ ⎠
∑ ∑ ∑
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Is this a kind of “quantum” computer?

Although this is a computational device that uses quantum effects 
(indistinguishability), it is not a “quantum” computer as we normally think 
since: 

, 1

M

ij i j
i j

H J S S
=

= ∑

• No entanglement present between sites

• An electrical feedback loop (a classical circuit) could simulate this in 
principle

The equilibriation time is most probably still exponential in the 
number of sites M.

Introducing coherence improves scaling?
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Summary
• Introduced two types of quantum simulation: analogue 
and digital. Review: Buluta & Nori Science 326, 108 (2009)

• Analogue quantum simulation is technologically easier 
than digital quantum simulation. Digital quantum 
simulation is technologically difficult, but can in principle 
simulate any system.

• Exciton-polaritons are promising for quantum simulation 
with many similar applications to cold atoms in optical 
lattices.  For observing the Mott transition, need heavy 
exciton-polaritons. 

• Proposed a method of computing optimization problems 
with BECs using quantum simulation ideas.


