Universal Thermodynamics of Strongly Interacting Fermi Gases

Takashi Mukaiyama

University of Electro-Communications

Japan Science Technology Agency, ERATO

BEC in a cold atom system

1995 <u>Realization of atomic gas Bose-Einstein</u> <u>condensation</u>

Mott-insulator phase

Atom laser

Bose nova

Super-radiance

BEC in a cold atom system

Cold atoms are

- very dilute (10¹¹~10¹⁴ cm⁻³),
- with no impurities, no defects.

Amenable to simple theoretical description

J. R. Ensher, et al., Phys. Rev. Lett. **77**, 4984 (1996).

5% deviation of critical temperature from theoretical predictions

3% shift due to finite number correction
2% shift due to interaction

Inter-atomic interaction is tunable !!

Feshbach resonance

There are two channels corresponding to different spin states.

Resonance occurs when open and closed channel are energetically degenerate.

Loss near Feshbach resonance

S. Inouye et al., Nature, **392**, 151 (1998).

905

Magnetic field (G)

910

915

900

field ramp

ultracold fermionic atoms

1999 Fermi degenerate gas

JILA JILA DEFERMI T/TF=3 T/TF=0.5

Collision channel

Identical bosons : l=0(s-wave), l=2 (*d*-wave), ... Identical fermions: l=1 (*p*-wave), l=3 (*f*-wave), ...

ultracold : *s*-wave is the dominant collision channel.

Identical fermions do not collide.

Think about two-component fermions

At the Feshbach resonance for one and one, no loss occurs due to Pauli exclusion principle.

Therefore two-component fermions are stable even at a Feshbach resonance.

So, we are able to prepare an interacting (reasonably stable) two-component Fermi gas of atoms with an arbitrary interaction strength !!

Thermodynamic behavior of an ideal Fermi gas is described by its temperature T and density n.

Fermi-Dirac distribution

 $\left(\frac{k_{\rm B}T}{E_{\rm E}}\right)^{3/2} = -\frac{3\sqrt{\pi}}{4}Li_{3/2}(-z)$

 $\left(z = e^{\beta\mu} = \exp\left(\frac{\mu}{k_{\rm B}T}\right) = \exp\left(\frac{\mu/E_{\rm F}}{k_{\rm B}T/E_{\rm F}}\right) = \exp\left(\frac{\mu/E_{\rm F}}{k_{\rm B}T/E_{\rm F}}\right)$

 $\left(\frac{k_{\rm B}T}{E_{\rm E}}\right)^{-3/2} = -\frac{3\sqrt{\pi}}{4} Li_{3/2} \left[-\exp\left(\frac{\mu/E_{\rm F}}{k_{\rm B}T/E_{\rm F}}\right)\right]$

 $\frac{\mu}{E_{\rm F}} = f_{\mu} \left(\frac{k_{\rm B}T}{E_{\rm F}} \right)$

$$E = \int_{0}^{\infty} \frac{\varepsilon D(\varepsilon)}{z^{-1} e^{\beta \varepsilon} + 1} d\varepsilon$$
$$\frac{E}{NE_{\rm F}} = -\frac{3\sqrt{\pi}}{4} \left(\frac{k_{\rm B}T}{E_{\rm F}}\right)^{5/2} Li_{5/2}(-z)$$

Other thermodynamic functions also have this similarity.

$$\frac{S}{k_{\rm B}} = f_{S} \left(\frac{k_{\rm B}T}{E_{\rm F}} \right)$$
$$\frac{F}{NE_{\rm F}} = f_{F} \left(\frac{k_{\rm B}T}{E_{\rm F}} \right)$$

Material specific parameter, such as m, is taken up by $E_{\rm F}$ ($T_{\rm F}$). (Shape of the functions do not depend on the particle's nature.)

Universal thermodynamics

Ultracold, dilute, interacting Fermi gases

• <u>ultracold</u> : s-wave is the dominant channel.

• <u>dilute</u> : details of the potential is much smaller than $n^{-1/3}$

The collision process can be described by a single parameter, so-called scattering length a_s .

Thermodynamic of an interacting Fermions

Ideal Fermi gas

Fermi gas with interaction

 $\frac{E}{NE_{\rm E}} = f_{E,ideal} \left(\frac{k_{\rm B}T}{E_{\rm E}} \right) \longrightarrow \frac{E}{NE_{\rm E}} = f_E \left(k_{\rm B}T, E_{\rm F}, E_{\rm int} \left(a_{\rm s} \right) \right)$

Ultracold dilute Fermi gas

Remember the fact that *a_s* is tunable!!

Then, what happens when...

$$|a_{\rm s}| \longrightarrow \infty$$

This situation is called unitarity limit.

 $a_{\rm s}$ drops out of the description of the thermodynamics.

Thermodynamics depends only by the density *n* and temperature *T*. Universal thermodynamics holds again...?

Unitarity limit and Universality

 $a_{\rm s}$ drops out of the description of the thermodynamics.

Thermodynamics depends only by the density *n* and temperature *T*. Universal thermodynamics holds again...?

Thermodynamic of an interacting Fermions

Ideal Fermi gas

Fermi gas with interaction

 $\frac{E}{NE_{\rm F}} = f_{E,ideal} \left(\frac{k_{\rm B}T}{E_{\rm F}} \right) \longrightarrow \frac{E}{NE_{\rm F}} = f_E \left(k_{\rm B}T, k_{\rm B}T_{\rm F}, U(a) \right)$

When the scattering length diverges...

 $\frac{E}{NE_{\rm F}} = f_E\left(k_{\rm B}T, k_{\rm B}T_{\rm F}, \mathcal{O}(a)\right) \Longrightarrow f_{E,|a|=\infty}\left(k_{\rm B}T, k_{\rm B}T_{\rm F}\right) = f_{E,|a|=\infty}\left(\frac{k_{\rm B}T}{E_{\rm F}}\right)$

There is a hypothesis that the thermodynamic functions again have the universal form.

Universal hypothesis

Universal thermodynamics

According to universal hypothesis, all thermodynamics should obey the universal functions:

System looks like a non-interacting Fermi gas. (no other dimensional parameters involved in the problem)

Universal thermodynamics

Bertsch's Many-Body X challenge, Seattle, 1999

What are the ground state properties of the many-body system composed of spin ½ fermions interacting via a zero-range, infinite scattering-length contact interaction.

 $E_{gs} = f(N, V, m) = N \cdot E_{F} \times \xi$ pure number

Besides pure theoretical curiosity, this problem is relevant to neutron stars!

Universal thermodynamics

H. Hu, P. D. Drummond & X.-J. Liu, *Nature Physics* **3**, 469 - 472 (2007)

T is constant over the cloud (thermal equilibrium). $E_{\rm F}$ depends on the position (local density).

Global measurement only gives the integration of all the different phases.

Measurement of **local** thermodynamic quantities

and

the determination of the universal thermodynamic function.

$$\frac{E}{NE_{\rm F}} = f_E\left(\frac{k_{\rm B}T}{E_{\rm F}}\right) \quad \Longrightarrow \quad \frac{\mathcal{E}(\mathbf{r})}{n(\mathbf{r})E_{\rm F}[n(\mathbf{r})]} = f_E\left(\frac{T}{T_{\rm F}[n(\mathbf{r})]}\right)$$
$$\varepsilon : \text{ local energy density}$$
$$E_{\rm F} = k_{\rm F}T_{\rm F}$$

Experiment setup

原子の冷却(レーザー冷却)

<u>MOT(磁気光学トラップ)</u> 四重極磁場と共鳴光を組み合わせた冷却

吸収イメージ

Zeeman Slower 共鳴光による減速 ドップラーシフトをゼーマンシフトでキャンセル

共振器光トラップ

Optical dipole trap

- No need to use multiple-coil configuration as used in a magnetic trap
- wide optical access
- trap can be turned off very quickly

シングルビーム光トラップ

共振器光トラップ:定在波によるトラップ トラップした原子全体が熱緩和しない 調和型のトラップではない

単純に絞ったビームにトラップしなおす

・フェッシュバッハ共鳴を使った散乱断面積の増援振器トラップに重なるようにビームを入射

原子状態とフェッシュバッハ共鳴

Phylogen Mar Mar Bak H

molecular BEC B = 650 - 800 G

WIT PHE WARANT

degenerate Fermi gas B = 0-450 G

834Gauss (Resonance magnetic field of Feshbach resonance)

6Li

Optical dipole trap (1064nm)

 $N \sim 10^{6}$

Determination of local energy $\varepsilon(\mathbf{r})$ $f_E[T/T_F]$ $\frac{\varepsilon(\mathbf{r})}{n(\mathbf{r}) E_{\rm F}[n(\mathbf{r})]} = f_E[T/T_{\rm F}]$ density profile $n(\mathbf{r})$ $T/T_{\rm E}$

Useful equations :

• Equation of state of unitary gas : $p(\mathbf{r}) = \frac{2}{3}\varepsilon(\mathbf{r})$

mechanical equilibrium (eq. of force balance) :

 $\nabla p(\mathbf{r}) + n(\mathbf{r}) \nabla V_{\text{Trap}}(\mathbf{r}) = 0$

 $n(\mathbf{r}) \implies p(\mathbf{r}) \implies \varepsilon(\mathbf{r})$

Determination of temperature T

$$\frac{\mathcal{E}(\mathbf{r})}{n(\mathbf{r}) E_{\mathrm{F}}[n(\mathbf{r})]} = f_{E}[T/T_{\mathrm{F}}]$$

Experimental determination of $f_E [T/T_F]$ $\frac{\varepsilon(\mathbf{r})}{n(\mathbf{r}) E_F [n(\mathbf{r})]} = f_E [T/T_F]$

M. Horikoshi, S. Nakajima, M. Ueda and T. Mukaiyama, Science, **327**, 442 (2010).

About 800 images are analyzed.

. Energy comparison

 $E_{\text{total}} = 2 \times E_{\text{potential}} \implies E_{\text{pot}} = E_{\text{internal}}$ Comparison $\swarrow \text{Potential energy par particle}: E_{\text{pot}} = \frac{3}{2}m\omega_z^2 < z^2 >$ $\swarrow \text{Internal energy par particle}: E_{\text{internal}} = \int n\varepsilon_{\text{F}}(n) f_E[\theta] dV/N$

2. Effective speed of the first sound

Light pulse to make density perturbation

2. Effective speed of the first sound

Propagation time

2. Effective speed of the first sound

Unitary gas shows hydrodynamic behavior due to the large collision rate

Effective speed of the first sound : $\overline{u}_1^2[n,\theta] = \frac{\iint n \, dx \, dy}{m \iint n \left(\frac{\partial p}{\partial n}\right)^{-1} \, dx \, dy}$

 $p = \frac{2}{3} \varepsilon \propto f_E [T/T_F]$

[P. Capuzzi, PRA **73**, 021603(R) (2006)]

Comparison

Experiment

2. Effective speed of the first sound

Experimental values vs. calculated values from $f_E[\theta]$

The universal function of the internal energy $f_E[T/T_{ m F}]$

Universal hypothesis :
$$\frac{\varepsilon}{nE_{\rm F}} = f_E[T/T_{\rm F}]$$

Equation of state : $p = \frac{2}{3}\varepsilon$

Mechanical equilibrium :
$$\nabla p(\mathbf{r}) + n(\mathbf{r}) \nabla V_{\text{Trap}}(\mathbf{r}) = 0$$

Energy comparison

Speed of the first sound

momentum distribution measurement

Is it condensed or not? See the bimodal profile !!

... unfortunately this scheme does not work.

Fermion pair condensate

G. Veeravalli et al.Phys. Rev. Lett.**101**, 250403 (2008)

spatially correlated pair

momentum correlated pair

BCS limit

"projection

If we sweep the magnetic field

- slow enough to convert atom pairs into molecules
- fast enough such that the momentum distribution of the projected molecules reflects that of pairs prior to the sweep

C. A. Regal et al. Phys. Rev. Lett., **92**, 040403 (2004)

We can convert correlated pairs into tightly-bound molecules.

Bimodal distribution of a fermion pair condensate

Condensate fraction vs Temperature

Universal thermodynamic functions

Internal energy

$$f_{E} = f_{F} - \theta f_{F}'$$

$$f_{\mu} = (5f_{E} - 2\theta f_{F}')/3$$

$$f_{S} = -f_{F}'$$

Helmholtz free energy

Chemical potential

In the case of unitary gas, equation of state $p(\mathbf{r}) = 2\varepsilon(\mathbf{r})/3$ is available (exceptional case !!) which enable us to measure local thermodynamic quantities.

$$\varepsilon(\mathbf{r}) = n(\mathbf{r}) E_{\mathrm{F}}(\mathbf{r}) f_{E}[T/T_{\mathrm{F}}(\mathbf{r})]$$

Then, how can we determine local thermodynamic quantities without help of equation of state ?

High resolution local probe

W. S. Bakr et al.Nature 462, 74 (2009).

The system that I'm setting up in University of Electro-Communications

Co-trapping system of ions and neutral atoms

ion = ·local probe ·control by electric field

ion Neutral atoms

Summary

• The universal function of the internal energy was determined at the unitarity limit

- The other thermodynamic functions were derived from the thermodynamic relationship
- The critical parameters were determined at the superfluid transition temperature

M. Horikoshi, S. Nakajima, M. Ueda and T. Mukaiyama, Science, **327**, 442 (2010).

The team (ERATO project)

Masahito Ueda (project leader)

T. Mukaiyama M. Horikoshi (Group leader) (Postdoc) S. Nakajima (Ph.D student)

Unitary gas Efimov physics