1. Basic rules of guantum mechanics

How to describe the states of an ideally controlled system?
How to describe changes in an ideally controlled system?
How to describe measurements on an ideally controlled system?

How to treat composite systems?



How to describe the states of an ideally controlled system?

(Basic rule ) Example of a classical system

A particle on a 1D line

) | )
/ I /

—>

» Itis at 3.4 cm to the right of
the origin and stands still.

> Itis at 2.3 cm to the left of the origin
and moves to the right 0.3 cm/sec.

Is there any common structure in the set?

Set of all the states Relation between a pair of states?

Closeness? 2



How to describe the states of an ideally controlled system?

(Basic rule 1) Quantum system

State A and State B may not be perfectly
distinguishable.

Distinguishablity: Can be operationally defined.

Applicable to any system

Common structure

A guantity representing the distiguishablity is
assigned to every pair of states.

Hilbert space

e Linear space over C
e Inner product (a,b)

Set of all the states e Complete in the norm ||a|| = /(a,a)

3
C: set of complex numbers



How to describe the states of an ideally controlled system?

(Basic rule 1)

Set of all the states Hilbert space

A state « a ray in the Hilbert space
ray including vector a # 0 is
{aala € C, a0 # 0}.



How to describe the states of an ideally controlled system?

(Basic rule 1)
A physical system < a Hilbert space H

A state < a ray in the Hilbert space

Usually, we use a normalized vector ¢ satisfying
(¢, ) = 1 as a representative of the ray.

Distinguishability — inner product
For normalized vectors ¢ and v,
1(¢,vY)| = 0 — perfectly distinguishable
|(¢,1¥)| = 1 — completely indistinguishable
(the same state)

Dirac notation

‘ket’ |¢p) — vector ¢ € H.
‘bra’ (¢| — linear functional (¢,-) : H — C.

(Plb) — (&, )



Linear operators: H — H.

T is normal < T is diagonalizable. j !

Eigenvalues

T=> Ajlug) (u;]

An orthonormal basis

(

Normal: T

/Self—adJomt A= AT \

TPt = T (Compléx)

N\

N

(Real)
/" Positive: N>0 )
(Positive)
Unitary: () Projection:
Ot =00t=1| |1|P°2=P
(Unit modulus) L (Oor1l)
/

/

///




How to describe changes in an ideally controlled system?

(Basic rule Il)

Inner products are preserved by
unitary operations.

Reversible evolution

A unitary operator U:
|¢out> — U|¢in> Distinguishability should never be
improved by any operation.

Distinguishability should be unchanged
by any reversible operation.

v .
Inner products will be preserved in any

Infinitesimal change reversible operation.

|p(t2)) = U(ta,t1)|é(t1))
[o(t + dt)) = U(t + dt, t)|o(t))
Ut +dt,t) =1 — (i/R)H(t)dt

Schrodinger equation:

Self-adjoint operator H(t):
Hamiltonian of the system

L d ;
ih—|#(®)) = H()]6(®)) 7



How to describe measurements on an ideally controlled system?

(Basic rule Il1)

An ideal measurement with outcome 7 = 1,...,d

For every 3,
(1) There exists an input state |a;) that produces
outcome 3 with probability 1.

The states {|a;)}(k # j) produce

(2) ANy uthemstate—produces outcome j

with probability O.

(3) The number of outcomes d is maximal.

|

{laj)}i=1,... 4 IS an orthonormal basis of H.

d=dim%H. Note: This is not the unique way of defining g
the ‘best’ measurement. We'll see later.



How to describe measurements on an ideally controlled system?
(Basic rule Il1)

Orthogonal measurement on an orthonormal basis{\aj>}j:1,--- ,d
(von Neumann measurement, projection measurement)

Input state |¢) = X, |a;)(a;|®)

Probability of outcome j P(j) = [{aj|$)|?

Closure relation

Yjlaj){aj] =1
Measurement of an observable

Self-adjoint operator A
A =3, \jlaj)(a;l
Measurement on {‘a]>}j:1, ’d Assign J — N\

J
(A) = ZP(J')AJ' = (dlaj){a;|o)N; = (P|A|o)
J

j 9



How to treat composite systems?

(Basic rule V)
System A System B Subsystems

We know how to describe
each of the systems A and B.

How to describe AB as a single _ W,
system? N

System AB Composite system
System A: Hilbert space H 4 Basis {|a;)}i=1.....d,
System B: Hilbert space Hp Basis {[b;)}j=1,.- dp

4

Composite system AB:

Hilbert space Hap = HA®@Hp {la;) @ [bj)}i=1, dyi=1,.dg
Tensor product

dim(H s @Hp) =dimH dimHg 10



How to treat composite systems?
(Basic rule V)

When system A and system B are independently accessed ... Q Q
State preparation Unitary evolution  Orthogonal measurement
System A D) 4 [7A { ai>A}i=1,---,dA
System B 1Y) B Vg { bj>B}j=1,'“ dp
R N =1, .d
System AB [$)A ® |Y)B Us@Ve {la;)a® |bj>B}g=1,---,df
Separable states Local unitary
. Local measurements
operations
When system A and system B are directly interacted ... @
W)AB € HAB  Uup: Hap — Has {IVi)aBYk=12,....d4d5
o X
2k lor) A © [Yr) B Global unitary Global
Entangled states operations measurements

11



2. State of a subsystem

Rule for a local measurement

State after discarding a subsystem (marginal state)

Alternative description: density operator
Properties of density operators
Rules in terms of density operators

Which is the better description?

Schmidt decomposition
Pure states with the same marginal state
Ensembles with the same density operator

12



Entanglement

System A System B
Suppose that the whole system
(AB) is ideally controlled
(prepared in a definite state). \_ -
Y
System AB

state: |P)yp
Intuition in a ‘classical’ world:

If the whole is under a good control, so are the parts.

But ....

It is not always possible to assign a state vector to subsystem A.

What is the state of subsystem A?

13



Rule for a local measurement

Initial state: |P)yp

B
Measurement on
b : .
State Outcome j tbj)pYj=1

—1, "7dB

14



Rule for a local measurement

Initial state: |®)4p

@

/

o

Measurement on

{la;) ati=
!

arbitrary

Q.

P(J)

Measur

OQutcome j

ement on

{16j)B}j=1,-.dg

_/

P(ilj) = | ala;|#;) al?

l

|

Measurement on

=1,
{la;)a ® [bj) B} =3

P(i,5) = | afail p(b;]|®)

P(i,5) = P(i|))P(5) = | alail\/P()|b;) al?

.. 7dB
AR 7dA
2

15



A remark on notations

A(ai‘: q>
Alail ® p(bjl|[®P)ap B{b;l! AB
= 4(ai|(14 ® p(b;)|P) ap - '
N v J

l abbreviation

= afa;| B(bj| |P)aB §B<bj|

B<bj| :HB—>(C
Tg:Hag— Hy
’]:A(X)B(bj‘ HARQHB — Ha

16



Rule for a local measurement
Initial state: |P)yp

o O

P(J) Measurement on

*
b —1 ...
State [¢;)4 Outcome j tbjiBj=1.-.

For arbitrary {|a;) a}i=1,.. d,
P(i, ) = |alailp(b;l|®) an|”
P(3,§) = P(l))P(5) = |alailVP()Ié;) al
|
VPDI6) 4 = Blbjll®) ap

dp

17



Rule for a local measurement

Initial state: |P)yp

o O

P(J) Measurement on

*

State [¢;)a Outcome j

{ VP ®;)a = B(bj||P)aB J

P(@5) = ||p(bjl|®) apl”

B(bj||P) aB
| B(b;||P) ARl

|®i) A

1bj)B}j=1,.-

,dB

18



State after discarding a subsystem (marginal state)
Initial state: |P)4p

AN l B
' discard
2
* Pj l Measurement on
b; —1 ...
State [¢;)a Outcome j Ubs) B j=1, dp

State of system A: |¢;) 4 With probability p; — {p;,|¢;)a}
VPil95)a = B(bjl|P)aB

This description is correct, but dependence on

the fictitious measurement is weird... 19



Alternative description: density operator

{pj,|95)a} ¢;) 4 wWith probability p;

pA=2ipiloi)aa(d;l

Cons

S PA
i loday —

Two different physical states could have the same density operator.
(The description could be insufficient.)

Pros VPl a = (bil|P) aB
pA = 2;ipjloi) aale;l = 2 /Pjlos) aaldjl/P;
= ZB(bj||¢><¢||bj>B = Tr(|P)(P|)

J
Independent of the choice of the fictitious measurement 20



Properties of density operators

p =3 ipjloi) o]l
For any [¢), (¥|plv) = 3, pil(|¢;)|2 >0  Positve
Tr(p) = X p; Tr(|o;){(#;])

— Z]pj<¢]‘¢j> — ijj — 1 Unit trace

Positive & Unittrace —— P = Zj Pj|¢j><¢j|

This decomposition is
probability by no means unique!

Mixed state p= Zj Pj|¢j><¢j|

Pure state p=|®)(9 (One eigenvalue is 1)

21



Rules in terms of density operators

Prepare |¢;) with probability p; Prepare p; with probability p;
p =3 ipjlej) (o5l P = 2.jPjP;
Unitary evolution
[bout) = Uldin) Pout = Uﬁi”UT
Hintdout)(Poutl = Uldin){in| U
Orthogonal measurement on basis {|a;)}
P(j) = [{aj|¢)|? P(j) = (aj|plaj)
Hint:P(j) = (a;]¢){(¢|a;)
Expectation value of an observable A
(A) = (¢]A]9) (A) = Tr(Ap)

Hint:(A) = Tr(A|¢)(s|) 2



Rules in terms of density operators

Independently prepared systems A and B
(WV)ap = |9)a Q@ |¥)B PAB = PA D PB

Local measurement on system B on basis {|b;) g}

V716,04 = B(bjl|®)ap p;py) = p(b;lpanlb) B
Discarding system B
pa = Trp(JP)(P|) pa=Trplpap]

All the rules so far can be written in terms of density operators.

23



Which is the better description?

This looks natural. The system is in one of the pure states, but we just
don’t know. Quantum mechanics may treat just the pure states, and
leave mixed states to statistical mechanics or probability theory.

Best description

p=3ipjloi){e;l ==

=

All the rules so far can be written in terms of density operators.

Which description has one-to-one correspondence to physical states?

Theorem: Two states {p;,|¢;)} and {q, |¥g)}
with the same density operator are physically
indistinguishable (hence are the same state).

24



Schmidt decomposition

Bipartite pure states have a very nice standard form.

Any orthonormal bases {la;)a} {‘bj>B}
| DYap = D ayjla;) albj) B
]
We can always choose the two bases such that

|P)aB = Z VPilai) Albi) B schmidt decomposition

1

{la;)a}: Diagonalizes py = Trg(|P)(P|)

Proof: |®) gp = >, |a;) 4lbi) B b;) B = Afail|®)AB
unnormalized

B(b;lb;) B Trala;||P) aBaB({Plla;) Al
= Ala;|Tr[|P) apaB(Pl|lla;)a

MPACPAZIRG ) = B s



Entangled states and separable states
[P) A ® |¥) B >k klPr) AR |Yr) B

Separable states Entangled states

Are there any procedure to distinquish between the two classes?

—— Schmidt decomposition |CD)AB = Z VPilai) albi) B
) 1=1
pL=2p22-2ps>0

"

Schmidt number {pj} :The eigenvalues of the marginal

Number of nonzero coefficients in density operators (the same for A and B)

Schmidt decomposition

= The rank of the marginal density operators Range and Kernel of p

‘Symmetry’ between A and B Ran p = {p|z) | |z) € H}

pA; PB The same set of eigenvalues Subspace in which p > O

SN NN Ker p = {|y) | ply) = 0}
Rank(pa) = Rank(pp) = s Subspace in which p = O

Separable states Schmidt number = 1 ~ R
P pp =1 H = (Ran p) & (Ker p)

Entangled states Schmidt number > 1 Rank(p) =dim Ranp 26
p1 2 p2 >0




Pure states with the same marginal state

pa = Trp(|P){(P]|)
pa = Tre(|WV)(V|)

|P)AB PA Marginal state

ﬁA - C|>>AB Purification

\ Pure Extension

V) 4B

(unique)

(not unique)

27



Pure states with the same marginal state

|W AB

PA—TYB(W WD—TFBU‘D (P])

Schmidt decomposition

Orthonormal basis {|a;) 4} that diagonalizes py4

WV)ap = Z\/27i|az'>A|Mi>B
P)ap = Z\/17i|a7;>A|V7;>B

{ls) B} Orthonormal basis

Vi)B — UB Hi)B
{|V7L>B} Orthonormal basis | Z> | Z>

unitary

P ap=(140Up)|WV)ap

28



Pure states with the same marginal state

|W AB

pA—TrB(IW WD—TFB(ICD ) (P)

L [ D) ap = (14 ® UB)W)AB}

Theorem: If |W),p and |P),p are purifica-
tions of the same state py, state |W),p can
be physically converted to state |®),p with-
out touching system A.

29



Sealed move (HLF)
Chess, Go, Shogi ...

Bb5
47}4R

Let us call it a day and shall we start over tomorrow, with Bob’s move.

While they are (suppose to be) sleeping...

» Alice should not learn the sealed move.
* Bob should not alter the sealed move.

30


http://i-aquos-blog.com/archives/omc062-s.jpg
http://ja.wikipedia.org/wiki/%E7%94%BB%E5%83%8F:Chess_Screenshot.PNG
http://images.google.co.jp/imgres?imgurl=http://ykoizumi5.cocolog-nifty.com/photos/uncategorized/kinko.gif&imgrefurl=http://ykoizumi5.cocolog-nifty.com/blog/cat5579641/index.html&h=230&w=230&sz=23&hl=ja&start=1&um=1&tbnid=GhRHqVcBf5p2JM:&tbnh=108&tbnw=108&prev=/images%3Fq%3D%25E9%2587%2591%25E5%25BA%25AB%26svnum%3D10%26um%3D1%26hl%3Dja%26safe%3Doff%26rls%3DGGLG,GGLG:2006-12,GGLG:ja%26sa%3DN

Sealed move

» Alice should not learn the sealed move.
* Bob should not alter the sealed move.

If there is no reliable safe available ...
(If there is no system out of both Alice’s and Bob’s reach ...)

‘ Q Alice has no knowledge
Bob can alter the states
pa = Tre(|W)(V]) = Trp(|®)(P|)

Function of the “safe”

{ |CD>AB — (IA 0 UB)N”AB} cannot be realized.

Impossibility of unconditionally secure quantum bit commitment
(Lo, Mayers)
31



Ensembles with the same density operator

{pj, o)A} |¢j) 4 with probability p;
{ak, |YK) A} 1Y) 4 With probability gy
PA = 2Pl aaldil = Xk arlvr) Aa(rl

A scheme to realize the ensemble {Pja ‘¢j>A}

Prepare system AB in state {16;)B}  Orthonormal basis
| PYaB = ), /Pjl®j)albj)B .
2 VPiIo;)al 54 = Tra(®)(@)
Measure system B on basis {|bj>B}

VPiloi)a = B(bj||P)aB
|#;) 4 With probability p;

32



Ensembles with the same density operator
Prepare system AB in state

\W)aB = D V@ilVe) albk) B
l k
Apply unitary operation [73 to system B

| |

|PYap =D /Djloi)albi) B W) aB =D Varlve) albk) B
J k

Measure system B on basis 6j) B} Measure system B on basis 1/bx) B}
|#;) 4 With probability p; [vr) 4 With probability gy
{pja |¢3>A} {Qka |¢k>A}

pa = Trp(|W)(V]) = Trp(|®)(P|)
[ P)ap = (14 Up)|W)aB

33



Ensembles with the same density operator

W) aB
A {pj7 |¢3>A} B
{ak, [¥r) a}

Alice Bob
Can Alice distinguish the two states Bob can remotely decide which of the
even partially? states the system A is in.

NO! Bob can postpone his decision
' iIndefinitely.
Theorem: Two states {p;,|¢;)} and {qy, |[¢)} Density operator

with the same density operator are physically

o e I One-to-one
indistinguishable (hence are the same state).

Physical state



Ensembles with the same density operator:. an alternative condition

{pj, o)At {ar, |Yr) A}

A necessary and sufficient condition for

pA = 2pjlo5) aaldi]l = Xk arlvr) aal{vl

VPilP5) A = Xk Wi/ VE) A

Unitary matrix

Proof:

DY ap =D /Piloi)albj) B (W)aB = Z\/_k|¢k>A|bk>B
j [ P)ap=(14® UB)|W>

> VPiléi) albjyB =D vaKlvr) aUBlbE) B
p P
VPi185) a4 = Xk (b;|UBIbL)/Tk k) A

35



3. Qubits

Pauli operators (Pauli matrices)
Bloch representation (Bloch sphere)
Orthogonal measurement

Unitary operation

36



Qubit
dimH =2
Take a standard basis {|O>7 ‘1>}

—~

Linear operator A

Matrix representation (for {|0),|1)} )

i (Ao Ao Ay = (i|Al7)
A0 A1l A=) Al (|
1]

4 complex parameters

A = apog + @101 + a0 + @303

37



Pauli operators (Pauli matrices) Take a standard basis {]0), 1)}

- _ (10 . _ (o1

—{o1) 92791=11 0 )"
(0 —i L 1 0
WT2=14 0 )7 — 0 -1 )°

Unitary and self-adjoint

9
N
|
Q
w
]

4 [5-2-, 3j] — Qieijkak e » Levi-Civita symbol
L R . €123 = €231 = €312 = 1
040 ; + 0;0; = 20; i1 {6321 = €213 = €132 = —1
R T ’ Otherwise ¢;;;, = 0
Tr(o;) = 0, Tr(aiaj) : 25i,j- Einstein notation
\ ij=1,2,3/ Sk is omitted.
[62,0y] = 215,
52 =1
(62,5,} = 6465 + 6260 =0
Tr(ouoy) = 26, ‘Orthogonality’ with respect to

~ S 4 A 38
(u,v =0,1,2,3; og = 1) (4,B) = Tr(ATB)



Pauli operators (Pauli matrices)
g [04,5;] = 2i€;;1,0%
5‘7;5'3' + 5'3'5'@' — 25i,ji
Tr(&z) = 0, Tr(&zﬁj) = 25i,j°
-

~

J

Linear operator A

A 1 T = 1 PO"'Pz
A= —(Ph1+ P = — .
(O + 0') (Px-l-”tpy

2
P: (anPyaPZ)

6' — (533,5y,5'z)

2

Py=Tr(A) P =Tr(cA)

4 complex parameters ( Pg, Pr, Py, Pz)

P, —iP,

|

39



Pauli operators (Pauli matrices)

flz%(Pﬁ—l—P-&)z%(

A is self-adjoint. «— Py and P are real.
Eigenvalues Ay , A_

det(A) = A A_ = (P2 - |P?)
TI’(A) :)\_|_—|—)\_ _PO

|

A = (Ph£|PJ|)/2

—~

A is positive. — Py and P are real, Py > |P|

40



Bloch representation (Bloch sphere)

Density operator Positive & Unit trace
Po>|P| Py=1

p=3(1+P-5) |PI<1

Density operator for a qubit system
«<— A 3D real vector of length no greater than 1

y4

A

A point inside or on the sphere of radius 1

P = (P, Py, P,)

Bloch vector

X Ar = (Pyx|P|)/2

Pure states +— A4 = 1,A_ =0
— |P|=1
«<— On the sphere 4!




Pure states

pj=3(1+P;-5)

{p1|d2)|% = Tr[p172]
1+ PP,

2

Orthogonal states +— § = 7

Orthonormal basis <— A line through the origin

Py - P, = cosf

v



Examples

Spin ¥ particle?

Bloch vector

= Spin vector

Polarization of
a single photon




Orthogonal measurement

Orthonormal basis {|®1),|¢2)} < A line through the origin

1 P P
PA) = (e1lplor) = Tr(pp) =~
P(2) = 1_1;1’13

Example

Measurement of observable O »

: l

Z axis

44



Unitary operation

1), ¥4 The same physical state

U, e The same physical operation

det(e?U) = €29 det U

group SU(2) :Setof U with detU =1 UeSU(2) «+—UeSU(2)
(2 to 1 correspondence to the physical unitary operations)
U = exp[iS] - elw/2 0
U = iy
\ . 0 e~ ip/2
Self-adjoint, traceless
a__ 1 P.& 5 g0/2 0
= = - O —

We can parameterize the elements of SU(2) as

U(n, ) = exp[—i(p/2)n - 7]
N

. 45
Unit vector



Unitary operation

p=3(1+p o) DO i (14 P )

How does the Bloch vector changes?
Infinitesimal change U('n,, 590) ~1— i(égo/Q)’n - O
P =P — P =Tr[6p] — Tr[6p]
Tr[6T(n,69)p0 (n,5¢)] — Tr(57]
Tr[U1(n,80)60 (n,5¢)p] — Tr[&p]

~ Tr{(id¢/2)[(n - &),51p} = —6¢Tr[n;€;i10%P]
dpTr[(n x d)p] = dpn x P.

Rotation around axis n by angle o

46



Unitary operation

U e SU(2)

U = exp[—i(p/2)n - 7]

Rotation around axis n by angle ¢

Examples

o.. m rotation around z axis
or-. 7w rotation around x axis

1 (1 1
H:\@<1—1>

Hadamard transform
7w rotation (interchanges z and = axes) 4



4. Power of an ancillary system

Kraus representation (Operator-sum rep.)

Generalized measurement
Unambiguous state discrimination

Quantum operation (Quantum channel, CPTP map)

Relation between quantum operations and bipartite states
A maximally entangled state and relative states

Size of the auxiliary system
Kraus operators for the same CPTP map

What can we do in principle?

48



Power of an ancilla system

Basic operations
Unitary operations +
Orthogonal measurements

An auxiliary system
(ancilla)

measurement

O O»y

/ probability

O

49



Power of an ancilla system

Basic operations
Unitary operations +
Orthogonal measurements

An auxiliary system
(ancilla)

O ey
i ]
P
U probability
E j> s

O ——®&

50



Power of an ancilla system

olo—a

____________________________________________________

p ® |0)EE (0] |
0(p ® |0) (0T
pipSi = BUI0(B®10)EE(ODTi)e  BUl 10}
= ) s UT TG Ha > Hn

MU = p(j|010) g 51



Kraus representation (Operator-sum rep.)
pivgk = 510G ® 0)pE0))UT)j) g
l M(j) = E(j|U|O>E Kraus operators

Pjﬁc%)t = M58 DT with > MOTArU) =19

Representation with no reference to the ancilla system

SO0 =3 (0[O0 (il 010)
J J
= (00700

(0|14 ®1E|0)g

52



Kraus operators — Physical realization

pipS: = pGIT(F® |0)gE(ONT) &

T l M) = £{(7|U|0)YE Kraus operators

Pjﬁc%)t = M58 DT with > MOTArU) =19

Arbitrary set {M ()} satisfying >, MWIprG) =1

|$)a ®0)p = >, MPD|p)a @ |j)p is linear.
preserves inner products.
/For any two states |<¢>A and |¢) 4, \

(Z MP )4 @ j’>E> (Z MPD|$)a @ j>E)

J' J

L A<w|¢>A=(|¢>A®|0>E>*(|¢>A®|0>E>-/

There exists a unitary satisfying
U(p)a® |0)p) =32, MD|p)a ® |k

53



Generalized measurement

/]
|

PO = TG > o

positive

[ p; = Tr[F(j)ﬁ] with > FU) =1 }

(FUY povMm

Positive operator valued measure
54



Generalized measurement

{ p; = Tr[FUp] with ¥, F0) =1 }

Examples

Orthogonal measurement on basis {|a;)}
FU) = |a;){a;l
Trine measurement on a qubit

FU) = Z1b;)(b;]

b;)(bj| =5 (1+ P; - 5)

55



Distinguishing two nonorthogonal states

(polp1) =s>0

Minimume-error discrimination

(maybe) O
qubit /
measurement \

(maybe) 1

v

|¢O> or |¢1>

50% 50%

Unambiguous state discrimination

(surely) O
qubit @ /

v

measurement — (Surely) 1

|¢O> or |¢1> Ptail 2 (I don’t know)

50% 50%
56



Unambiguous state discrimination

v

qubit @

|¢O> or |¢1>
50%  50%
(Polp1) =s>0

Orthogonal measurement

{I60), |65}
o o

2 (I don't know) (surely) 1

{lo1), o1)}

(surely) O

measurement | —— (gyrely) 1

Prail 2 (1 don’t know)

If the initial state is | qbo)

it always fails.

If the initial state is |§Z51>

it fails with prob. |<¢o|¢1>|2 — 82

4 Dfail

Pfail —

. 57
1 (¢polo1)



Unambiguous state discrimination

(surely) O
qubit /
|¢O> or |¢1> Prail 2 (I don't know)
50% 50%
(¢olp1) =5 >0
Generalized measurement ~ The only constraint on tt comes from FQ > 0
Lyl 7 a i)
R L L — Fo+ F1 <1
Fo i= p|p1){(¢7| SClEY Horhi=d

(Fo + F1)(|95) + |o7))
= u(1+5)(|6g) £ 7))

The optimum: = (1 + s)_l

 Dfail

prail = 1 — Zl(¢ole1)” — S1(#1l¢g) 1 Aoy

Pfail — S i
=1 — (1 —s2 N
H ) 1 <¢'f|8¢1>

. L L
Fy = plég) (90|
FQ L= T—Fb—ﬁl




Quantum operation (Quantum channel, CPTP map)

/]
|

Pout = X5 pipg = X5 MW prr ()t
=3, E(j|U(ﬁ® |O>EE<OA|)UT|j>E
= Trp[U(p ® |0)gr(0)UT]
{ Pout = X T pRr (1t }
= TrglU(p® [0)g(0)TT]

~ — C(p) completely-positive trace-preserving map
Pout CPTP map 59



Positive maps and completely-positive maps
Linear map

pa— Ca(pa)
“positive™  C 4(p4) iS positive whenever p4 is positive

: C A : QCA@A)

“‘completely-positive™ (C4 ® Zg)(pap) is positive
whenever pyp IS positive

O— =,

PARB * (CA&Zp)(PAB)

KQ

(CA® Tp)(Pap) = Y. M 5apM{T .
J




Maximally entangled states
dimHp=dimHg =d

0, Os

Orthonormal L _ 1K) B k=1.2....4d
oelsel {lk)Atr=12,..d 2500

Maximally entangled state

61



Relative states dim# 4 = dimHp = d
Fix a maximally

entangled state Q Q
d
A B

1
(<)) = — |k k
©)as= 2 ZlHaks
[Py 4 =) ailk)a
2

Relative states

0"y g =D aglk)p
k

= Vdp(¢*[|P)ap = Vd(¢||P) 4B
-
Q - (@) a
| P) AB < A
AB
Orthogonal ) ogtgmle
L measurement _ 1 J =
B {lvp)p}j=12,..a PL=4d

v1)B = |¢")B \/LEW)A = B<¢*||CD>AB} 62




Quantum operation and bipartite state
We can remotely prepare system A in any state
l with a nonzero success probability.
At any time
Ca(l®){e])
12 O
A 4 4 50" 7rlo")
|P) AR b : G AR
probability
Q > BT |
\_ R measurement ¢
AR = (CAQZIR)(|P)(P|) I this single state is known ...

ECA(W) <¢|) — B<¢*|5AR|¢*>B Output for every input state is known!

Characterization of a process = Characterization of a state 63



————————————————————————————————————————————————————

dimHp = (dimH 4)?
is enough. i

|P) AR SO

\
N
~

€)arE = U(|P)ar ®[0)E)
dim(Ran pg) = dim(Ran p4p) < dimH p = d?
Ranop C Ran pg 64



Kraus operators for the same CPTP map

O O
A
|CD>AR< -
O AR
\QR ____________________________________ " Q
Pout = ZM(j)ﬁM(j)T 45?‘?&» Pout = ZN(k)ﬁN(k)T
J ﬁ k

S D|@) (@D =3 AB|) (@] 8P =5,
J k

65



Kraus operators for the same CPTP map

Pout = ZM(j)ﬁM(j)Jf SAME ot = ZN(k)ﬁN(k)T
J ﬁ k
ZM(j)‘q>><q>|M(j)T — ZN(k)ICID)(CMN(k)T — Gup
J k
II

A Apply g (¢*]
NP g) 4 ZukN<’f>|¢>

V
MG =3, N

k 66
\ Unitary matrix



What can we do in principle?

We have seen what we can (at least) do by using an ancilla system.
p;p9) = MWD Rt with > MO = 1

We also want to know what we cannot do.

v
v

A

Black box with classical and quantum output

67



What can we do in principle?

|¢>:AR o

O <
A

Meas.

These should tell us everything about the black box.

P¢|mﬁ,(4m’¢) = R<¢*|ﬁf4n§) ¢*)R

Pm,¢
P¢

Pm|¢ =

= Pm,¢d = Pg|mPmd

|#) A

—

68



Some algebras...

i P¢|m/5§4m’¢) = r(¢*134% 16" R pm|¢/ m
<
Pmjp = PojmPmd L (m.g
A@> PA

PrmioPa " = VAR($*lompY 16" RV

pmp,(&) = |Wem)AR AR(Wk ml

q> ¢>A k (unnormalized states)
W r(¢*| = Vd 4r(Pl|¢)a i
k;m> — VAdR(®* [ Wm)ar = TH™|¢)

O Xk: N[ g g g (] 7 ) }

Applying . _ ~
ZTr o Z A<¢|M(k’m)TM(k’m)|¢>A —1 _>Z M(k,m)TM(k,m) = lA
m m,k

m,k 69



This is what we can do In principle Pm .M

A | =A

Any physical process should be represented in the following form:

pmﬁgﬁ) = Z N km) 5 M(k m)T 3 xp k)t iy (kym) — 7

m,k

Orthogonal measurement |

|k m) E} ’/.m

HAQ @

70



Universal NOT ? Spin reversal ?

Bloch vector

P— —-P

linearmap p — C(p)

C(T) =1 C(&%) = —0g

C(10)(0]) = |1)(1]
C(11)(1]) = |0)(0]
C(10)(1]) = —|0)(1]
C(11)(0]) = —[1)(0

5o = |1)(0] + 0)(1]
5y = i[1)(0] — §|0)(1
5. = 0)(0] — |1)(1,
T =[0)(0] + |1)(1

This map is positive, but...
71



Universal NOT ? Spin reversal ?

C(10){0[) = [1)(1]
C(11)(1]) = 10)(0|
C(10)(1]) = —[0)(1|
C(11)(0]) = —[1)(0|

RO

[P AR

PAR ?

nes

Universal NOT

2|®){®| = (]00) 4 |11))({00[ + (11])
= |00)(00| + [00)(11] + |11)(00] + |11)(11]

2pAR =2(CQI)|P)(P| =

= |10)(10| — |[00)(11| — |11)(00| 4 |01)(01]

2pARr(]00)+[11)) = —|11)—|00) = —(|00)+|11))

PAR has anegative eigenvalue! (The map is not completely positive.)

» Universal NOT is impossible.

72



5. Distinguishability

Trace distance

Trace norm and polar decomposition
Minimume-error discrimination

Fidelity
Local operations on a maximally entangled state
Fidelity and distinguishability

Fidelity and trace distance

No-cloning theorem

73



Distinguishability

Measure of distinguishability between two states D(p,o)

A guantity describing how we can distinguish
between the two states in principle.

The distinguishability should never be
improved by a quantum operation.

Monotonicity under quantum operations

. x(p

; Ei;p)
Quantum channel (CPTP map) X E@

o

x (o)
D(5,5) > D(x(7), x(5))



Distinguishability

«Attach an ancilla
*Apply a unitary

Measure of distingt *Discard the ancilla

________________________________________________

A guantity des 5 i
between the t f> O g

________________________________________________

)

Quantum channel (CPTP map) X

Q)

D(p,o) > D(x(p),x(7)) &



Trace norm

Al = 1Al = T4 = TVATA |

In particular, when A4 is normal (diagonalizable),

Tr(|[AD) =35 A

[HAAII = max|Tr(AU)
U

J

Al = 325 v515) (4] |

Tr(AU) = Tr(VIAIU) = X, v (§|UVj)

J

A

1(§10V]5)| < 1

U=VI—|(Gl0V]j)| =1

| =25V

\;: Eigenvalues of A

Polar decomposition

number a = e')q

linear operator A = V| A|
A

unitary

positive
A = VATA
V=A4A"1
(when A is invertible)

VIV = |A|71ATA|AI7 =1
76



Trace distance

1”/5 5| Zerowhen p = o (the same state)
2 Unity when po = O  (perfectly distinguishable)

Monotonicity? [ lp— 3l > ||x(p) — x(a)] }

‘Attachanancilla p— p® T oc—>0QT
Tr|A® B| = Tr(V ATA @ \V BIB) = Tr|A|Tr|B|
10@7—6@7|| = ||(p—)®7[| = [[p—o|x||7|| = |lp—35|

Apply a unitary p— UpUT & — UcUT
max | Tr(AV)| = max |Tr(TAUTV)|
Vv Vv

|0pUT — U0 = |U(p - a)UT|| = |15 - 3|

b,
*Discard the ancilla p — Trr(p) & — Trr(o) Q O
~ NS P A R
max [ Tr[(Trpp—Trro)Val| = max [ Tr[(p—5)(Va®1R)]
A A ~
< max [Trl(7 — 3)0ax] ”

Uar



Trace distance

Monotonicity |15 — 511 > [[x() — x(3)| |

This rule also applies to a measurement with outcomej ;

p— {pj} o — {q;}
P1 0 q1 0
R —~ _ q2
S pmes = | T%s & Gmes = 3
0 . 0 -
1. 1 R
5||P—f7|| > §||Pmes—f7me5|| = leg

(total varlatlon distance)
This must hold for any measurement

Note: The equality holds for the orthogonal measurement
for the observable p — & = ) _ A7) (j]

1. 1 ‘
§||P—U|| — EZ\Pj—Qﬂ =Z|>\j| 78
J J



Minimum-error discrimination N
(maybe) it was O

@ / (outcome j=0)

measurement \
p Or ¢ (maybe) it was o

50% 50% (outcome j=1)

v

outcome
It was D ( j=0) ltwas O (j=1)
N = 1 — € — € 1
Input P | Po b1 Perr — 5(6 + Gl)
G|l go=¢ |qgu=1-¢

1. 1
§||P—<7|| Z§Z|pj_Qj| =|1—e—€|=1-—2perr

79



Minimum-error discrimination

v

/ (maybe) it was ﬁ
@ measurement \
(maybe) it was o

Optimal measurement: orthogonal measurement {]30, Pl}

p Or ¢
50%  50%

o =Y _ Ap|k)(K|
k
Po= ) k) (K Pr= ) |k)K|
k:A\.>0 k:\.<0O
—(Ipo qo|+|p1— Q1|)_—(| > Xl DD AkD

kA, >0 ki, <O

1
= — Py — —_|lp — O
2§k:| sl = 5llo—al

| t
LQHP—UH:l—QPéCr)rp) 80

} Operational meaning of the trace distance




Discrimination between two pure states

qubit
> measurement

|¢O> or |¢1>

50%  50%

(¢o|¢1) = s = cosp =sin20 >0
[pg) = cos B|ug) + sinOluq)
1) = sin Blug) + cosBluq)

po ‘= |90){¢0]
p1 = |P1)(P1]

po — p1 = €0S20(|ug)(ug| — |u1){u1l)

L5 ) opt
§||Po—p1|| — cos 260 = \/1 _ 52 =1 _Qpérrp)

81



Fidelity

Trgllép) (¢pl] =
TrR[|¢a><¢a|] —

F(3,5) = VAV |

V) = X1 VPlk) ® |k)r s a purification of P
TrrlvYe) (ol = X Volk) (VP X Tr(|k)rr(l]) = p
Any purification can be written as |¢,) = S 1 v/plk) ® Ug|k) g
=2k \/3(7'|2/<> ® |k) R

S (K|OTBVETI) x (k| R

kl

(purifications)

LF(@ 7) = maX|<¢p|¢o>|2} O
| @
|¢p

Q) )

F(p,0) = max
U,v

Tr(UT\ffV)| = max

Tr(\[\/_V)‘

UV



Local operations on a maximally entangled state

d
Pap=Y }Eu«u@ k)5

k=1

ﬁ (TA®1p)|P)ap =140 TE)|P)aB

Alll ® p(k| A<”TA‘k>A — B<k|T/B‘l>B transpose

@ Equivalent Q
B B

83



Fidelity

2
F(3,5) = max (@,lés) P = |VAVGIP = (Try/V5sva)
F(p,o0) =1 when p =07 (the same state)
F(p,0) = 0 when po = 0 (perfectly distinguishable)

F(p, |¥)(¢]) = (¢¥]p|v)
TV VIO @150/ [9) (] = Try/(@lpl) ) (] = /(1)

F
| Is it Jy) 7 - YES

1—F " NO

Operational meaning of the fidelity

84



Fidelity

2
F(3,5) = max|{gléa) > = VAV = (Tr/Vapv5)

F(p,o0) =1 when p =07 (the same state)

F(p,0) = 0 when po = 0 (perfectly distinguishable)

F(p, |[¥)(¥]) = (¥]plv) Operational meaning of the fidelity

But not applicable to general F(p, o)

F(|o) (o], |v)(¥]) = |<¢|¢>|2 Direct generalization of the

magnitude of the inner product

F(p1 ® p2,01 ®02) = F(p1,01)F(p2,02) Multiplicativity

1 — F(p,0) isameasure of distinguishability. (not a distance)

Classical case p— {pj} o — {Qj}

2
F= (Zj \/Pj\/CIj> Hard to find a operational meaning...

There exists a measurement that preserves the fidelity: Measure J/p
Projection to the range of P

Measure the observable /3—1/2 | \/fo‘\/aﬁ— 1/2 85



Fidelity and distinguishability

2
F(3,5) = max|{gléa) > = VAV = (Tr/Vapv5)

F(p,o0) =1 when p

5 F(p,5) =0 when p5 =0

1 — F(p,0) isameasure of distinguishability. (not a distance)

Monotonicity | F(5,5) < F(x(p),x(3)) |
*Attach an ancilla
Flprt,07)=F(p,0)F(7,7) = F(p,o)
*Apply a unitary
F(Up07, 060" = |0,/3vG07|12 = ||\/pV35I? = F(5,5)
Discard the ancilla |¢p> |¢,>
F(p,5) = max |(¢p|do)|?

F(Trgrp, Trpa) = max [(¢),|d,)| Q O

max|<¢p|¢a>|2 < max|<¢p|¢/ )|




Fidelity and trace distance

— 1, —
1 \F(p,8) < SlIp -5l < Y1 - F(5,5)

Trace distance

Measurement preserving the fidelity 0
p—1{p;t & — {q;}

| 1
oI =21z 5 e~
= %Zlm—@|<m+¢q—j>
J
1 1
> 52 (VR =5 (ZPﬁZ%‘ —2Zm¢q—j)
J J J J

87



Fidelity and trace distance

— 1, —
1 \F(p,8) < SlIp -5l < Y1 - F(5,5)

Trace distance

Purifications satisfying F'(p,o) = |<¢p|¢a>|2

. | | Pp) = P
The fidelity is preserved in the physical process R
|$o) — T

1 |
§|||¢p><¢p| — |po) (sl > 5”'0 — 0|
|
V1= (épleo)2P=VI—F

88



No-cloning theorem

F(p1 ® p2,01 ®o2) = F(p1,01)F(p2,02) Multiplicativity
F(p,0) < F(x(p),x(7)) Monotonicity
Is it possible to realize X(f) — /2@ pA ?
x(0) =c®0

D-R-E @-F-

F(p,5) < F(x(p),x(5)) = F(pRp,6®5) = F(p,5)°

Possible only when F'(p,5) = 0 or 1

It is impossible to create independent copies of two inputs
that are neither distinguishable nor identical.

89



No-cloning theorem for classical case?

It is Impossible to create independent copies of two inputs
that are neither distinguishable nor identical.

O-F-2  @-F-2

If we allow mixed states, partial distinguishability is not rare
even in classical states.

.2 1 .1 2
p = 310)(0] + Z[1)(1 o = 2100+ Z[1)(1

It is possible to create correlated copies. (Broadcasting)
- 2 1
x(p) = 310)(0] @ [0){0] + Z|1){1[ @ [1)(1

X(3) = $10)(0] ® [0)(0] + 2]1)(1| @ 1)1

The marginal states are the same as the input.

90



No-cloning theorem for pure states

It is Impossible to create independent copies of two inputs

that are neither distinguishable nor identical.

‘

X

a

X

|
@

If the marginal state is pure, the subsystem has no correlation to other systems.

X

()~

X

|
@E®

It is Iimpossible to create copies of two nonorthogonal and

nonidentical pure states.

Of course, it is impossible to create copies of unknown pure states.

91



What is peculiar about guantum mechanics?

Partially distinguishable No independent copies

Pure —— No correlation

These implications are not unique to quantum mechanics.

In quantum mechanics, there are cases where states are
partially distinguish and pure.

92



Information — disturbance tradeoff

Suppose that |[{¢|¥)]| > O

;
X

H @H

;
X

{o|)]? < F(|p) (9] ® B, [¥) (Y| ® &)

If a process causes absolutely no disturbance on two nonorthogonal states,

= [(¢|¢)|°F(p,5)

. F(p,6)=1 p=20

— ()

it leaves no trace about which of the states has been fed to the input.

Basic principle for a quantum cryptography scheme, called B92 protocol.

93



6. Communication resources

Classical channel
Quantum channel
Entanglement
How does the state evolve under LOCC?

Properties of maximally entangled states
Bell basis
Quantum dense coding

Quantum teleportation

Entanglement swapping
Resource conversion protocols and bounds

94



Classical channel

0 0
1 1

Ideal classical channel: faithful transfer of any
signal chosen from d symbols

Parallel use of channels

0 0 A Oa Oa
1 g 1 Ob Ob

> Oc ______________ > Oc
a a la la
b ------mm----- > b 1b 1b
C C ) 1c 1c

d-symbol ideal classical channel
(dd’)-symbol ideal classical channel
d’-symbol ideal classical channel

Measure of usefulness

d-symbol ideal classical channel —— (log d) bits
Additive for ideal channels 95




Quantum channel
a|0) + B|1) a|0) + 5|1)

@D '
Ideal quantum channel: faithful transfer of any state

(including unknown states) of an d-level system
(Hilbert space of dimension d)

v

[ Faithful transfer of any state Faithful transfer of any correlation }

~(i t
ZREGK SORN
~(out) __ ~ ~(in) 1t )
Py =D Mipy "M, L
~(out) _ ~(in) _
P A — P ~ foranyinput _
(i) O > O _(out)
PAR PAR
Dy O
A(out)

Z<M 1)UL 0 1) =501 o



Quantum channel
a|0) + B|1) a|0) + 5|1)

@D - D
Ideal quantum channel: faithful transfer of any

state of an d-level system
(Hilbert space of dimension d)

Parallel use of channels

~ dlevels

>
N-level

(dd’)-level system < 4 levels

>
-
Measure of usefulness

d-level ideal quantum channel —— (log d) qubits

Additive for ideal channels
97



Can classical channels substitute a quantum channel?

NO (with no other resources)

Suppose that it was possible ...

@ Any size of classical channel @

(5

Classical info

: The same procedure should
can be copied

result in the same state.

This amounts to the cloning of unknown quantum states,
which is forbidden.
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Can a quantum channel substitute a classical channel?

Of course yes.

But not so bizarre (with no other resources).

[ n-qubit ideal quantum channel can only substitute a n-bit classical channel. }

(Holevo bound)

Suppose that transfer of an d-level system can convey any
signal from s symbols faithfully.

Measurement
13 =1,2,...,s ’ j/
dimH =d Always j' = j

Recall that any measurement must be described by a POVM. ) Fjyr =1
TF(F}EJ) =1 7’
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Difference between guantum and classical channels

We have seen that a quantum channel is
l ® more powerful than a classical channel.

I've already bought a classical channel,
> but now | want to use a quantum channel.
Do | have to buy the quantum channel?

Oh, you can buy this optional package for
a cheaper price, and upgrade the
Other resource classical channel to a quantum channel!

Entanglement

100



Operational definition of entanglement

“Correlations that cannot be created over classical channels”

LOCC: Local operations and classical communication

Alice has a subsystem A, and Bob has a subsystem B.
Operations (including measurements) on a local subsystem are free.

Communication between Alice and Bob only uses classical channels.

Classical channels

Separable states: The states that can be created under LOCC from scratch.

Entangled states: The states that cannot be created under LOCC from scratch.

101



How does the state evolve under LOCC?

e . . .
Any LOCC procedure can be made a sequential one: | AllCe appies local operations
Alice communicates to Bob
Bob applies local operations
_ Bob communicates to Alice
When Alice operates

|W>AB L Alice .....
WO

. pipi = p
outcome J l Probability p; [ %: o }
%) AB

Q """"""""""""""""""" Ran p 5 Ran p;

[ Schmidt number never increases under LOCC (even probabilistically) }

N

Schmidt number >1 —— Impossible under LOCC

If a concave functional S only depends on the eigenvalues,

~ "o~ Anysuch functional of the marginal density operator
S(p) > Z p]S(p]) (e.g., von Neumann entropy) is monotone decreasing
J under LOCC on average. 102



Maximally entangled states (MES) “ideal” entangled states

d 1

k=1
Schmidt number = d

Putting two MESSs together

MES with
Schmidt number dd’

d d’
(Z %WA@ |j>B)®<Z \/LWVC)A/@ k) B ) Z\/ﬁbk A4®lik)pp

k=1

Measure of entanglement

MES with Schmidt numberd —— (log d) ebits
Additive for MESs 103



Ebits and bits are mutually exclusive

Schmidt number never increases under LOCC.

[ Classical channels cannot increase (ideal) entanglement.}

d-symbol ideal classical channel

The outcome can be correctly predicted with probability at least 1/d.

(log d) bits

Transfer of d’(>d) symbols

Transfer of d’(>d) symbols

>~ Success probability 1

>~ Success probability 1/d

[ Entanglement cannot assist (ideal) classical channels }
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Resource conversion protocols

Dynamic
Directional
Conversion to ebits Quantum

_ _ Static
Entanglement sharing Classical Non-directional

1 qubit ——— 1 ebit
Conversion to bits

Quantum dense coding

1 qubit + 1 ebit —— 2 bits

Conversion to qubits Restrictions

_ bits alone —— no ebits
Quantum teleportation _ _
ebits alone —— no bits

2 bits + 1 ebit ——— 1 qubit 1 qubit alone 16 more than 1 bit
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d

. . 1
Properties of maximally entangled states [®)ap = > \/—E\ku ® k) B
k=1

Pair of local states (relative states) { f|¢ B(o*||P) 4 B}
[9*)B = X aklk)B
/
[&)a = Dk aglk)a *"“QA BmeasEr(ir/ndent

Pair of local operations [(MA @1p)|P)ap = (14 ® ML)|P) 4z }

MA@A QB - QA @Mg

1.
Locally maximally mixed [ = Trp|®){®]=—14 }

54
Convertibility via local unitary [ &) 45 = (14® Up)[®)45)

Orthonormal basis (Bell basis) [(®;|®;) =6 G k=1,...d%) |

There exists an orthonormal basis composed of MESs. 106




Bell basis for a pair of qubits

(il = 2) A 1) = —=(10)410)5 + [1)4/1) )

PO EET ol = (100al0)z — [DalD)) = Zsloy)
W) = —=(1)410)5 + [0)4l1)z) = Xal4)
W)=

\/§(|1>A|O>B_|O>A|1>B) = (X4®Zp)|d4)
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Bell basis

B =exp[2mi/d] (B4=p=1,8"1=05)
Basis {|0),|1),...,|[d—1)} (|d) = |0>)

d—1 _
X = 17+ 1) (] 7 = Z B715) (4 (Unitary)
j=0 j=0
XT:X_]' Z — 7

79— X4 =1 Eigenvalues: 1 3,82 ... 841
ZX =pX2z  7mX'=pmxizm

(X4 ®XB)|Poo) = |Po,0)

d
1

[Po,0) = k)4 ® |k) B AT

2 Vd (ZA® Z51)|Po0) = |Po o)

Bell basis: {|®; )} ((=0,1,...,d—1, m=0,1,...,d—-1)
D) = (XY ® ZF)|Po,0)
(X4 @ XB)|Prm) =B P )

(Za® Z7)|®y, ) = 6|, } —> All states are orthogonal.
B m/ m)
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Quantum dense coding .
1 qubit + 1 ebit — 2bits ~ ~—
n qubits + n ebits —— 2n bits Q |P0.0) O

(Dimension d) 4+ (Schmidt number d) l
— (d? symbols)

MES
Convertibility via local unitary

Orthonormal basis (Bell basis)

d? symbols (I,m)

Measurement
[®1,m) on the Bell basis (I,m)

(Bell measurement)
109



Creating entanglement by nonlocal measurement

measurement
w QA """"""""""" Q B .
(W)aa «— O »|[W*) e
A Q C Relative state of |W) 44/
(More precisely, obtaining an Same entanglement

outcome corresponding to a
POVM element p|W)(W|)

d d
(Z ;EIJ>A®J'>B>®<Z %Iku/@Ik ) Z\/—lyk Ax®lik) ppr

When |W) 44/ is an entangled state, (e.g., Bell measurement)

OA ______________________ Q . - entangled

Initially no V) ge

Q _______________________ Q entanglement
A’ C

The measurement cannot be implemented over LOCC.
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d

. &1
Entanglement swapping [®o,0) = g_:l gk @1k
Lo

Bell ©) aarBc = |90,0) aBIPo,0) a0 = D \/——2|Jk>AA’ ® |jk) BC

measurement Q Q 7,k d
|$0,0) a4+ A B »|Po.0)BC

A QC
1
A4{P0,0l|©) aarBc = ﬁ@o,o)Bc

Bell

measurement
Dy ) A ar— QA ______________________ QB o (o¢mMy-11g

m)AA O snpe » ? Uy ) "|®o,0)BC

Dy ) aar = Val®o.0) aar
AAPLm|O) aarpe = AA’<¢O,O|V);|@>AA’BC
= 44{(P0.,0|lVBI©O) 44 BC

= V5 [44{(®0.,0|©) 4a'BC]
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Entanglement swapping

Classical channel (2log d bits)
Fr(Lm)

o e (lm)y—
OA"\ @™ ®0 0) 5o

Bell measurement

N
N
N
N
N
N
N
N
N
N
| O

Final state

@

- |®o,0)BC

o.
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Quantum teleportation

1 ebit + 2 bit 1 qubit

n ebits + 2n bits n qubits
(d?2 symbols) 4+ (Schmidt number d)

— (Dimension d)

Measurement

¢%) ¢

1¢)B

- |®o,0)BC

0.

Measurement
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Quantum teleportation

If the cost of classical communication is neglected ...

<

One can reserve the quantum channel by storing a quantum state.

One can use a guantum channel in the opposite direction.

A convenient way of quantum error correction (failure— retry).

Noisy quantum channel

Noisy quantum channel l
— mm s mm s = s >
Py = === = > p— | ) Noisy entanglement
— s = s = n = > _
Failure—>no recovery. O _______________________ le



Resource conversion protocols and bounds \

We can do the following...
Conversion to ebits

Entanglement sharing
1 qubit —— 1 ebit
(Agq, Ae,Ac) = (—1,1,0)
Conversion to bits

Quantum dense coding

1 qubit + 1 ebit —— 2 bits
(AQ7 Aea AC) — (_17 _17 2)

Conversion to qubits
Quantum teleportation

2 bits + 1 ebit — 1 qubit
(AQ7 Aea AC) — (17 _17 _2)

Ac
Teleportation Y

Entanglement sharing
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Resource conversion protocols and bounds .\
We can do the following... /—' Ac

Teleportation

Restrictions
bits alone —— no ebits

ebits alone —— no bits

1 qubit alone — no more than 1 bit

Ae+ Ag<O0
Entanglement sharing
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. Agq
Resource conversion protocols and bounds \

We can do the following... /—' Ac

Teleportation
Ae

Ac+2Aq <0
Dense coding

Restrictions
bits alone —— no ebits

ebits alone —— no bits

1 qubit alone — no more than 1 bit

Entanglement sharing
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Resource conversion protocols and bounds .\
We can do the following... /—' Ac

Teleportation

Restrictions
bits alone —— no ebits

ebits alone —— no bits

1 qubit alone — no more than 1 bit

Entanglement sharing
Ac+ Ag+ Ae<O0
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Resource conversion protocols and bounds

We can do the following...
Conversion to ebits

Entanglement sharing
1 qubit —— 1 ebit
(Agq, Ae,Ac) = (—1,1,0)
Conversion to bits

Quantum dense coding

1 qubit + 1 ebit —— 2 bits
(AQ7 AG, AC) — (_17 _17 2)

Conversion to qubits
Quantum teleportation

2 bits + 1 ebit — 1 qubit
(AQ7 Aea AC) — (17 _17 _2)

We cannot violate the followinq ...

Entanglement never assists
classical channels

+ QD,QT
Ac+ 2Aq <0

Classical channels cannot increase
entanglement

+ QT,ES
Ae+ Aqg<O0

Holevo + ES,QD

Ag+ DAe+ Ac<O0
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Resource conversion protocols and bounds
A

Teleportation

q
Ac+2Ag<0
/ AN/
Ae .:

Dense coding

p
p
P
P
1 4
P
" .
P
P
1 ’
h ’
P
| P
|
! ’
! I
I d
1 .
.
! d
| .
T d
1 .
I .
! 4
| ,
] 4
1 L7
I .
1 e
! ‘ C €
' e
| 4 _

Entanglement sharing
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