1. Basic rules of quantum mechanics

How to describe the states of an ideally controlled system?
How to describe changes in an ideally controlled system?
How to describe measurements on an ideally controlled system?
How to treat composite systems?

How to describe the states of an ideally controlled system?

(Basic rule I)
Example of a classical system
A particle on a 1D line

Is there any common structure in the set?
Set of all the states
Relation between a pair of states? Closeness?

How to describe the states of an ideally controlled system?

(Basic rule I)

Quantum system

State A and State B may not be perfectly distinguishable.

Distinguishablity: Can be operationally defined.
Applicable to any system

Common structure

A quantity representing the distiguishablity is assigned to every pair of states.

Hilbert space

- Linear space over \mathbb{C}
- Inner product (a, b)
- Complete in the norm $\|a\| \equiv \sqrt{(a, a)}$

How to describe the states of an ideally controlled system?

(Basic rule I)

Set of all the states
Hilbert space
A state \leftrightarrow a ray in the Hilbert space ray including vector $a \neq 0$ is $\{\alpha a \mid \alpha \in \mathbb{C}, \alpha \neq 0\}$.

How to describe the states of an ideally controlled system?

(Basic rule I)
A physical system \leftrightarrow a Hilbert space \mathcal{H}
A state \leftrightarrow a ray in the Hilbert space
Usually, we use a normalized vector ϕ satisfying
$(\phi, \phi)=1$ as a representative of the ray.
Distinguishability — inner product
For normalized vectors ϕ and ψ,
$|(\phi, \psi)|=0$ - perfectly distinguishable
$|(\phi, \psi)|=1$ - completely indistinguishable
(the same state)

Dirac notation

'ket' $|\phi\rangle$ - vector $\phi \in \mathcal{H}$.
‘bra’ $\langle\phi|$ - linear functional $(\phi, \cdot): \mathcal{H} \rightarrow \mathbb{C}$.
$\langle\phi \mid \psi\rangle-(\phi, \psi)$

Linear operators: $\mathcal{H} \rightarrow \mathcal{H}$.
\widehat{T} is normal $\leftrightarrow \hat{T}$ is diagonalizable.

$$
\hat{T}=\sum_{j} \lambda_{j}\left|u_{j}\right\rangle\left\langle u_{j}\right|
$$

Eigenvalues

How to describe changes in an ideally controlled system?

(Basic rule II)

Reversible evolution
A unitary operator \hat{U} :

$$
\left|\phi_{\text {out }}\right\rangle=\hat{U}\left|\phi_{\text {in }}\right\rangle
$$

Inner products are preserved by

 unitary operations.

Distinguishability should be unchanged by any reversible operation.

$$
\begin{aligned}
& \left|\phi\left(t_{2}\right)\right\rangle=\hat{U}\left(t_{2}, t_{1}\right)\left|\phi\left(t_{1}\right)\right\rangle \\
& |\phi(t+d t)\rangle=\widehat{U}(t+d t, t)|\phi(t)\rangle \\
& \quad \widehat{U}(t+d t, t) \cong \widehat{1}-(i / \hbar) \widehat{H}(t) d t
\end{aligned}
$$

Self-adjoint operator $\hat{H}(t)$: Hamiltonian of the system
Schrödinger equation:

$$
i \hbar \frac{d}{d t}|\phi(t)\rangle=\hat{H}(t)|\phi(t)\rangle
$$

How to describe measurements on an ideally controlled system?

 (Basic rule III)An ideal measurement with outcome $j=1, \ldots, d$
For every j,
(1) There exists an input state $\left|a_{j}\right\rangle$ that produces outcome j with probability 1.

The states $\left\{\left|a_{k}\right\rangle\right\}(k \neq j)$ produce
(2) Any outcome j with probability 0 .
(3) The number of outcomes d is maximal.

$$
\left\{\left|a_{j}\right\rangle\right\}_{j=1, \cdots, d} \text { is an orthonormal basis of } \mathcal{H} .
$$

$$
d=\operatorname{dim} \mathcal{H} .
$$

How to describe measurements on an ideally controlled system?

 (Basic rule III)Orthogonal measurement on an orthonormal basis $\left\{\left|a_{j}\right\rangle\right\}_{j=1, \cdots, d}$ (von Neumann measurement, projection measurement)

Input state $|\phi\rangle=\sum_{j}\left|a_{j}\right\rangle\left\langle a_{j} \mid \phi\right\rangle$
Probability of outcome $j \quad P(j)=\left|\left\langle a_{j} \mid \phi\right\rangle\right|^{2}$

Measurement of an observable

$$
P(j)=\left|\left\langle a_{j} \mid \phi\right\rangle\right|^{2}
$$

Self-adjoint operator \hat{A}

$$
\widehat{A}=\sum_{j} \lambda_{j}\left|a_{j}\right\rangle\left\langle a_{j}\right|
$$

Measurement on $\left\{\left|a_{j}\right\rangle\right\}_{j=1, \cdots, d} \quad$ Assign $j \rightarrow \lambda_{j}$

$$
\langle\widehat{A}\rangle \equiv \sum_{j} P(j) \lambda_{j}=\sum_{j}\left\langle\phi \mid a_{j}\right\rangle\left\langle a_{j} \mid \phi\right\rangle \lambda_{j}=\langle\phi| \widehat{A}|\phi\rangle
$$

How to treat composite systems?

(Basic rule IV)
We know how to describe each of the systems A and B.

How to describe $A B$ as a single system?

System AB

System A: Hilbert space \mathcal{H}_{A} System B: Hilbert space \mathcal{H}_{B}

Composite system AB:
Hilbert space $\mathcal{H}_{A B}=\mathcal{H}_{A} \otimes \mathcal{H}_{B} \quad\left\{\left|a_{i}\right\rangle \otimes\left|b_{j}\right\rangle\right\}_{i=1, \cdots, d_{A} ; j=1, \cdots, d_{B}}$ Tensor product

How to treat composite systems?

(Basic rule IV)
When system A and system B are independently accessed ...

System A
$|\phi\rangle_{A}$

System B $|\psi\rangle_{B}$

System AB
$|\phi\rangle_{A} \otimes|\psi\rangle_{B}$
Separable states

Orthogonal measurement
\widehat{U}_{A}
$\left\{\left|a_{i}\right\rangle_{A}\right\}_{i=1, \cdots, d_{A}}$
\widehat{V}_{B}
$\left\{\left|b_{j}\right\rangle_{B}\right\}_{j=1, \cdots, d_{B}}$
Unitary evolution

Local unitary
operations

When system A and system B are directly interacted ...

$|\Psi\rangle_{A B} \in \mathcal{H}_{A B} \quad \hat{U}_{A B}: \mathcal{H}_{A B} \rightarrow \mathcal{H}_{A B} \quad\left\{\left|\Psi_{k}\right\rangle_{A B}\right\}_{k=1,2, \ldots, d_{A} d_{B}}$
$\sum_{k} \alpha_{k}\left|\phi_{k}\right\rangle_{A} \otimes\left|\psi_{k}\right\rangle_{B}$
Entangled states

Global unitary operations

Global measurements

2. State of a subsystem

Rule for a local measurement
State after discarding a subsystem (marginal state)
Alternative description: density operator
Properties of density operators
Rules in terms of density operators
Which is the better description?
Schmidt decomposition
Pure states with the same marginal state
Ensembles with the same density operator

Entanglement

Suppose that the whole system (AB) is ideally controlled (prepared in a definite state).

> System AB
> state: $|\Phi\rangle_{A B}$

Intuition in a 'classical' world:
If the whole is under a good control, so are the parts.

But
It is not always possible to assign a state vector to subsystem A.

What is the state of subsystem A?

Rule for a local measurement

Rule for a local measurement

$$
\begin{aligned}
& \text { Initial state: }|\Phi\rangle_{A B} \\
& \text { Measurement on } \\
& \text { State }\left|\phi_{j}\right\rangle_{A} \quad \text { Outcome } j \\
& \left\{\left|b_{j}\right\rangle_{B}\right\}_{j=1, \cdots, d_{B}} \\
& \text { arbitrary } \\
& \text { Outcome } i \\
& P(i, j)=P(i \mid j) P(j)=\left.\left.\right|_{A}\left\langle a_{i}\right| \sqrt{P(j)}\left|\phi_{j}\right\rangle_{A}\right|^{2}
\end{aligned}
$$

A remark on notations

$$
\begin{aligned}
& { }_{A}\left\langle a_{i}\right| \otimes{ }_{B}\left\langle b_{j}\right||\Phi\rangle_{A B} \\
& ={ }_{A}\left\langle a_{i}\right|(\underbrace{\left(\hat{1}_{A} \otimes{ }_{B}\left\langle b_{j}\right|\right.})|\Phi\rangle_{A B} \\
& \text { abbreviation } \\
& ={ }_{A}\left\langle a_{i}\right|{ }_{B}\left\langle b_{j}\right||\Phi\rangle_{A B}
\end{aligned}
$$

$$
\begin{gathered}
{ }_{B}\left\langle b_{j}\right|: \mathcal{H}_{B} \rightarrow \mathbb{C} \\
\hat{1}_{A}: \mathcal{H}_{A} \rightarrow \mathcal{H}_{A} \\
\hat{\mathrm{1}}_{A} \otimes{ }_{B}\left\langle b_{j}\right|: \mathcal{H}_{A} \otimes \mathcal{H}_{B} \rightarrow \mathcal{H}_{A}
\end{gathered}
$$

Rule for a local measurement

 Initial state: $|\Phi\rangle_{A B}$

State $\left|\phi_{j}\right\rangle_{A}$

For arbitrary $\left\{\left|a_{i}\right\rangle_{A}\right\}_{i=1, \cdots, d_{A}}$

$$
\begin{gathered}
P(i, j)=\mid\left.{ }_{A}\left\langle\left. a_{i}\right|_{B}\left\langle b_{j}\right| \mid \Phi\right\rangle_{A B}\right|^{2} \\
P(i, j)=P(i \mid j) P(j)=\left.\left.\right|_{A}\left\langle a_{i}\right| \sqrt{P(j)}\left|\phi_{j}\right\rangle_{A}\right|^{2} \\
\downarrow \\
\sqrt{P(j)}\left|\phi_{j}\right\rangle_{A}={ }_{B}\left\langle b_{j} \| \Phi\right\rangle_{A B}
\end{gathered}
$$

Rule for a local measurement

 Initial state: $|\Phi\rangle_{A B}$

State $\left|\phi_{j}\right\rangle_{A}$

$$
\sqrt{P(j)}\left|\phi_{j}\right\rangle_{A}={ }_{B}\left\langle b_{j} \| \Phi\right\rangle_{A B}
$$

$$
\begin{aligned}
P(j) & =\left\|_{B}\left\langle b_{j} \| \Phi\right\rangle_{A B}\right\|^{2} \\
\left|\phi_{j}\right\rangle_{A} & =\frac{{ }^{3}\left\langle b_{j} \mid \| \Phi\right\rangle_{A B}}{\left\|_{B}\left\langle b_{j} \| \Phi\right\rangle_{A B}\right\|}
\end{aligned}
$$

State after discarding a subsystem (marginal state) Initial state: $|\Phi\rangle_{A B}$

discard

$p_{j} \downarrow \quad$ Measurement on
Outcome $j \quad\left\{\left|b_{j}\right\rangle_{B}\right\}_{j=1, \cdots, d_{B}}$

State of system A: $\left|\phi_{j}\right\rangle_{A}$ with probability $p_{j} \quad \longrightarrow\left\{p_{j},\left|\phi_{j}\right\rangle_{A}\right\}$

$$
\sqrt{p_{j}}\left|\phi_{j}\right\rangle_{A}={ }_{B}\left\langle b_{j} \| \Phi\right\rangle_{A B}
$$

This description is correct, but dependence on the fictitious measurement is weird...

Alternative description: density operator

$$
\begin{gathered}
\left\{p_{j},\left|\phi_{j}\right\rangle_{A}\right\} \quad\left|\phi_{j}\right\rangle_{A} \text { with probability } p_{j} \\
\hat{\rho}_{A} \equiv \sum_{j} p_{j}\left|\phi_{j}\right\rangle_{A A}\left\langle\phi_{j}\right|
\end{gathered}
$$

Cons

$$
\begin{aligned}
& \left\{q_{k},\left|\psi_{k}\right\rangle_{A}\right\} \\
& \left\{p_{j},\left|\phi_{j}\right\rangle_{A}\right\}
\end{aligned} \longrightarrow \text { same } \hat{\rho}_{A}
$$

Two different physical states could have the same density operator. (The description could be insufficient.)

Pros

$$
\begin{gathered}
\sqrt{p_{j}}\left|\phi_{j}\right\rangle_{A}={ }_{B}\left\langle b_{j}\right||\Phi\rangle_{A B} \\
\hat{\rho}_{A}=\sum_{j} p_{j}\left|\phi_{j}\right\rangle_{A A}\left\langle\phi_{j}\right|=\sum_{j} \sqrt{p_{j}}\left|\phi_{j}\right\rangle_{A A}\left\langle\phi_{j}\right| \sqrt{p_{j}} \\
=\sum_{j}{ }_{B}\left\langle b_{j}\right||\Phi\rangle\langle\Phi|\left|b_{j}\right\rangle_{B}=\operatorname{Tr}_{B}(|\Phi\rangle\langle\Phi|)
\end{gathered}
$$

Independent of the choice of the fictitious measurement

Properties of density operators

$\hat{\rho} \equiv \sum_{j} p_{j}\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right|$
For any $|\psi\rangle,\langle\psi| \hat{\rho}|\psi\rangle=\sum_{j} p_{j}\left|\left\langle\psi \mid \phi_{j}\right\rangle\right|^{2} \geq 0$
Positive

$$
\begin{aligned}
\operatorname{Tr}(\hat{\rho}) & =\sum_{j} p_{j} \operatorname{Tr}\left(\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right|\right) \\
& =\sum_{j} p_{j}\left\langle\phi_{j} \mid \phi_{j}\right\rangle=\sum_{j} p_{j}=1
\end{aligned}
$$

Unit trace

Positive \& Unit trace $\longrightarrow \hat{\rho}=\sum_{j} p_{j}\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right|$
This decomposition is by no means unique!
$\begin{array}{ll}\text { Mixed state } & \hat{\rho}=\sum_{j} p_{j}\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right| \\ \text { Pure state } & \hat{\rho}=|\phi\rangle\langle\phi| \quad \text { (One eigenvalue is 1) }\end{array}$

Rules in terms of density operators

Prepare $\left|\phi_{j}\right\rangle$ with probability p_{j}

$$
\hat{\rho} \equiv \sum_{j} p_{j}\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right|
$$

Prepare $\hat{\rho}_{j}$ with probability p_{j}

$$
\widehat{\rho}=\sum_{j} p_{j} \widehat{\rho}_{j}
$$

Unitary evolution

$$
\left|\phi_{\text {out }}\right\rangle=\hat{U}\left|\phi_{\text {in }}\right\rangle \quad \hat{\rho}_{\text {out }}=\hat{U} \widehat{\rho}_{\text {in }} \hat{U}^{\dagger}
$$

$$
\text { Hint: }\left|\phi_{\text {out }}\right\rangle\left\langle\phi_{\text {out }}\right|=\widehat{U}\left|\phi_{\text {in }}\right\rangle\left\langle\phi_{\text {in }}\right| \widehat{U}^{\dagger}
$$

Orthogonal measurement on basis $\left\{\left|a_{j}\right\rangle\right\}$

$$
\begin{array}{rlr}
P(j)= & \left|\left\langle a_{j} \mid \phi\right\rangle\right|^{2} & P(j)=\left\langle a_{j}\right| \widehat{\rho}\left|a_{j}\right\rangle \\
& \text { Hint: } P(j)=\left\langle a_{j} \mid \phi\right\rangle\left\langle\phi \mid a_{j}\right\rangle &
\end{array}
$$

Expectation value of an observable \hat{A}

$$
\langle\widehat{A}\rangle=\langle\phi| \widehat{A}|\phi\rangle \quad\langle\hat{A}\rangle=\operatorname{Tr}(\hat{A} \hat{\rho})
$$

$$
\text { Hint: }\langle\widehat{A}\rangle=\operatorname{Tr}(\widehat{A}|\phi\rangle\langle\phi|)
$$

Rules in terms of density operators

Independently prepared systems A and B

$$
|\Psi\rangle_{A B}=|\phi\rangle_{A} \otimes|\psi\rangle_{B} \quad \widehat{\rho}_{A B}=\widehat{\rho}_{A} \otimes \widehat{\rho}_{B}
$$

Local measurement on system B on basis $\left\{\left|b_{j}\right\rangle_{B}\right\}$

$$
\sqrt{p_{j}}\left|\phi_{j}\right\rangle_{A}={ }_{B}\left\langle b_{j}\right||\Phi\rangle_{A B} \quad \quad p_{j} \hat{\rho}_{A}^{(j)}={ }_{B}\left\langle b_{j}\right| \widehat{\rho}_{A B}\left|b_{j}\right\rangle_{B}
$$

Discarding system B

$$
\hat{\rho}_{A}=\operatorname{Tr}_{B}(|\Phi\rangle\langle\Phi|) \quad \hat{\rho}_{A}=\operatorname{Tr}_{B}\left[\hat{\rho}_{A B}\right]
$$

All the rules so far can be written in terms of density operators.

Which is the better description?

$\left\{p_{j},\left|\phi_{j}\right\rangle\right\}$
This looks natural. The system is in one of the pure states, but we just don't know. Quantum mechanics may treat just the pure states, and leave mixed states to statistical mechanics or probability theory.

$$
\hat{\rho} \equiv \sum_{j} p_{j}\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right| \sum \text { Best description }<
$$

All the rules so far can be written in terms of density operators.

Which description has one-to-one correspondence to physical states?
Theorem: Two states $\left\{p_{j},\left|\phi_{j}\right\rangle\right\}$ and $\left\{q_{k},\left|\psi_{k}\right\rangle\right\}$ with the same density operator are physically indistinguishable (hence are the same state).

Schmidt decomposition

Bipartite pure states have a very nice standard form.
Any orthonormal bases $\left\{\left|a_{i}\right\rangle_{A}\right\} \quad\left\{\left|b_{j}\right\rangle_{B}\right\}$

$$
|\Phi\rangle_{A B}=\sum_{i j} \alpha_{i j}\left|a_{i}\right\rangle_{A}\left|b_{j}\right\rangle_{B}
$$

We can always choose the two bases such that

$$
|\Phi\rangle_{A B}=\sum_{i} \sqrt{p_{i}}\left|a_{i}\right\rangle_{A}\left|b_{i}\right\rangle_{B} \quad \text { Schmidt decomposition }
$$

$\left\{\left|a_{i}\right\rangle_{A}\right\}$: Diagonalizes $\hat{\rho}_{A}=\operatorname{Tr}_{B}(|\Phi\rangle\langle\Phi|)$
Proof: $|\Phi\rangle_{A B}=\sum_{i}\left|a_{i}\right\rangle_{A}\left|\tilde{b}_{i}\right\rangle_{B} \quad\left|\tilde{b}_{i}\right\rangle_{B} \equiv{ }_{A}\left\langle a_{i}\right||\Phi\rangle_{A B}$ unnormalized

$$
\begin{aligned}
{ }_{B}\left\langle\widetilde{b}_{j} \mid \widetilde{b}_{i}\right\rangle_{B} & =\operatorname{Tr}\left[{ }_{A}\left\langle a_{i}\right||\Phi\rangle_{A B A B}\langle\Phi|\left|a_{j}\right\rangle_{A}\right] \\
& ={ }_{A}\left\langle a_{i}\right| \operatorname{Tr}_{B}\left[|\Phi\rangle_{A B A B}\langle\Phi|\right]\left|a_{j}\right\rangle_{A} \\
& ={ }_{A}\left\langle a_{i}\right| \hat{\rho}_{A}\left|a_{j}\right\rangle_{A}=p_{j} \delta_{i j} . \quad \sqrt{p_{j}}\left|b_{j}\right\rangle \equiv\left|\tilde{b}_{j}\right\rangle_{B}
\end{aligned}
$$

Entangled states and separable states

$|\phi\rangle_{A} \otimes|\psi\rangle_{B}$
$\sum_{k} \alpha_{k}\left|\phi_{k}\right\rangle_{A} \otimes\left|\psi_{k}\right\rangle_{B}$

Separable states
Entangled states
Are there any procedure to distinquish between the two classes?
\longrightarrow Schmidt decomposition $|\Phi\rangle_{A B}=\sum_{i=1}^{s} \sqrt{p_{i}}\left|a_{i}\right\rangle_{A}\left|b_{i}\right\rangle_{B}$

$$
p_{1} \geq p_{2} \geq \cdots \geq p_{s}>0
$$

Schmidt number
Number of nonzero coefficients in Schmidt decomposition
= The rank of the marginal density operators
'Symmetry' between A and B
$\hat{\rho}_{A}, \hat{\rho}_{B}$ The same set of eigenvalues

Separable states Schmidt number $=1$

$$
p_{1}=1
$$

Entangled states Schmidt number >1

$$
p_{1} \geq p_{2}>0
$$

$$
\operatorname{Rank}\left(\hat{\rho}_{A}\right)=\operatorname{Rank}\left(\hat{\rho}_{B}\right)=s
$$

$\left\{p_{j}\right\}$:The eigenvalues of the marginal density operators (the same for A and B)

Pure states with the same marginal state

$$
\begin{aligned}
& \hat{\rho}_{A}=\operatorname{Tr}_{B}(|\Phi\rangle\langle\Phi|) \\
& \hat{\rho}_{A}=\operatorname{Tr}_{B}(|\Psi\rangle\langle\Psi|)
\end{aligned}
$$

$$
|\Phi\rangle_{A B} \quad \longrightarrow \hat{\rho}_{A} \quad \text { Marginal state }
$$

Purification
(unique)

Pure Extension
(not unique)

Pure states with the same marginal state

Schmidt decomposition
Orthonormal basis $\left\{\left|a_{i}\right\rangle_{A}\right\}$ that diagonalizes $\hat{\rho}_{A}$

$$
\begin{aligned}
|\Psi\rangle_{A B} & =\sum_{i} \sqrt{p_{i}}\left|a_{i}\right\rangle_{A}\left|\mu_{i}\right\rangle_{B} \\
|\Phi\rangle_{A B} & =\sum_{i} \sqrt{p_{i}}\left|a_{i}\right\rangle_{A}\left|\nu_{i}\right\rangle_{B}
\end{aligned}
$$

$\left\{\left|\mu_{i}\right\rangle_{B}\right\} \quad$ Orthonormal basis

$$
\left|\nu_{i}\right\rangle_{B}=\hat{U}_{B}\left|\mu_{i}\right\rangle_{B}
$$ unitary

$$
|\Phi\rangle_{A B}=\left(\widehat{1}_{A} \otimes \widehat{U}_{B}\right)|\Psi\rangle_{A B}
$$

Pure states with the same marginal state

$$
\begin{aligned}
& \hat{\rho}_{A}=\operatorname{Tr}_{B}(|\Psi\rangle\langle\Psi|)=\operatorname{Tr}_{B}(|\Phi\rangle\langle\Phi|) \\
& \left||\Phi\rangle_{A B}\right. \\
& |\Phi\rangle_{A B}=\left(\hat{1}_{A} \otimes \hat{U}_{B}\right)|\Psi\rangle_{A B}
\end{aligned}
$$

Theorem: If $|\Psi\rangle_{A B}$ and $|\Phi\rangle_{A B}$ are purifications of the same state $\hat{\rho}_{A}$, state $|\Psi\rangle_{A B}$ can be physically converted to state $|\Phi\rangle_{A B}$ without touching system A.

Sealed move（封じ手）

Chess，Go，Shogi ．．．

Let us call it a day and shall we start over tomorrow，with Bob＇s move．
While they are（suppose to be）sleeping．．．
－Alice should not learn the sealed move．
－Bob should not alter the sealed move．

Sealed move

- Alice should not learn the sealed move.
- Bob should not alter the sealed move.

If there is no reliable safe available ...
(If there is no system out of both Alice's and Bob's reach ...)

Impossibility of unconditionally secure quantum bit commitment (Lo, Mayers)

Ensembles with the same density operator

$$
\begin{array}{ll}
\left\{p_{j},\left|\phi_{j}\right\rangle_{A}\right\} & \left|\phi_{j}\right\rangle_{A} \text { with probability } p_{j} \\
\left\{q_{k},\left|\psi_{k}\right\rangle_{A}\right\} & \left|\psi_{k}\right\rangle_{A} \text { with probability } q_{k}
\end{array}
$$

$$
\hat{\rho}_{A} \equiv \sum_{j} p_{j}\left|\phi_{j}\right\rangle_{A A}\left\langle\phi_{j}\right|=\sum_{k} q_{k}\left|\psi_{k}\right\rangle_{A A}\left\langle\psi_{k}\right|
$$

A scheme to realize the ensemble $\left\{p_{j},\left|\phi_{j}\right\rangle_{A}\right\}$

Prepare system AB in state

$$
|\Phi\rangle_{A B} \equiv \sum_{j} \sqrt{p_{j}}\left|\phi_{j}\right\rangle_{A}\left|b_{j}\right\rangle_{B}
$$

$\left\{\left|b_{j}\right\rangle_{B}\right\} \quad$ Orthonormal basis

$$
\hat{\rho}_{A}=\operatorname{Tr}_{B}(|\Phi\rangle\langle\Phi|)
$$

Measure system B on basis $\left\{\left|b_{j}\right\rangle_{B}\right\}$

$$
\sqrt{p_{j}}\left|\phi_{j}\right\rangle_{A}={ }_{B}\left\langle b_{j}\right||\Phi\rangle_{A B}
$$

$\left|\phi_{j}\right\rangle_{A}$ with probability p_{j}

Ensembles with the same density operator

Prepare system $A B$ in state

$$
|\Psi\rangle_{A B} \equiv \sum_{k} \sqrt{q_{k}}\left|\psi_{k}\right\rangle_{A}\left|b_{k}\right\rangle_{B}
$$

Apply unitary operation \hat{U}_{B} to system B

$$
|\Phi\rangle_{A B} \equiv \sum_{j} \sqrt{p_{j}}\left|\dot{\phi}_{j}\right\rangle_{A}\left|b_{j}\right\rangle_{B}
$$

Measure system B on basis $\left\{\left|b_{j}\right\rangle_{B}\right\}$

$$
|\Psi\rangle_{A B} \equiv \sum_{k} \sqrt{q_{k}}\left|\psi_{k}\right\rangle_{A}\left|b_{k}\right\rangle_{B}
$$

Measure system B on basis $\left\{\left|b_{k}\right\rangle_{B}\right\}$
$\left|\phi_{j}\right\rangle_{A}$ with probability p_{j}

$$
\begin{gathered}
\left\{p_{j},\left|\phi_{j}\right\rangle_{A}\right\} \\
\hat{\rho}_{A}=\operatorname{Tr}_{B}(|\Psi\rangle\langle\Psi|)=\operatorname{Tr}_{B}(|\Phi\rangle\langle\Phi|) \\
|\Phi\rangle_{A B}=\left(\widehat{1}_{A} \otimes \widehat{U}_{B}\right)|\Psi\rangle_{A B}
\end{gathered}
$$

Ensembles with the same density operator

Can Alice distinguish the two states even partially?

Bob can remotely decide which of the states the system A is in.

Bob can postpone his decision indefinitely.

Theorem: Two states $\left\{p_{j},\left|\phi_{j}\right\rangle\right\}$ and $\left\{q_{k},\left|\psi_{k}\right\rangle\right\}$ with the same density operator are physically indistinguishable (hence are the same state).

Density operator
\downarrow One-to-one

Ensembles with the same density operator: an alternative condition

$$
\left\{p_{j},\left|\phi_{j}\right\rangle_{A}\right\} \quad\left\{q_{k},\left|\psi_{k}\right\rangle_{A}\right\}
$$

A necessary and sufficient condition for

$$
\hat{\rho}_{A} \equiv \sum_{j} p_{j}\left|\phi_{j}\right\rangle_{A A}\left\langle\phi_{j}\right|=\sum_{k} q_{k}\left|\psi_{k}\right\rangle_{A A}\left\langle\psi_{k}\right|
$$

$$
\sqrt{p_{j}}\left|\phi_{j}\right\rangle_{A}=\sum_{k}{\underset{\text { Unitary matrix }}{u_{j k} \sqrt{q_{k}}}\left|\psi_{k}\right\rangle_{A}}_{\text {. }}
$$

Proof:

$$
\begin{gathered}
|\Phi\rangle_{A B} \equiv \sum_{j} \sqrt{p_{j}}\left|\phi_{j}\right\rangle_{A}\left|b_{j}\right\rangle_{B} \quad|\Psi\rangle_{A B} \equiv \sum_{k} \sqrt{q_{k}}\left|\psi_{k}\right\rangle_{A}\left|b_{k}\right\rangle_{B} \\
|\Phi\rangle_{A B}=\left(\widehat{1}_{A} \otimes \widehat{U}_{B}\right)|\Psi\rangle_{A B}
\end{gathered}
$$

$$
\begin{aligned}
& \sum_{j} \sqrt{p_{j}}\left|\phi_{j}\right\rangle_{A}\left|b_{j}\right\rangle_{B}=\sum_{k} \sqrt{q_{k}}\left|\psi_{k}\right\rangle_{A} \widehat{U}_{B}\left|b_{k}\right\rangle_{B} \\
& \sqrt{p_{j}}\left|\phi_{j}\right\rangle_{A}=\sum_{k} \frac{\left\langle b_{j}\right| \widehat{U}_{B}\left|b_{k}\right\rangle}{u_{j k}} \sqrt{q_{k}}\left|\psi_{k}\right\rangle_{A}
\end{aligned}
$$

3. Qubits

Pauli operators (Pauli matrices)

Bloch representation (Bloch sphere)

Orthogonal measurement

Unitary operation

Qubit

$\operatorname{dim} \mathcal{H}=2$
Take a standard basis $\{|0\rangle,|1\rangle\}$
Linear operator \widehat{A}
Matrix representation (for $\{|0\rangle,|1\rangle\}$)

$$
\widehat{A}=\left(\begin{array}{ll}
A_{00} & A_{01} \\
A_{10} & A_{11}
\end{array}\right) \quad \begin{aligned}
& A_{i j}=\langle i| \widehat{A}|j\rangle \\
& \widehat{A}=\sum_{i j} A_{i j}|i\rangle\langle j|
\end{aligned}
$$

4 complex parameters

$$
\widehat{A}=\alpha_{0} \widehat{\sigma}_{0}+\alpha_{1} \widehat{\sigma}_{1}+\alpha_{2} \widehat{\sigma}_{2}+\alpha_{3} \widehat{\sigma}_{3}
$$

Pauli operators (Pauli matrices)
Take a standard basis $\{|0\rangle,|1\rangle\}$

$$
\begin{array}{r}
\hat{1} \equiv\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right), \quad \hat{\sigma}_{x}=\widehat{\sigma}_{1} \equiv\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \\
\hat{\sigma}_{y}=\hat{\sigma}_{2} \equiv\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \widehat{\sigma}_{z}=\widehat{\sigma}_{3} \equiv\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
\end{array}
$$

Unitary and self-adjoint

$$
\begin{aligned}
& {\left[\hat{\sigma}_{i}, \widehat{\sigma}_{j}\right]=2 i \epsilon_{i j k} \widehat{\sigma}_{k} \rightarrow \cdots \rightarrow \text { Levi-Civita symbol }} \\
& \hat{\sigma}_{i} \hat{\sigma}_{j}+\widehat{\sigma}_{j} \hat{\sigma}_{i}=2 \delta_{i, j} \widehat{1} \\
& \operatorname{Tr}\left(\hat{\sigma}_{i}\right)=0, \operatorname{Tr}\left(\hat{\sigma}_{i} \hat{\sigma}_{j}\right)=2 \delta_{i, j} . \\
& i, j=1,2,3 \\
& \left\{\begin{array}{l}
\epsilon_{123}=\epsilon_{231}=\epsilon_{312}=1 \\
\epsilon_{321}=\epsilon_{213}=\epsilon_{132}=-1 \\
\text { Otherwise } \epsilon_{i j k}=0
\end{array}\right. \\
& \text { Einstein notation } \\
& \sum_{k} \text { is omitted. } \\
& {\left[\hat{\sigma}_{x}, \widehat{\sigma}_{y}\right]=2 i \widehat{\sigma}_{z}} \\
& \widehat{\sigma}_{x}^{2}=\hat{1} \\
& \left\{\hat{\sigma}_{x}, \hat{\sigma}_{z}\right\} \equiv \hat{\sigma}_{x} \hat{\sigma}_{z}+\hat{\sigma}_{z} \widehat{\sigma}_{x}=0 \\
& \operatorname{Tr}\left(\hat{\sigma}_{\mu} \widehat{\sigma}_{\nu}\right)=2 \delta_{\mu, \nu} \quad \text { 'Orthogonality' with respect to } \\
& \left(\mu, \nu=0,1,2,3 ; \sigma_{0} \equiv \widehat{1}\right) \quad(\widehat{A}, \widehat{B}) \equiv \operatorname{Tr}\left(\widehat{A}^{\dagger} \widehat{B}\right)
\end{aligned}
$$

Pauli operators (Pauli matrices)

$$
\begin{array}{r}
{\left[\hat{\sigma}_{i}, \hat{\sigma}_{j}\right]=2 i \epsilon_{i j k} \widehat{\sigma}_{k}} \\
\widehat{\sigma}_{i} \widehat{\sigma}_{j}+\widehat{\sigma}_{j} \widehat{\sigma}_{i}=2 \delta_{i, j} \hat{1} \\
\operatorname{Tr}\left(\hat{\sigma}_{i}\right)=0, \operatorname{Tr}\left(\hat{\sigma}_{i} \widehat{\sigma}_{j}\right)=2 \delta_{i, j} .
\end{array}
$$

Linear operator $\hat{A} \quad 4$ complex parameters $\left(P_{0}, P_{x}, P_{y}, P_{z}\right)$

$$
\begin{gathered}
\widehat{A}=\frac{1}{2}\left(P_{0} \widehat{1}+\boldsymbol{P} \cdot \hat{\boldsymbol{\sigma}}\right)=\frac{1}{2}\left(\begin{array}{cc}
P_{0}+P_{z} & P_{x}-i P_{y} \\
P_{x}+i P_{y} & P_{0}-P_{z}
\end{array}\right) \\
\boldsymbol{P}=\left(P_{x}, P_{y}, P_{z}\right) \\
\hat{\boldsymbol{\sigma}}=\left(\hat{\sigma}_{x}, \hat{\sigma}_{y}, \hat{\sigma}_{z}\right) \\
P_{0}=\operatorname{Tr}(\widehat{A}) \quad \boldsymbol{P}=\operatorname{Tr}(\hat{\boldsymbol{\sigma}} \widehat{A})
\end{gathered}
$$

Pauli operators (Pauli matrices)

$$
\widehat{A}=\frac{1}{2}\left(P_{0} \hat{1}+\boldsymbol{P} \cdot \hat{\boldsymbol{\sigma}}\right)=\frac{1}{2}\left(\begin{array}{cc}
P_{0}+P_{z} & P_{x}-i P_{y} \\
P_{x}+i P_{y} & P_{0}-P_{z}
\end{array}\right)
$$

\hat{A} is self-adjoint. $\longleftrightarrow P_{0}$ and \boldsymbol{P} are real.
Eigenvalues λ_{+}, λ_{-}

$$
\begin{aligned}
\operatorname{det}(\widehat{A}) & =\lambda_{+} \lambda_{-}=\frac{1}{4}\left(P_{0}^{2}-|\boldsymbol{P}|^{2}\right) \\
\operatorname{Tr}(\widehat{A}) & =\lambda_{+}+\lambda_{-}=P_{0} \\
& \downarrow \\
\lambda_{ \pm}= & \left(P_{0} \pm|\boldsymbol{P}|\right) / 2
\end{aligned}
$$

\hat{A} is positive. $\longleftrightarrow P_{0}$ and \boldsymbol{P} are real, $P_{0} \geq|\boldsymbol{P}|$

Bloch representation (Bloch sphere)

Density operator
Positive \& Unit trace

$$
P_{0} \geq|\boldsymbol{P}| \quad P_{0}=1
$$

$$
\hat{\rho}=\frac{1}{2}(\hat{1}+\boldsymbol{P} \cdot \hat{\sigma}) \quad|\boldsymbol{P}| \leq 1
$$

Density operator for a qubit system

Pure states

$$
\hat{\rho}_{j}=\frac{1}{2}\left(\hat{1}+P_{j} \cdot \hat{\sigma}\right)
$$

$$
\begin{aligned}
& \begin{aligned}
\left|\left\langle\phi_{1} \mid \phi_{2}\right\rangle\right|^{2} & =\operatorname{Tr}\left[\hat{\rho}_{1} \hat{\rho}_{2}\right] \\
& =\frac{1+\boldsymbol{P}_{1} \cdot \boldsymbol{P}_{2}}{2}=\cos ^{2} \frac{\theta}{2}
\end{aligned} \\
& \text { Orthogonal states } \longleftrightarrow \theta=\pi
\end{aligned}
$$

$$
\boldsymbol{P}_{1} \cdot \boldsymbol{P}_{2}=\cos \theta
$$

Orthonormal basis \longleftrightarrow A line through the origin

Orthogonal measurement

Orthonormal basis $\left\{\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle\right\} \longleftrightarrow A$ line through the origin

$$
\begin{aligned}
& P(1)=\left\langle\phi_{1}\right| \hat{\rho}\left|\phi_{1}\right\rangle=\operatorname{Tr}\left(\hat{\rho}_{1} \hat{\rho}\right)=\frac{1+\boldsymbol{P}_{1} \cdot \boldsymbol{P}}{2} \\
& P(2)=\frac{1-\boldsymbol{P}_{1} \cdot \boldsymbol{P}}{2}
\end{aligned}
$$

Example
Measurement of observable $\widehat{\sigma}_{z}$

Unitary operation

$|\psi\rangle, e^{i \theta}|\psi\rangle \quad$ The same physical state
$\widehat{U}, e^{i \theta} \widehat{U} \quad$ The same physical operation
$\operatorname{det}\left(e^{i \theta} \widehat{U}\right)=e^{2 i \theta} \operatorname{det} \widehat{U}$
group $\quad S U(2):$ Set of \hat{U} with $\operatorname{det} \hat{U}=1 \quad \hat{U} \in S U(2) \leftrightarrow-\hat{U} \in S U(2)$
(2 to 1 correspondence to the physical unitary operations)

$$
\begin{aligned}
\hat{U}=\exp [i \widehat{S}]_{\text {Self-adjoint, traceless }} & \widehat{U}
\end{aligned}=\left(\begin{array}{cc}
e^{i \varphi / 2} & 0 \\
0 & e^{-i \varphi / 2}
\end{array}\right)
$$

We can parameterize the elements of $\operatorname{SU}(2)$ as

$$
\widehat{U}(\boldsymbol{n}, \varphi) \equiv \exp [-i(\varphi / 2) \underset{\text { Unit vector }}{\boldsymbol{n} \cdot \hat{\sigma}]}
$$

Unitary operation

$$
\hat{\rho}=\frac{1}{2}(\hat{1}+\boldsymbol{P} \cdot \hat{\boldsymbol{\sigma}}) \xrightarrow{\widehat{U}(\boldsymbol{n}, \varphi)} \hat{\rho}^{\prime}=\frac{1}{2}\left(\hat{1}+\boldsymbol{P}^{\prime} \cdot \hat{\boldsymbol{\sigma}}\right)
$$

How does the Bloch vector changes?
Infinitesimal change $\widehat{U}(\boldsymbol{n}, \delta \varphi) \sim \widehat{1}-i(\delta \varphi / 2) \boldsymbol{n} \cdot \hat{\boldsymbol{\sigma}}$

$$
\begin{aligned}
\delta \boldsymbol{P} & \equiv \boldsymbol{P}^{\prime}-\boldsymbol{P}=\operatorname{Tr}\left[\hat{\boldsymbol{\sigma}} \hat{\rho}^{\prime}\right]-\operatorname{Tr}[\hat{\boldsymbol{\sigma}} \widehat{\rho}] \\
& =\operatorname{Tr}\left[\hat{\boldsymbol{\sigma}} \widehat{U}(\boldsymbol{n}, \delta \varphi) \widehat{\rho} \widehat{U}^{\dagger}(\boldsymbol{n}, \delta \varphi)\right]-\operatorname{Tr}\left[\hat{\boldsymbol{\sigma}}^{\hat{\rho}}\right] \\
& =\operatorname{Tr}\left[\widehat{U}^{\dagger}(\boldsymbol{n}, \delta \varphi) \hat{\boldsymbol{\sigma}} \widehat{U}(\boldsymbol{n}, \delta \varphi) \hat{\rho}\right]-\operatorname{Tr}[\hat{\boldsymbol{\sigma}} \widehat{\rho}] \\
& \sim \operatorname{Tr}\{(i \delta \varphi / 2)[(\boldsymbol{n} \cdot \hat{\boldsymbol{\sigma}}), \widehat{\boldsymbol{\sigma}}] \hat{\rho}\}=-\delta \varphi \operatorname{Tr}\left[n_{i} \epsilon_{i j k} \widehat{\sigma}_{k} \hat{\rho}\right] \\
& =\delta \varphi \operatorname{Tr}[(\boldsymbol{n} \times \hat{\boldsymbol{\sigma}}) \hat{\rho}]=\delta \varphi \boldsymbol{n} \times \boldsymbol{P} .
\end{aligned}
$$

Rotation around axis n by angle $\delta \varphi$

Unitary operation

$$
\begin{aligned}
& \hat{U} \in S U(2) \\
& \qquad \hat{U}=\exp [-i(\varphi / 2) \boldsymbol{n} \cdot \hat{\boldsymbol{\sigma}}]
\end{aligned}
$$

Rotation around axis n by angle

Examples

$\hat{\sigma}_{z}: \pi$ rotation around z axis $\hat{\sigma}_{x}: \pi$ rotation around x axis

$$
\hat{H}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

Hadamard transform

4. Power of an ancillary system

Kraus representation (Operator-sum rep.)
Generalized measurement
Unambiguous state discrimination
Quantum operation (Quantum channel, CPTP map)
Relation between quantum operations and bipartite states
A maximally entangled state and relative states
Size of the auxiliary system
Kraus operators for the same CPTP map
What can we do in principle?

Power of an ancilla system

Basic operations

 Unitary operations Orthogonal measurements
An auxiliary system (ancilla)

Power of an ancilla system

Basic operations

 Unitary operations Orthogonal measurements
An auxiliary system (ancilla)

Power of an ancilla system

Kraus representation (Operator-sum rep.)

$$
\begin{aligned}
p_{j} \hat{\rho}_{\text {out }}^{(j)} & ={ }_{E}\langle j| \widehat{U}\left(\hat{\rho} \otimes|0\rangle_{E E}\langle 0|\right) \widehat{U}^{\dagger}|j\rangle_{E} \\
& \downarrow \widehat{M}^{(j)} \equiv{ }_{E}\langle j| \widehat{U}|0\rangle_{E} \text { Kraus operators } \\
p_{j} \hat{\rho}_{\text {out }}^{(j)} & =\widehat{M}^{(j)} \widehat{\rho}^{\left(\widehat{M}^{(j) \dagger}\right.} \text { with } \sum_{j} \hat{M}^{(j) \dagger} \hat{M}^{(j)}=\widehat{1}
\end{aligned}
$$

Representation with no reference to the ancilla system

$$
\begin{aligned}
\sum_{j} \hat{M}^{(j) \dagger} \hat{M}^{(j)} & =\sum_{j}{ }_{E}\langle 0| \widehat{U}^{\dagger}|j\rangle_{E E}\langle j| \widehat{U}|0\rangle_{E} \\
& ={ }_{E}\langle 0| \hat{U}^{\dagger} \hat{U}|0\rangle_{E} \\
& ={ }_{E}\langle 0| \widehat{1}_{A} \otimes \widehat{1}_{E}|0\rangle_{E} \\
& =\widehat{1}_{A}
\end{aligned}
$$

Kraus operators \longrightarrow Physical realization

$$
\begin{aligned}
& p_{j} \hat{\rho}_{\text {out }}^{(j)}={ }_{E}\langle j| \widehat{U}\left(\hat{\rho} \otimes|0\rangle_{E E}\langle 0|\right) \hat{U}^{\dagger}|j\rangle_{E} \\
& \quad \uparrow \mid \widehat{M}^{(j)} \equiv{ }_{E}\langle j| \widehat{U}|0\rangle_{E} \text { Kraus operators } \\
& p_{j} \hat{\rho}_{\text {out }}^{(j)}=\hat{M}^{(j)} \hat{\rho} \hat{M}^{(j) \dagger} \text { with } \sum_{j} \hat{M}^{(j) \dagger} \hat{M}^{(j)}=\widehat{1}
\end{aligned}
$$

Arbitrary set $\left\{\hat{M}^{(j)}\right\}$ satisfying $\sum_{j} \hat{M}^{(j) \dagger} \hat{M}^{(j)}=\hat{1}$
$|\phi\rangle_{A} \otimes|0\rangle_{E} \mapsto \sum_{j} \hat{M}^{(j)}|\phi\rangle_{A} \otimes|j\rangle_{E}$ is linear. preserves inner products.

$$
\left(\begin{array}{l}
\begin{array}{l}
\text { For any two states }|\phi\rangle_{A} \text { and }|\psi\rangle_{A}, \\
\left(\sum_{j^{\prime}} \hat{M}^{\left(j^{\prime}\right)}|\psi\rangle_{A} \otimes\left|j^{\prime}\right\rangle_{E}\right)^{\dagger}\left(\sum_{j} \hat{M}^{(j)}|\phi\rangle_{A} \otimes|j\rangle_{E}\right) \\
={ }_{A}\langle\psi \mid \phi\rangle_{A}=\left(|\psi\rangle_{A} \otimes|0\rangle_{E}\right)^{\dagger}\left(|\phi\rangle_{A} \otimes|0\rangle_{E}\right) .
\end{array} .
\end{array}\right.
$$

There exists a unitary satisfying
$\hat{U}\left(|\phi\rangle_{A} \otimes|0\rangle_{E}\right)=\sum_{j} \widehat{M}^{(j)}|\phi\rangle_{A} \otimes|j\rangle_{E}$

Generalized measurement

$$
\begin{aligned}
& p_{j} \hat{\rho}_{\text {out }}^{(j)}=\hat{M}^{(j)} \widehat{\rho} \hat{M}^{(j) \dagger} \text { with } \sum_{j} \hat{M}^{(j) \dagger} \hat{M}^{(j)}=\hat{1} \\
& \hat{\rho} \longrightarrow \longrightarrow \xrightarrow{p_{j}} \boldsymbol{j} \\
& p_{j}=\operatorname{Tr}\left[\hat{M}^{(j)} \hat{\rho} \widehat{M}^{(j) \dagger}\right]=\operatorname{Tr}\left[\widehat{F}^{(j)} \widehat{\rho}\right] \\
& \hat{F}^{(j)} \equiv \hat{M}^{(j) \dagger} \underset{\text { positive }}{\hat{M}^{(j)}} \geq 0 \\
& p_{j}=\operatorname{Tr}\left[\widehat{F}^{(j)} \widehat{\rho}\right] \text { with } \sum_{j} \widehat{F}^{(j)}=\widehat{1} \\
& \left\{\widehat{F}^{(j)}\right\} \text { POVM } \\
& \text { Positive operator valued measure }
\end{aligned}
$$

Generalized measurement

$$
p_{j}=\operatorname{Tr}\left[\widehat{F}^{(j)} \hat{\rho}\right] \text { with } \sum_{j} \widehat{F}^{(j)}=\widehat{1}
$$

Examples
Orthogonal measurement on basis $\left\{\left|a_{j}\right\rangle\right\}$

$$
\hat{F}^{(j)}=\left|a_{j}\right\rangle\left\langle a_{j}\right|
$$

Trine measurement on a qubit

$$
\begin{gathered}
\widehat{F}^{(j)}=\frac{2}{3}\left|b_{j}\right\rangle\left\langle b_{j}\right| \\
\left|b_{j}\right\rangle\left\langle b_{j}\right|=\frac{1}{2}\left(\widehat{1}+\boldsymbol{P}_{j} \cdot \hat{\boldsymbol{\sigma}}\right) \\
\sum_{j} \boldsymbol{P}_{j}=0 \longrightarrow \sum_{j} \widehat{F}^{(j)}=\widehat{1}
\end{gathered}
$$

Distinguishing two nonorthogonal states

$$
\left\langle\phi_{0} \mid \phi_{1}\right\rangle=s>0
$$

Minimum-error discrimination

Unambiguous state discrimination

Unambiguous state discrimination

Orthogonal measurement

$$
\left\{\left|\phi_{0}\right\rangle,\left|\phi_{0}^{\perp}\right\rangle\right\}
$$

2 (I don't know) (surely) 1
$\left\{\left|\phi_{1}\right\rangle,\left|\phi_{1}^{\perp}\right\rangle\right\}$

If the initial state is $\left|\phi_{0}\right\rangle$
it always fails.
If the initial state is $\left|\phi_{1}\right\rangle$
it fails with prob. $\left|\left\langle\phi_{0} \mid \phi_{1}\right\rangle\right|^{2}=s^{2}$

Unambiguous state discrimination

Generalized measurement

$$
\begin{aligned}
& \hat{F}_{0}:=\mu\left|\phi_{1}^{\perp}\right\rangle\left\langle\phi_{1}^{\perp}\right| \\
& \widehat{F}_{1}:=\mu\left|\phi_{0}^{\perp}\right\rangle\left\langle\phi_{0}^{\perp}\right| \\
& \widehat{F}_{2}:=\widehat{1}-\widehat{F}_{0}-\widehat{F}_{1}
\end{aligned}
$$

The only constraint on μ comes from $\widehat{F}_{2} \geq 0$

$$
\left\langle\phi_{0}^{\perp} \mid \phi_{1}^{\perp}\right\rangle=s \quad\left(\hat{F}_{0}+\widehat{F}_{1} \leq \hat{1}\right)
$$

$$
\left(\widehat{F}_{0}+\widehat{F}_{1}\right)\left(\left|\phi_{0}^{\perp}\right\rangle \pm\left|\phi_{1}^{\perp}\right\rangle\right)
$$

$$
=\mu(1 \pm s)\left(\left|\phi_{0}^{\perp}\right\rangle \pm\left|\phi_{1}^{\perp}\right\rangle\right)
$$

The optimum: $\mu=(1+s)^{-1}$

$$
\begin{aligned}
p_{\text {fail }} & =1-\frac{\mu}{2}\left|\left\langle\phi_{0} \mid \phi_{1}^{\perp}\right\rangle\right|^{2}-\frac{\mu}{2}\left|\left\langle\phi_{1} \mid \phi_{\mathrm{D}}^{\perp}\right\rangle\right|^{2} \\
& =1-\mu\left(1-s^{2}\right)
\end{aligned}
$$

$$
p_{\text {fail }}=s
$$

Quantum operation (Quantum channel, CPTP map)

$$
\begin{aligned}
& p_{j} \hat{\rho}_{\text {out }}^{(j)}=\hat{M}^{(j)} \widehat{\rho} \hat{M}^{(j) \dagger} \text { with } \sum_{j} \hat{M}^{(j) \dagger} \hat{M}^{(j)}=\hat{1} \\
& \hat{\rho} \longrightarrow \longrightarrow \text { (fict } \\
& \hat{\rho}_{\text {out }}=\sum_{j} p_{j} \hat{\rho}_{\text {out }}^{(j)}=\sum_{j} \widehat{M}^{(j)} \widehat{\rho} \widehat{M}^{(j) \dagger} \\
& =\sum_{j E}\langle j| \hat{U}\left(\hat{\rho} \otimes|0\rangle_{E E}\langle 0|\right) \hat{U}^{\dagger}|j\rangle_{E} \\
& =\operatorname{Tr}_{E}\left[\hat{U}\left(\hat{\rho} \otimes|0\rangle_{E E}\langle 0|\right) \hat{U}^{\dagger}\right] \\
& \hat{\rho}_{\text {out }}=\sum_{j} \widehat{M}^{(j)} \widehat{\rho} \widehat{M}^{(j) \dagger} \\
& =\operatorname{Tr}_{E}\left[\hat{U}\left(\hat{\rho} \otimes|0\rangle_{E E}\langle 0|\right) \hat{U}^{\dagger}\right]
\end{aligned}
$$

$$
\hat{\rho}_{\text {out }}=\mathcal{C}(\hat{\rho}) \quad \begin{aligned}
& \text { completely-positive trace-preserving map } \\
& \text { CPTP map }
\end{aligned}
$$

Positive maps and completely-positive maps

Linear map
$\hat{\rho}_{A} \mapsto \mathcal{C}_{A}\left(\hat{\rho}_{A}\right)$
"positive": $\mathcal{C}_{A}\left(\hat{\rho}_{A}\right)$ is positive whenever $\hat{\rho}_{A}$ is positive

"completely-positive": $\left(\mathcal{C}_{A} \otimes \mathcal{I}_{B}\right)\left(\hat{\rho}_{A B}\right)$ is positive whenever $\hat{\rho}_{A B}$ is positive

Maximally entangled states

$$
\operatorname{dim} \mathcal{H}_{A}=\operatorname{dim} \mathcal{H}_{B}=d
$$

Orthonormal bases

$$
\begin{aligned}
&\left\{|k\rangle_{A}\right\}_{k=1,2, \ldots, d}\left\{|k\rangle_{B}\right. \\
& \sum_{k=1}^{d} \frac{1}{\sqrt{d}}|k\rangle_{A} \otimes|k\rangle_{B}
\end{aligned}
$$

$$
\left\{|k\rangle_{B}\right\}_{k=1,2, \ldots, d}
$$

Maximally entangled state

Relative states

 $\operatorname{dim} \mathcal{H}_{A}=\operatorname{dim} \mathcal{H}_{B}=d$Fix a maximally entangled state
$|\Phi\rangle_{A B}=\sum_{k=1}^{d} \frac{1}{\sqrt{d}}|k\rangle_{A}|k\rangle_{B}$

Relative states

$$
\begin{aligned}
|\phi\rangle_{A} & =\sum_{k} \alpha_{k}|k\rangle_{A} \longleftrightarrow\left|\phi^{*}\right\rangle_{B}
\end{aligned}=\sum_{k} \overline{\alpha_{k}}|k\rangle_{B}, ~=\sqrt{d}_{A}\langle\phi||\Phi\rangle_{A B} .
$$

Quantum operation and bipartite state

We can remotely prepare system A in any state with a nonzero success probability.
At any time

$\widehat{\sigma}_{A R} \equiv\left(\mathcal{C}_{A} \otimes \mathcal{I}_{R}\right)(|\Phi\rangle\langle\Phi|)$
If this single state is known ...
$\frac{1}{d} \mathcal{C}_{A}(|\phi\rangle\langle\phi|)={ }_{B}\left\langle\phi^{*}\right| \widehat{\sigma}_{A R}\left|\phi^{*}\right\rangle_{B} \quad$ Output for every input state is known!

Size of the ancilla system

$\operatorname{dim} \mathcal{H}_{E}=\left(\operatorname{dim} \mathcal{H}_{A}\right)^{2}$ is enough.

$$
|\xi\rangle_{A R E} \equiv \hat{U}\left(|\Phi\rangle_{A R} \otimes|0\rangle_{E}\right)
$$

$\operatorname{dim}\left(\operatorname{Ran} \hat{\rho}_{E}\right)=\operatorname{dim}\left(\operatorname{Ran} \hat{\rho}_{A R}\right) \leq \operatorname{dim} \mathcal{H}_{A R}=d^{2}$
$\operatorname{Ran} \widehat{\sigma}_{E} \subset \operatorname{Ran} \hat{\rho}_{E}$

Kraus operators for the same CPTP map

Kraus operators for the same CPTP map

$$
\begin{aligned}
& \hat{\rho}_{\text {out }}=\sum_{j} \hat{M}^{(j)} \hat{\rho} \hat{M}^{(j) \dagger} \underset{\leftrightarrows}{\text { same }} \hat{\rho}_{\text {out }}=\sum_{k} \hat{N}^{(k)} \hat{\rho} \widehat{N}^{(k) \dagger} \\
& \sum_{k}^{\Uparrow} \widehat{N}^{(k)}|\Phi\rangle\langle\Phi| \widehat{N}^{(k) \dagger}=\widehat{\sigma}_{A R} \\
& \sum_{j} \widehat{M}^{(j)}|\Phi\rangle\langle\Phi| \widehat{M}^{(j) \dagger}=\sum_{k} \hat{N}^{(k)}|\Phi\rangle\langle\Phi| \widehat{N}^{(k) \dagger}=\widehat{\sigma}_{A R} \\
& \text { I! } \\
& \hat{M}^{(j)}|\Phi\rangle_{A R}=\sum_{k} u_{j k} \widehat{N}^{(k)}|\Phi\rangle_{A R} \\
& \text { Apply }{ }_{R}\left\langle\phi^{*}\right| \\
& \hat{M}^{(j)}|\phi\rangle_{A}=\sum_{k} u_{j k} \hat{N}^{(k)}|\phi\rangle_{A} \\
& \widehat{M}^{(j)}=\sum_{k} u_{j k} \widehat{N}^{(k)}
\end{aligned}
$$

What can we do in principle?

We have seen what we can (at least) do by using an ancilla system.

$$
p_{j} \hat{\rho}_{\text {out }}^{(j)}=\hat{M}^{(j)} \widehat{\rho} \widehat{M}^{(j) \dagger} \text { with } \sum_{j} \hat{M}^{(j) \dagger} \widehat{M}^{(j)}=\hat{1}
$$

We also want to know what we cannot do.

Black box with classical and quantum output

What can we do in principle?

These should tell us everything about the black box.
$p_{\phi \mid m} \hat{\rho}_{A}^{(m, \phi)}={ }_{R}\left\langle\phi^{*}\right| \hat{\rho}_{A R}^{(m)}\left|\phi^{*}\right\rangle_{R}$
$p_{m \mid \phi}=\frac{p_{m, \phi}}{p_{\phi}}=p_{m, \phi} d=p_{\phi \mid m} p_{m} d \quad p_{m \mid \phi} \boldsymbol{m}$

Some algebras...

$$
\begin{aligned}
& \int p_{\phi \mid m} \hat{\rho}_{A}^{(m, \phi)}={ }_{R}\left\langle\phi^{*}\right| \hat{\rho}_{A R}^{(m)}\left|\phi^{*}\right\rangle_{R} \quad p_{m \mid \phi} m \\
& p_{m \mid \phi}=p_{\phi \mid m} p_{m} d \\
& A \rightarrow \longrightarrow \hat{\rho}_{A}^{(m, \phi)} \\
& p_{m \mid \phi} \hat{\rho}_{A}^{(m, \phi)}=\sqrt{d}_{R}\left\langle\phi^{*}\right| p_{m} \hat{\rho}_{A R}^{(m)}\left|\phi^{*}\right\rangle_{R} \sqrt{d} \\
& p_{m} \rho_{A R}^{(m)}=\sum_{k}\left|\Psi_{k, m}\right\rangle_{A R} A R\left\langle\left.\Psi_{k, m}\right|_{\text {(normalized states) }}\right. \\
& { }_{R}\left\langle\phi^{*}\right|=\sqrt{d}{ }_{A R}\langle\Phi||\phi\rangle_{A} \\
& \longrightarrow \sqrt{d}_{R}\left\langle\phi^{*}\right|\left|\Psi_{k, m}\right\rangle_{A R}=\hat{M}^{(k, m)}|\phi\rangle_{A} \\
& p_{m \mid \phi} \rho_{A}^{(m, \phi)}=\sum_{k} \widehat{M}^{(k, m)}|\phi\rangle_{A A}\langle\phi| \widehat{M}^{(k, m) \dagger} \\
& \text { Applying } \\
& \sum_{m} \operatorname{Tr} \longrightarrow \sum_{m, k} A^{\langle }\langle\phi| \widehat{M}^{(k, m) \dagger} \widehat{M}^{(k, m)}|\phi\rangle_{A}=1 \longrightarrow \sum_{m, k} \hat{M}^{(k, m) \dagger} \hat{M}^{(k, m)}=\hat{1}_{A}
\end{aligned}
$$

This is what we can do in principle p_{m}, m

Any physical process should be represented in the following form:
$p_{m} \widehat{\rho}_{\text {out }}^{(m)}=\sum_{k} \hat{M}^{(k, m)} \hat{\rho} \hat{M}^{(k, m) \dagger} \sum_{m, k} \hat{M}^{(k, m) \dagger} \hat{M}^{(k, m)}=\widehat{1}_{A}$

Universal NOT? Spin reversal ?

Bloch vector

$$
\boldsymbol{P} \rightarrow-\boldsymbol{P}
$$

linear map $\hat{\rho} \rightarrow \mathcal{C}(\widehat{\rho})$

$$
\begin{array}{cl}
\mathcal{C}(\hat{1})=\hat{1} & \mathcal{C}\left(\hat{\sigma}_{x}\right)=-\hat{\sigma}_{x} \\
\mathcal{C}\left(\hat{\sigma}_{y}\right)=-\hat{\sigma}_{y} & \mathcal{C}\left(\hat{\sigma}_{z}\right)=-\widehat{\sigma}_{z} \\
\end{array}
$$

$$
\begin{aligned}
& \mathcal{C}(|0\rangle\langle 0|)=|1\rangle\langle 1| \\
& \mathcal{C}(|1\rangle\langle 1|)=|0\rangle\langle 0| \\
& \mathcal{C}(|0\rangle\langle 1|)=-|0\rangle\langle 1| \\
& \mathcal{C}(|1\rangle\langle 0|)=-|1\rangle\langle 0|
\end{aligned}
$$

This map is positive, but...

Universal NOT? Spin reversal?

$$
\begin{aligned}
& \mathcal{C}(|0\rangle\langle 0|)=|1\rangle\langle 1| \\
& \mathcal{C}(|1\rangle\langle 1|)=|0\rangle\langle 0| \\
& \mathcal{C}(|0\rangle\langle 1|)=-|0\rangle\langle 1| \\
& \mathcal{C}(|1\rangle\langle 0|)=-|1\rangle\langle 0| \\
& 2|\Phi\rangle\langle\Phi|=(|00\rangle+|11\rangle)(\langle 00|+\langle 11|) \\
& =|00\rangle\langle 00|+|00\rangle\langle 11|+|11\rangle\langle 00|+|11\rangle\langle 11| \\
& 2 \widehat{\rho}_{A R} \equiv 2(\mathcal{C} \otimes \mathcal{I})|\Phi\rangle\langle\Phi|= \\
& =|10\rangle\langle 10|-|00\rangle\langle 11|-|11\rangle\langle 00|+|01\rangle\langle 01|
\end{aligned}
$$

\longrightarrow Universal NOT is impossible.

5. Distinguishability

Trace distance

Trace norm and polar decomposition
Minimum-error discrimination
Fidelity
Local operations on a maximally entangled state
Fidelity and distinguishability
Fidelity and trace distance
No-cloning theorem

Distinguishability

Measure of distinguishability between two states $\quad D(\hat{\rho}, \widehat{\sigma})$
A quantity describing how we can distinguish between the two states in principle.

The distinguishability should never be improved by a quantum operation.

Monotonicity under quantum operations

Distinguishability

Measure of disting
A quantity des between the t

$$
D(\hat{\rho}, \widehat{\sigma}) \geq D(\chi(\widehat{\rho}), \chi(\widehat{\sigma}))
$$

Trace norm

$$
\|\widehat{A}\|=\|\widehat{A}\|_{1} \equiv \operatorname{Tr}|\widehat{A}|=\operatorname{Tr} \sqrt{\widehat{A}^{\dagger} \widehat{A}}
$$

In particular, when \hat{A} is normal (diagonalizable),

$$
\operatorname{Tr}(|\widehat{A}|)=\sum_{j}\left|\lambda_{j}\right| \quad \lambda_{j}: \text { Eigenvalues of } \hat{A}
$$

$\|\widehat{A}\|=\max _{\hat{U}}|\operatorname{Tr}(\widehat{A} \widehat{U})|$

$$
\begin{gathered}
|\widehat{A}|=\sum_{j} \nu_{j}|j\rangle\langle j| \quad\|\hat{A}\|=\sum_{j} \nu_{j} \\
\operatorname{Tr}(\hat{A} \widehat{U})=\operatorname{Tr}(\widehat{V}|\widehat{A}| \widehat{U})=\sum_{j} \nu_{j}\langle j| \widehat{U} \widehat{V}|j\rangle \\
|\langle j| \widehat{U} \widehat{V}| j\rangle \mid \leq 1 \\
\left.\widehat{U}=\widehat{V}^{\dagger} \rightarrow|\langle j| \widehat{U} \widehat{V}| j\right\rangle \mid=1
\end{gathered}
$$

Polar decomposition
number $\quad \alpha=e^{i \theta}|\alpha|$
linear operator $\underset{\text { unitary }}{\substack{a}} \underset{\text { positive }}{\widehat{V}}|\widehat{A}|$
$|\widehat{A}| \equiv \sqrt{\hat{A}^{\dagger} \widehat{A}}$
$\widehat{V} \equiv \widehat{A}|\widehat{A}|^{-1}$
(when \hat{A} is invertible)
$\hat{V}^{\dagger} \widehat{V}=|\widehat{A}|^{-1} \widehat{A}^{\dagger} \widehat{A}|\widehat{A}|^{-1}=\widehat{16}$

Trace distance

$$
\frac{1}{2}\|\hat{\rho}-\widehat{\sigma}\|
$$

Zero when $\hat{\rho}=\hat{\sigma} \quad$ (the same state)
Unity when $\hat{\rho} \hat{\sigma}=0 \quad$ (perfectly distinguishable)
Monotonicity?

$$
\|\hat{\rho}-\hat{\sigma}\| \geq\|\chi(\hat{\rho})-\chi(\hat{\sigma})\|
$$

-Attach an ancilla $\quad \hat{\rho} \rightarrow \hat{\rho} \otimes \hat{\tau} \quad \hat{\sigma} \rightarrow \hat{\sigma} \otimes \hat{\tau}$

$$
\begin{array}{r}
\operatorname{Tr}|\hat{A} \otimes \hat{B}|=\operatorname{Tr}\left(\sqrt{\hat{A}^{\dagger} \widehat{A}} \otimes \sqrt{\hat{B}^{\dagger} \hat{B}}\right)=\operatorname{Tr}|\hat{A}| \operatorname{Tr}|\hat{B}| \\
\|\hat{\rho} \otimes \hat{\tau}-\hat{\sigma} \otimes \hat{\tau}\|=\|(\hat{\rho}-\widehat{\sigma}) \otimes \hat{\tau}\|=\|\hat{\rho}-\hat{\sigma}\| \times\|\hat{\tau}\|=\|\hat{\rho}-\widehat{\sigma}\|
\end{array}
$$

-Apply a unitary

$$
\hat{\rho} \rightarrow \hat{U} \widehat{\rho} \widehat{U}^{\dagger} \quad \hat{\sigma} \rightarrow \hat{U} \hat{\sigma} \widehat{U}^{\dagger}
$$

$$
\max _{\widehat{V}}|\operatorname{Tr}(\widehat{A} \hat{V})|=\max _{\widehat{V}}\left|\operatorname{Tr}\left(\widehat{U} \widehat{A} \hat{U}^{\dagger} \widehat{V}\right)\right|
$$

$$
\left\|\widehat{U} \widehat{\rho} \widehat{U}^{\dagger}-\widehat{U} \hat{\sigma} \widehat{U}^{\dagger}\right\|=\left\|\widehat{U}(\hat{\rho}-\widehat{\sigma}) \widehat{U}^{\dagger}\right\|=\|\hat{\rho}-\widehat{\sigma}\|
$$

 $\max _{\widehat{V}_{A}}\left|\operatorname{Tr}\left[\left(\operatorname{Tr}_{R} \hat{\rho}-\operatorname{Tr}_{R} \hat{\sigma}\right) \hat{V}_{A}\right]\right|=\max _{\widehat{V}_{A}}\left|\operatorname{Tr}\left[(\hat{\rho}-\hat{\sigma})\left(\hat{V}_{A} \otimes \widehat{1}_{R}\right)\right]\right|$

$$
\leq \max _{\widehat{U}_{A R}}^{A}\left|\operatorname{Tr}\left[(\hat{\rho}-\widehat{\sigma}) \widehat{U}_{A R}\right]\right|
$$

Trace distance

Monotonicity

$$
\|\hat{\rho}-\hat{\sigma}\| \geq\|\chi(\widehat{\rho})-\chi(\widehat{\sigma})\|
$$

This rule also applies to a measurement with outcome j :

$$
\begin{aligned}
& \hat{\rho} \rightarrow\left\{p_{j}\right\} \\
& \Leftrightarrow \widehat{\rho} \text { mes } \equiv\left(\begin{array}{lll}
p_{1} & & 0 \\
p_{2} & 0 \\
p_{3} & & \\
0 & \ddots
\end{array}\right) \quad \Leftrightarrow \widehat{\sigma}_{\text {mes }} \equiv\left(\begin{array}{lll}
q_{1} & & \\
q_{2} & 0 \\
q_{3} & \\
0 & \ddots & \\
& & \ddots
\end{array}\right) \\
& \frac{1}{2}\|\widehat{\rho}-\widehat{\sigma}\| \geq \frac{1}{2}\left\|\widehat{\rho}_{\text {mes }}-\widehat{\sigma}_{\text {mes }}\right\|=\frac{1}{2} \sum_{j}\left|p_{j}-q_{j}\right|
\end{aligned}
$$

This must hold for any measurement

Note: The equality holds for the orthogonal measurement for the observable $\hat{\rho}-\hat{\sigma}=\sum \lambda_{j}|j\rangle\langle j|$

$$
\frac{1}{2}\|\hat{\rho}-\widehat{\sigma}\|=\frac{1}{2} \sum_{j}\left|p_{j}-q_{j}\right|=\sum_{j}\left|\lambda_{j}\right|
$$

Minimum-error discrimination

(maybe) it was $\widehat{\rho}$ (outcome $\mathrm{j}=0$)
(maybe) it was $\widehat{\sigma}$
50\% 50\% (outcome $\mathrm{j}=1$)

	outcome		
	It was $\widehat{\rho}(\mathrm{j}=0)$	It was $\widehat{\sigma}(\mathrm{j}=1)$	
$\hat{\rho}$	$p_{0}=1-\epsilon$	$p_{1}=\epsilon$	
$\hat{\sigma}$	$q_{0}=\epsilon^{\prime}$	$q_{1}=1-\epsilon^{\prime}$	

$$
\frac{1}{2}\|\widehat{\rho}-\widehat{\sigma}\| \geq \frac{1}{2} \sum_{j}\left|p_{j}-q_{j}\right|=\left|1-\epsilon-\epsilon^{\prime}\right|=1-2 p_{\mathrm{err}}
$$

Minimum-error discrimination

$$
50 \% \quad 50 \%
$$

Optimal measurement: orthogonal measurement $\left\{\widehat{P}_{0}, \widehat{P}_{1}\right\}$

$$
\begin{aligned}
& \hat{\rho}-\hat{\sigma}=\sum_{k} \lambda_{k}|k\rangle\langle k| \\
& \hat{P}_{0} \equiv \sum_{k: \lambda_{k} \geq 0}|k\rangle\langle k| \quad \hat{P}_{1} \equiv \sum_{k: \lambda_{k}<0}|k\rangle\langle k| \\
& \frac{1}{2}\left(\left|p_{0}-q_{0}\right|+\left|p_{1}-q_{1}\right|\right)= \frac{1}{2}\left(\left|\sum_{k: \lambda_{k} \geq 0} \lambda_{k}\right|+\left|\sum_{k: \lambda_{k}<0} \lambda_{k}\right|\right) \\
&=\frac{1}{2} \sum_{k}\left|\lambda_{k}\right|=\frac{1}{2}\|\hat{\rho}-\widehat{\sigma}\|
\end{aligned}
$$

$$
\frac{1}{2}\|\widehat{\rho}-\widehat{\sigma}\|=1-2 p_{\mathrm{err}}^{(\mathrm{opt})}
$$

Operational meaning of the trace distance

Discrimination between two pure states

Fidelity

$$
\begin{gathered}
F(\hat{\rho}, \hat{\sigma}) \equiv \max \left|\left\langle\phi_{\rho} \mid \phi_{\sigma}\right\rangle\right|^{2} \\
\operatorname{Tr}_{R}\left[\left|\phi_{\rho}\right\rangle\left\langle\phi_{\rho}\right|\right]=\hat{\rho} \\
\operatorname{Tr}_{R}\left[\left|\phi_{\sigma}\right\rangle\left\langle\phi_{\sigma}\right|\right]=\widehat{\sigma}
\end{gathered} \quad \text { (purification) }
$$

$$
F(\hat{\rho}, \widehat{\sigma})=\|\sqrt{\hat{\rho}} \sqrt{\hat{\sigma}}\|^{2}
$$

$\left|\psi_{\rho}\right\rangle \equiv \sum_{k} \sqrt{\hat{\rho}}|k\rangle \otimes|k\rangle_{R} \quad$ is a purification of $\hat{\rho}$

$$
\operatorname{Tr}_{R}\left|\psi_{\rho}\right\rangle\left\langle\psi_{\rho}\right|=\sum_{k l} \sqrt{\hat{\rho}}|k\rangle\langle l| \sqrt{\hat{\rho}} \times \operatorname{Tr}\left(|k\rangle_{R R}\langle l|\right)=\hat{\rho}
$$

Any purification can be written as $\left|\phi_{\rho}\right\rangle=\Sigma_{k} \sqrt{\hat{\rho}}|k\rangle \otimes \hat{U}_{R}|k\rangle_{R}$

$$
=\sum_{k} \sqrt{\widehat{\rho}} \widehat{U}^{\prime}|k\rangle \otimes|k\rangle_{R}
$$

$$
\left.F(\hat{\rho}, \widehat{\sigma})=\max _{\hat{U}, \bar{V}}\left|\sum_{k l}\langle k| \widehat{U}^{\dagger} \sqrt{\hat{\rho}} \sqrt{\hat{\sigma}} \widehat{V}\right| l\right\rangle \times\left.{ }_{R}\langle k \mid l\rangle_{R}\right|^{2}
$$

$$
=\max _{\hat{U}, \hat{V}}\left|\operatorname{Tr}\left(\hat{U}^{\dagger} \sqrt{\hat{\rho}} \sqrt{\hat{\sigma}} \widehat{V}\right)\right|^{2}=\max _{\hat{V}}|\operatorname{Tr}(\sqrt{\hat{\rho}} \sqrt{\hat{\sigma}} \widehat{V})|^{2}
$$

Local operations on a maximally entangled state

$$
\begin{aligned}
& |\Phi\rangle_{A B}=\sum_{k=1}^{d} \frac{1}{\sqrt{d}}|k\rangle_{A} \otimes|k\rangle_{B} \\
& \left(\hat{T}_{A} \otimes \hat{\mathrm{i}}_{B}\right)|\Phi\rangle_{A B}=\left(\hat{\mathrm{I}}_{A} \otimes \widehat{\mathrm{~T}}_{B}^{\prime}\right)|\Phi\rangle_{A B} \\
& { }_{A}\langle l| \otimes_{B}\langle l| \hat{T}_{A}|k\rangle_{A}={ }_{B}\langle k| \hat{T}_{B}^{\prime}|l\rangle_{B} \quad \text { transpose }
\end{aligned}
$$

Fidelity

$$
\begin{aligned}
& F(\hat{\rho}, \widehat{\sigma}) \equiv \max \left|\left\langle\phi_{\rho} \mid \phi_{\sigma}\right\rangle\right|^{2}=\|\sqrt{\hat{\rho}} \sqrt{\hat{\sigma}}\|^{2}=(\operatorname{Tr} \sqrt{\sqrt{\hat{\sigma}} \hat{\rho} \sqrt{\hat{\sigma}}})^{2} \\
& \begin{array}{l}
F(\hat{\rho}, \widehat{\sigma})=1 \text { when } \hat{\rho}=\hat{\sigma} \quad \text { (the same state) } \\
F(\hat{\rho}, \widehat{\sigma})=0 \text { when } \hat{\rho} \widehat{\sigma}=0 \quad \text { (perfectly distinguishable) } \\
F(\widehat{\rho},|\psi\rangle\langle\psi|)=\langle\psi| \hat{\rho}|\psi\rangle \\
\operatorname{Tr} \sqrt{\sqrt{|\psi\rangle\langle\psi|} \hat{\rho} \sqrt{|\psi\rangle\langle\psi|}}=\operatorname{Tr} \sqrt{\langle\psi| \hat{\rho}|\psi\rangle|\psi\rangle\langle\psi|}=\sqrt{\langle\psi| \hat{\rho}|\psi\rangle} \\
(\hat{\rho} \longrightarrow
\end{array} \xrightarrow{\longrightarrow} \text { Is it }|\psi\rangle ?
\end{aligned}
$$

Operational meaning of the fidelity

Fidelity

$$
F(\hat{\rho}, \widehat{\sigma}) \equiv \max \left|\left\langle\phi_{\rho} \mid \phi_{\sigma}\right\rangle\right|^{2}=\|\sqrt{\hat{\rho}} \sqrt{\hat{\sigma}}\|^{2}=(\operatorname{Tr} \sqrt{\sqrt{\hat{\sigma}} \hat{\rho} \sqrt{\hat{\sigma}}})^{2}
$$

$$
\begin{array}{ll}
F(\hat{\rho}, \widehat{\sigma})=1 \text { when } \hat{\rho}=\hat{\sigma} & \text { (the same state) } \\
F(\hat{\rho}, \widehat{\sigma})=0 \text { when } \widehat{\rho} \widehat{\sigma}=0 & \text { (perfectly distinguishable) }
\end{array}
$$

$$
F(\widehat{\rho},|\psi\rangle\langle\psi|)=\langle\psi| \hat{\rho}|\psi\rangle \quad \text { Operational meaning of the fidelity }
$$

But not applicable to general $F(\hat{\rho}, \hat{\sigma})$
$F(|\phi\rangle\langle\phi|,|\psi\rangle\langle\psi|)=|\langle\phi \mid \psi\rangle|^{2} \quad$ Direct generalization of the magnitude of the inner product
$F\left(\hat{\rho}_{1} \otimes \hat{\rho}_{2}, \hat{\sigma}_{1} \otimes \hat{\sigma}_{2}\right)=F\left(\hat{\rho}_{1}, \widehat{\sigma}_{1}\right) F\left(\hat{\rho}_{2}, \hat{\sigma}_{2}\right) \quad$ Multiplicativity
$1-F(\hat{\rho}, \hat{\sigma})$ is a measure of distinguishability. (not a distance)
Classical case $\quad \hat{\rho} \rightarrow\left\{p_{j}\right\} \quad \hat{\sigma} \rightarrow\left\{q_{j}\right\}$
$F=\left(\sum_{j \sqrt{p_{j}} \sqrt{q_{j}}}\right)^{2}$
Hard to find a operational meaning...
There exists a measurement that preserves the fidelity: Measure σ / ρ Projection to the range of $\hat{\rho}$
Measure the observable $\hat{\rho}^{-1 / 2}|\sqrt{\hat{\rho}} \sqrt{\hat{\sigma}}| \hat{\rho}^{-1 / 2}$

Fidelity and distinguishability

$$
\begin{aligned}
& F(\hat{\rho}, \widehat{\sigma}) \equiv \max \left|\left\langle\phi_{\rho} \mid \phi_{\sigma}\right\rangle\right|^{2}=\|\sqrt{\widehat{\rho}} \sqrt{\hat{\sigma}}\|^{2}=(\operatorname{Tr} \sqrt{\sqrt{\hat{\sigma}} \hat{\rho} \sqrt{\hat{\sigma}}})^{2} \\
& F(\hat{\rho}, \widehat{\sigma})=1 \text { when } \hat{\rho}=\hat{\sigma} \quad F(\hat{\rho}, \widehat{\sigma})=0 \text { when } \hat{\rho} \widehat{\sigma}=0
\end{aligned}
$$

$1-F(\hat{\rho}, \hat{\sigma})$ is a measure of distinguishability. (not a distance)
Monotonicity

$$
F(\hat{\rho}, \widehat{\sigma}) \leq F(\chi(\hat{\rho}), \chi(\hat{\sigma}))
$$

- Attach an ancilla

$$
F(\hat{\rho} \otimes \hat{\tau}, \widehat{\sigma} \otimes \hat{\tau})=F(\hat{\rho}, \widehat{\sigma}) F(\hat{\tau}, \hat{\tau})=F(\hat{\rho}, \widehat{\sigma})
$$

-Apply a unitary

$$
F\left(\widehat{U} \widehat{\rho} \widehat{U}^{\dagger}, \widehat{U} \widehat{\sigma} \widehat{U}^{\dagger}\right)=\left\|\widehat{U} \sqrt{\hat{\rho}} \sqrt{\hat{\sigma}} \widehat{U}^{\dagger}\right\|^{2}=\|\sqrt{\hat{\rho}} \sqrt{\hat{\sigma}}\|^{2}=F(\hat{\rho}, \widehat{\sigma})
$$

-Discard the ancilla

$$
\begin{aligned}
& F(\hat{\rho}, \widehat{\sigma})=\max \left|\left\langle\phi_{\rho} \mid \phi_{\sigma}\right\rangle\right|^{2} \\
& F\left(\operatorname{Tr}_{R} \hat{\rho}, \operatorname{Tr}_{R} \hat{\sigma}\right)=\max \left|\left\langle\phi_{\rho}^{\prime} \mid \phi_{\sigma}^{\prime}\right\rangle\right|^{2} \\
& \max \left|\left\langle\phi_{\rho} \mid \phi_{\sigma}\right\rangle\right|^{2} \leq \max \left|\left\langle\phi_{\rho}^{\prime} \mid \phi_{\sigma}^{\prime}\right\rangle\right|^{2}
\end{aligned}
$$

Fidelity and trace distance

$$
1-\sqrt{F(\hat{\rho}, \hat{\sigma})} \leq \frac{1}{2}\|\hat{\rho}-\hat{\sigma}\| \leq \sqrt{1-F(\hat{\rho}, \hat{\sigma})}
$$

Measurement preserving the fidelity

$$
\begin{aligned}
& \hat{\rho} \rightarrow\left\{p_{j}\right\} \quad \hat{\sigma} \rightarrow\left\{q_{j}\right\} \\
& \frac{1}{2}\|\hat{\rho}-\hat{\sigma}\| \geq \frac{1}{2} \sum_{j}\left|p_{j}-q_{j}\right| \\
= & \frac{1}{2} \sum_{j}\left|\sqrt{p_{j}}-\sqrt{q_{j}}\right|\left(\sqrt{p_{j}}+\sqrt{q_{j}}\right) \\
\geq & \frac{1}{2} \sum_{j}\left(\sqrt{p_{j}}-\sqrt{q_{j}}\right)^{2}=\frac{1}{2}\left(\sum_{j} p_{j}+\sum_{j} q_{j}-2 \sum_{j} \sqrt{p_{j}} \sqrt{q_{j}}\right) \\
= & 1-\sqrt{F}
\end{aligned}
$$

Fidelity and trace distance

$$
1-\sqrt{F(\hat{\rho}, \hat{\sigma})} \leq \frac{1}{2}\|\hat{\rho}-\widehat{\sigma}\| \leq \sqrt{1-F(\hat{\rho}, \hat{\sigma})}
$$

Purifications satisfying $F(\hat{\rho}, \hat{\sigma})=\left|\left\langle\phi_{\rho} \mid \phi_{\sigma}\right\rangle\right|^{2}$

The fidelity is preserved in the physical process
 $\left|\phi_{\rho}\right\rangle \rightarrow \hat{\rho}$

$$
\left|\phi_{\sigma}\right\rangle \rightarrow \hat{\sigma}
$$

$$
\left.\frac{1}{2} \|| | \phi_{\rho}\right\rangle\left\langle\phi_{\rho}\right|-\left|\phi_{\sigma}\right\rangle\left\langle\phi_{\sigma}\right|\left\|\geq \frac{1}{2}\right\| \hat{\rho}-\widehat{\sigma} \|
$$

II

$$
\sqrt{1-\left|\left\langle\phi_{\rho} \mid \phi_{\sigma}\right\rangle\right|^{2}}=\sqrt{1-F}
$$

No-cloning theorem

$$
\begin{array}{ll}
F\left(\hat{\rho}_{1} \otimes \hat{\rho}_{2}, \widehat{\sigma}_{1} \otimes \hat{\sigma}_{2}\right)=F\left(\hat{\rho}_{1}, \widehat{\sigma}_{1}\right) F\left(\hat{\rho}_{2}, \widehat{\sigma}_{2}\right) & \text { Multiplicativity } \\
F(\hat{\rho}, \widehat{\sigma}) \leq F(\chi(\hat{\rho}), \chi(\hat{\sigma})) & \text { Monotonicity }
\end{array}
$$

Is it possible to realize $\begin{aligned} & \chi(\hat{\rho})=\hat{\rho} \otimes \hat{\rho} \\ & \chi(\hat{\sigma})=\widehat{\sigma} \otimes \widehat{\sigma}\end{aligned} \quad ?$

Possible only when $F(\hat{\rho}, \widehat{\sigma})=0$ or 1
It is impossible to create independent copies of two inputs that are neither distinguishable nor identical.

No-cloning theorem for classical case?

It is impossible to create independent copies of two inputs that are neither distinguishable nor identical.

If we allow mixed states, partial distinguishability is not rare even in classical states.

$$
\hat{\rho}=\frac{2}{3}|0\rangle\langle 0|+\frac{1}{3}|1\rangle\langle 1| \quad \widehat{\sigma}=\frac{1}{3}|0\rangle\langle 0|+\frac{2}{3}|1\rangle\langle 1|
$$

It is possible to create correlated copies. (Broadcasting)

$$
\begin{aligned}
& \chi(\hat{\rho})=\frac{2}{3}|0\rangle\langle 0| \otimes|0\rangle\langle 0|+\frac{1}{3}|1\rangle\langle 1| \otimes|1\rangle\langle 1| \\
& \chi(\hat{\sigma})=\frac{1}{3}|0\rangle\langle 0| \otimes|0\rangle\langle 0|+\frac{2}{3}|1\rangle\langle 1| \otimes|1\rangle\langle 1|
\end{aligned}
$$

The marginal states are the same as the input.

No-cloning theorem for pure states

It is impossible to create independent copies of two inputs that are neither distinguishable nor identical.

If the marginal state is pure, the subsystem has no correlation to other systems.

It is impossible to create copies of two nonorthogonal and nonidentical pure states.

Of course, it is impossible to create copies of unknown pure states.

What is peculiar about quantum mechanics?

Partially distinguishable \longrightarrow No independent copies
Pure
\longrightarrow No correlation
These implications are not unique to quantum mechanics.

In quantum mechanics, there are cases where states are partially distinguish and pure.

Information - disturbance tradeoff

Suppose that $|\langle\phi \mid \psi\rangle|>0$

$$
\begin{aligned}
|\langle\phi \mid \psi\rangle|^{2} & \leq F(|\phi\rangle\langle\phi| \otimes \hat{\rho},|\psi\rangle\langle\psi| \otimes \hat{\sigma}) \\
& =|\langle\phi \mid \psi\rangle|^{2} F(\hat{\rho}, \widehat{\sigma})
\end{aligned}
$$

$$
\longrightarrow F(\hat{\rho}, \widehat{\sigma})=1 \quad \hat{\rho}=\hat{\sigma}
$$

If a process causes absolutely no disturbance on two nonorthogonal states, it leaves no trace about which of the states has been fed to the input.

Basic principle for a quantum cryptography scheme, called B92 protocol.

6. Communication resources

Classical channel
Quantum channel
Entanglement
How does the state evolve under LOCC?
Properties of maximally entangled states
Bell basis
Quantum dense coding
Quantum teleportation
Entanglement swapping
Resource conversion protocols and bounds

Classical channel

Ideal classical channel: faithful transfer of any signal chosen from d symbols

Parallel use of channels

d-symbol ideal classical channel
d'-symbol ideal classical channel $\}$
(dd')-symbol ideal classical channel

Measure of usefulness
d-symbol ideal classical channel \longrightarrow (log d) bits

Quantum channel

$$
\alpha|0\rangle+\beta|1\rangle
$$

Ideal quantum channel: faithful transfer of any state (including unknown states) of an d-level system (Hilbert space of dimension d)
Faithful transfer of any state \longrightarrow Faithful transfer of any correlation

$$
\left.\begin{array}{rl}
\hat{\rho}_{A}^{\text {(in) }} \bigcirc_{A} \\
\hat{\rho}_{A}^{\text {(out })} & =\sum_{j} \hat{M}_{j} \hat{\rho}_{A}^{(\mathrm{in})} \hat{M}_{j}^{\dagger} \\
\hat{\rho}_{A}^{\text {(out })} & =\hat{\rho}_{A}^{\text {(in) }} \text { for any input }
\end{array}\right\} \longrightarrow \rho_{A}^{\text {(out) }}
$$

Quantum channel

$$
\alpha|0\rangle+\beta|1\rangle
$$

$$
\alpha|0\rangle+\beta|1\rangle
$$

Ideal quantum channel: faithful transfer of any state of an d-level system (Hilbert space of dimension d)

Parallel use of channels

Measure of usefulness
d-level ideal quantum channel
\longrightarrow (log d) qubits Additive for ideal channels

Can classical channels substitute a quantum channel?

NO (with no other resources)
Suppose that it was possible ...

This amounts to the cloning of unknown quantum states, which is forbidden.

Can a quantum channel substitute a classical channel?

Of course yes.
But not so bizarre (with no other resources).
n-qubit ideal quantum channel can only substitute a n-bit classical channel.
(Holevo bound)
Suppose that transfer of an d-level system can convey any signal from s symbols faithfully.
$j=1,2, \ldots, s$

Recall that any measurement must be described by a POVM. $\sum_{j^{\prime}} \widehat{F}_{j^{\prime}}=\hat{1}$
$\operatorname{Tr}\left(\widehat{F}_{j} \hat{\rho}_{j}\right)=1$
$s=\sum_{j} \operatorname{Tr}\left(\widehat{F}_{j} \hat{\rho}_{j}\right) \leq \sum_{j} \operatorname{Tr}\left(\widehat{F}_{j} \hat{1}\right)=\sum_{j} \operatorname{Tr}\left(\widehat{F}_{j}\right) \leq \sum_{j^{\prime}} \operatorname{Tr}\left(\widehat{F}_{j^{\prime}}\right)=\operatorname{Tr}(\hat{1})=d$

Difference between quantum and classical channels

We have seen that a quantum channel is more powerful than a classical channel.

Can we pin down what is missing in a classical channel?

Operational definition of entanglement

"Correlations that cannot be created over classical channels"

LOCC: Local operations and classical communication
Alice has a subsystem A, and Bob has a subsystem B.
Operations (including measurements) on a local subsystem are free.
Communication between Alice and Bob only uses classical channels.

A
Classical channels

Separable states: The states that can be created under LOCC from scratch.
Entangled states: The states that cannot be created under LOCC from scratch.

How does the state evolve under LOCC?

Any LOCC procedure can be made a sequential one:

When Alice operates

Alice appies local operations Alice communicates to Bob Bob applies local operations Bob communicates to Alice Alice

$$
\sum_{j} p_{j} \hat{\rho}_{j}=\hat{\rho}
$$

$\operatorname{Ran} \hat{\rho} \supset \operatorname{Ran} \hat{\rho}_{j}$

Schmidt number never increases under LOCC (even probabilistically)
Schmidt number >1 \longrightarrow Impossible under LOCC

If a concave functional S only depends on the eigenvalues,
$S(\widehat{\rho}) \geq \sum_{j} p_{j} S\left(\widehat{\rho}_{j}\right) \quad \begin{aligned} & \text { Any such functional of the marginal density operator } \\ & \text { (e.g., von Neumann entropy) is monotone decreasing } \\ & \text { under LOCC on average. }\end{aligned}$

Maximally entangled states (MES)

"ideal" entangled states

$$
\sum_{k=1}^{d} \frac{1}{\sqrt{d}}|k\rangle_{A} \otimes|k\rangle_{B} \quad p_{1}=p_{2}=\cdots=p_{d}=\frac{1}{d}
$$

Schmidt number $=\mathrm{d}$
Putting two MESs together

MES with
Schmidt number dd'

Schmidt number d'
$\left(\sum_{j=1}^{d} \frac{1}{\sqrt{d}}|j\rangle_{A} \otimes|j\rangle_{B}\right) \otimes\left(\sum_{k=1}^{d^{\prime}} \frac{1}{\sqrt{d^{\prime}}}|k\rangle_{A^{\prime}} \otimes|k\rangle_{B^{\prime}}\right)=\sum_{j, k} \frac{1}{\sqrt{d d^{\prime}}}|j k\rangle_{A A^{\prime}} \otimes|j k\rangle_{B B^{\prime}}$
Measure of entanglement
MES with Schmidt number d \longrightarrow (log d) ebits

Ebits and bits are mutually exclusive

Schmidt number never increases under LOCC.
Classical channels cannot increase (ideal) entanglement.
d-symbol ideal classical channel
The outcome can be correctly predicted with probability at least 1/d.

Transfer of d'(>d) symbols

Transfer of d'(>d) symbols

Resource conversion protocols

$\underline{\text { Properties of maximally entangled states }}|\Phi\rangle_{A B}=\sum_{k=1}^{d} \frac{1}{\sqrt{d}}|k\rangle_{A} \otimes|k\rangle_{B}$
Pair of local states (relative states) $\frac{1}{\sqrt{d}}|\phi\rangle_{A}={ }_{B}\left\langle\phi^{*}\right||\Phi\rangle_{A B}$

$$
|\phi\rangle_{A}=\sum_{k} \alpha_{k}|k\rangle_{A} \cdot \cdots \bigcirc \circlearrowleft_{A}
$$

Pair of local operations

$$
\left(\widehat{M}_{A} \otimes \hat{1}_{B}\right)|\Phi\rangle_{A B}=\left(\hat{1}_{A} \otimes \widehat{M}_{B}^{T}\right)|\Phi\rangle_{A B}
$$

Locally maximally mixed

$$
\hat{\rho}_{A}=\operatorname{Tr}_{B}|\Phi\rangle\langle\Phi|=\frac{1}{d} \widehat{1}_{A}
$$

Convertibility via local unitary

$$
\left|\Phi^{\prime}\right\rangle_{A B}=\left(\hat{1}_{A} \otimes \widehat{U}_{B}\right)|\Phi\rangle_{A B}
$$

Orthonormal basis (Bell basis) $\left\langle\Phi_{j} \mid \Phi_{k}\right\rangle=\delta_{j k}\left(j, k=1, \ldots d^{2}\right)$
There exists an orthonormal basis composed of MESs.

Bell basis for a pair of qubits

$$
\begin{array}{ll}
(d=2) & \left|\Phi_{+}\right\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle_{A}|0\rangle_{B}+|1\rangle_{A}|1\rangle_{B}\right) \\
\hat{Z} \equiv \widehat{\sigma}_{z}, \hat{X} \equiv \widehat{\sigma}_{x} & \left|\Phi_{-}\right\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle_{A}|0\rangle_{B}-|1\rangle_{A}|1\rangle_{B}\right)=\hat{Z}_{B}\left|\Phi_{+}\right\rangle \\
& \left|\Psi_{+}\right\rangle=\frac{1}{\sqrt{2}}\left(|1\rangle_{A}|0\rangle_{B}+|0\rangle_{A}|1\rangle_{B}\right)=\hat{X}_{A}\left|\Phi_{+}\right\rangle \\
& \left|\Psi_{-}\right\rangle=\frac{1}{\sqrt{2}}\left(|1\rangle_{A}|0\rangle_{B}-|0\rangle_{A}|1\rangle_{B}\right)=\left(\hat{X}_{A} \otimes \hat{Z}_{B}\right)\left|\Phi_{+}\right\rangle
\end{array}
$$

Bell basis

$\beta \equiv \exp [2 \pi i / d] \quad\left(\beta^{d}=\beta^{0}=1, \beta^{-1}=\bar{\beta}\right)$
Basis $\{|0\rangle,|1\rangle, \ldots,|d-1\rangle\} \quad(|d\rangle=|0\rangle)$

$$
\begin{aligned}
& \hat{X} \equiv \sum_{j=0}^{d-1}|j+1\rangle\langle j| \quad \hat{Z} \equiv \sum_{j=0}^{d-1} \beta^{j}|j\rangle\langle j| \\
& \hat{X}^{T}=\hat{X}^{-1} \quad \hat{Z}^{T}=\hat{Z} \\
& \text { (Unitary) } \\
& \hat{Z}^{d}=\hat{X}^{d}=\hat{1} \quad \text { Eigenvalues: } 1, \beta, \beta^{2}, \ldots, \beta^{d-1} \\
& \hat{Z} \hat{X}=\beta \hat{X} \hat{Z} \quad \hat{Z}^{m} \hat{X}^{l}=\beta^{l m} \hat{X}^{l} \hat{Z}^{m} \\
& \left|\Phi_{0,0}\right\rangle \equiv \sum_{k=1}^{d} \frac{1}{\sqrt{d}}|k\rangle_{A} \otimes|k\rangle_{B} \quad \begin{aligned}
\left(\hat{X}_{A} \otimes \hat{X}_{B}\right)\left|\Phi_{0,0}\right\rangle & =\left|\Phi_{0,0}\right\rangle \\
\left(\hat{Z}_{A} \otimes \hat{Z}_{B}^{-1}\right)\left|\Phi_{0,0}\right\rangle & =\left|\Phi_{0,0}\right\rangle
\end{aligned}
\end{aligned}
$$

Bell basis: $\left\{\left|\Phi_{l, m}\right\rangle\right\}(l=0,1, \ldots, d-1 ; m=0,1, \ldots, d-1)$

$$
\left|\Phi_{l, m}\right\rangle \equiv\left(\hat{X}_{A}^{l} \otimes \hat{Z}_{B}^{m}\right)\left|\Phi_{0,0}\right\rangle
$$

$\left.\begin{array}{c}\left(\hat{X}_{A} \otimes \hat{X}_{B}\right)\left|\Phi_{l, m}\right\rangle=\beta^{-m}\left|\Phi_{l, m}\right\rangle \\ \left(\hat{Z}_{A} \otimes \hat{Z}_{B}^{-1}\right)\left|\Phi_{l, m}\right\rangle=\beta^{l}\left|\Phi_{l, m}\right\rangle\end{array}\right\} \longrightarrow$ All states are orthogonal.

Quantum dense coding

1 quit +1 debit
$\longrightarrow 2$ bits
n quits +n debits
$\rightarrow 2 n$ bits
(Dimension d) + (Schmidt number d)
\rightarrow (d^{2} symbols)
MES
Convertibility via local unitary
Orthonormal basis (Bell basis)
d^{2} symbols (l, m)

$\left|\Phi_{l, m}\right\rangle \xrightarrow[\text { on the Bell basis }]{\text { Measurement }}(l, m)$ (Bell measurement)

Creating entanglement by nonlocal measurement

measurement

(More precisely, obtaining an $\bullet\left|\Psi^{*}\right\rangle_{B C}$

Relative state of $|\Psi\rangle_{A A^{\prime}}$
Same entanglement outcome corresponding to a POVM element $\mu|\Psi\rangle\langle\Psi|)$

$$
\left(\sum_{j=1}^{d} \frac{1}{\sqrt{d}}|j\rangle_{A} \otimes|j\rangle_{B}\right) \otimes\left(\sum_{k=1}^{d} \frac{1}{\sqrt{d}}|k\rangle_{A^{\prime}} \otimes|k\rangle_{B^{\prime}}\right)=\sum_{j, k} \frac{1}{\sqrt{d^{2}}}|j k\rangle_{A A^{\prime}} \otimes|j k\rangle_{B B^{\prime}}
$$

When $|\Psi\rangle_{A A^{\prime}}$ is an entangled state,
(e.g., Bell measurement)

\(\underset{\substack{Initially no

entanglement}}{ } \quad\)| entangled |
| :---: |$\left|\Psi^{*}\right\rangle_{B C}$

The measurement cannot be implemented over LOCC.

Entanglement swapping

$$
\left|\Phi_{0,0}\right\rangle \equiv \sum_{k=1}^{d} \frac{1}{\sqrt{d}}|k\rangle \otimes|k\rangle
$$

$$
{ }_{A A^{\prime}}\left\langle\Phi_{0,0} \| \Theta\right\rangle_{A A^{\prime} B C}=\frac{1}{\sqrt{d^{2}}}\left|\Phi_{0,0}\right\rangle_{B C}
$$

$$
\left|\Phi_{l, m}\right\rangle_{A A^{\prime}}=\hat{V}_{A}\left|\Phi_{0,0}\right\rangle_{A A^{\prime}}
$$

$$
\begin{aligned}
A A^{\prime}\left\langle\Phi_{l, m}\right||\Theta\rangle_{A A^{\prime} B C} & ={ }_{A A^{\prime}}\left\langle\Phi_{0,0}\right| \widehat{V}_{A}^{\dagger}|\Theta\rangle_{A A^{\prime} B C} \\
& ={ }_{A A^{\prime}}\left\langle\Phi_{0,0}\right| \widehat{V}_{B}^{*}|\Theta\rangle_{A A^{\prime} B C} \\
& =\widehat{V}_{B}^{*}\left[{ }_{A A^{\prime}}\left\langle\Phi_{0,0}\right||\Theta\rangle_{A A^{\prime} B C}\right]
\end{aligned}
$$

Entanglement swapping

Final state

Quantum teleportation

(d^{2} symbols) + (Schmidt number d)
\rightarrow (Dimension d)

Bell measurement

Quantum teleportation

If the cost of classical communication is neglected ...

One can reserve the quantum channel by storing a quantum state.
One can use a quantum channel in the opposite direction.
A convenient way of quantum error correction (failure \longrightarrow retry).

Noisy quantum channel

Failure \longrightarrow no recovery.

Noisy quantum channel

Noisy entanglement
Recovering

Resource conversion protocols and bounds

We can do the following... Conversion to ebits

Teleportation

Entanglement sharing

$$
\begin{gathered}
1 \text { qubit } \longrightarrow 1 \text { ebit } \\
(\Delta q, \Delta e, \Delta c)=(-1,1,0)
\end{gathered}
$$

Conversion to bits
Quantum dense coding

$$
\begin{aligned}
& 1 \text { qubit }+1 \text { ebit } \longrightarrow 2 \text { bits } \\
& \quad(\Delta q, \Delta e, \Delta c)=(-1,-1,2)
\end{aligned}
$$

Conversion to qubits
Quantum teleportation
2 bits +1 ebit $\longrightarrow 1$ qubit

$$
(\Delta q, \Delta e, \Delta c)=(1,-1,-2)
$$

Resource conversion protocols and bounds

We can do the following...

Restrictions
bits alone \longrightarrow no ebits
ebits alone \longrightarrow no bits
1 qubit alone \longrightarrow no more than 1 bit
Teleportation

$$
\Delta e+\Delta q \leq 0
$$

Resource conversion protocols and bounds

We can do the following...

Restrictions
bits alone \longrightarrow no ebits
ebits alone \longrightarrow no bits

1 qubit alone \longrightarrow no more than 1 bit

Teleportation

Entanglement sharing

Resource conversion protocols and bounds

We can do the following...

Restrictions
bits alone \longrightarrow no ebits
ebits alone \longrightarrow no bits
1 qubit alone \longrightarrow no more than 1 bit

Teleportation

Entanglement sharing

$$
\Delta c+\Delta q+\Delta e \leq 0
$$

Resource conversion protocols and bounds

We can do the following...
Conversion to ebits
Entanglement sharing

$$
\begin{gathered}
1 \text { qubit } \longrightarrow 1 \text { ebit } \\
(\Delta q, \Delta e, \Delta c)=(-1,1,0)
\end{gathered}
$$

Conversion to bits
Quantum dense coding

$$
\begin{aligned}
& 1 \text { qubit }+1 \text { ebit } \longrightarrow 2 \text { bits } \\
& \quad(\Delta q, \Delta e, \Delta c)=(-1,-1,2)
\end{aligned}
$$

Conversion to qubits
Quantum teleportation
2 bits +1 ebit $\longrightarrow 1$ qubit

$$
(\Delta q, \Delta e, \Delta c)=(1,-1,-2)
$$

We cannot violate the following ...
Entanglement never assists classical channels

$$
\begin{aligned}
& +\mathrm{QD}, \mathrm{QT} \\
& \qquad \Delta c+2 \Delta q \leq 0
\end{aligned}
$$

Classical channels cannot increase entanglement

+ QT,ES

$$
\Delta e+\Delta q \leq 0
$$

Holevo + ES,QD

$$
\Delta q+\Delta e+\Delta c \leq 0
$$

Resource conversion protocols and bounds

Entanglement sharing

