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1. Basic rules of quantum mechanics

How to describe the states of an ideally controlled system?

How to describe changes in an ideally controlled system?

How to describe measurements on an ideally controlled system?

How to treat composite systems?
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How to describe the states of an ideally controlled system?
(Basic rule I)

Set of all the states

A particle on a 1D line

Example of a classical system

It is at 3.4 cm to the right of
the origin and stands still.

It is at 2.3 cm to the left of the origin 
and moves to the right 0.3 cm/sec.

Is there any common structure in the set?

Relation between a pair of states?
Closeness?
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How to describe the states of an ideally controlled system?
(Basic rule I)

Set of all the states

Quantum system

State A and State B may not be perfectly 
distinguishable.

Distinguishablity: Can be operationally defined. 

Applicable to any system

Common structure

A quantity representing the distiguishablity is 
assigned to every pair of states.

Hilbert space
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Set of all the states

How to describe the states of an ideally controlled system?
(Basic rule I)

Hilbert space

0

a

2a

b

2b
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How to describe the states of an ideally controlled system?
(Basic rule I)

Dirac notation
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Linear operators:             . 

(Real)

(Positive)

(0 or 1)(Unit modulus)

(Complex)

An orthonormal basisEigenvalues
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How to describe changes in an ideally controlled system?
(Basic rule II)
Reversible evolution Inner products are preserved by 

unitary operations.

Distinguishability should never be 
improved by any operation.

Distinguishability should be unchanged 
by any reversible operation.

Infinitesimal change
Inner products will be preserved in any 
reversible operation.
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How to describe measurements on an ideally controlled system?
(Basic rule III)

An ideal measurement with outcome

(1)

(2)

(3)

Note: This is not the unique way of defining 
the ‘best’ measurement. We’ll see later. 
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How to describe measurements on an ideally controlled system?
(Basic rule III)

Orthogonal measurement on an orthonormal basis 
(von Neumann measurement, projection measurement)

Measurement of an observable

Measurement on Assign  

Closure relation
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How to treat composite systems?

System A System B

System AB Composite system

Subsystems
We know how to describe 
each of the systems A and B.

How to describe AB as a single 
system?

(Basic rule IV)

Tensor product
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How to treat composite systems?
(Basic rule IV)

When system A and system B are independently accessed …

State preparation

System A

System B

System AB
Separable states

Unitary evolution Orthogonal measurement

Local unitary 
operations Local measurements

When system A and system B are directly interacted …

Entangled  states
Global unitary 
operations

Global 
measurements
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2. State of a subsystem
Rule for a local measurement

State after discarding a subsystem (marginal state)

Properties of density operators
Rules in terms of density operators

Which is the better description?

Alternative description: density operator

Schmidt decomposition
Pure states with the same marginal state
Ensembles with the same density operator
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Entanglement

System A System B

System AB 

Suppose that the whole system 
(AB) is ideally controlled 
(prepared in a definite state). 

Intuition in a ‘classical’ world: 

If the whole is under a good control, so are the parts.  

But ….

It is not always possible to assign a state vector to subsystem A.

What is the state of subsystem A?
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Rule for a local measurement

A B

Measurement on 

???

???
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Rule for a local measurement

A B

Measurement on 

Measurement on 

arbitrary

Measurement on 
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abbreviation

A remark on notations
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Rule for a local measurement

A B

Measurement on 
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Rule for a local measurement

A B

Measurement on 
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State after discarding a subsystem (marginal state)

A B

Measurement on 

?
discard

State of system A:

This description is correct, but dependence on
the fictitious measurement is weird…
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Alternative description: density operator

Cons

Same 

Two different physical states could have the same density operator.
(The description could be insufficient.)

Pros

Independent of the choice of the fictitious measurement
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Properties of density operators

Positive

Unit trace

Positive & Unit trace 

probability

Mixed state

Pure  state (One eigenvalue is 1)

This decomposition is 
by no means unique!
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Rules in terms of density operators

Hint:

Hint:

Hint:
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Rules in terms of density operators

All the rules so far can be written in terms of density operators.
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Which is the better description?

This looks natural. The system is in one of the pure states, but we just 
don’t know. Quantum mechanics may treat just the pure states, and 
leave mixed states to statistical mechanics or probability theory.

All the rules so far can be written in terms of density operators.

Which description has one-to-one correspondence to physical states?

Best description
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Schmidt decomposition

Bipartite pure states have a very nice standard form. 

Any orthonormal bases 

We can always choose the two bases such that

Schmidt decomposition

Proof:
unnormalized
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Entangled states and separable states

Separable states Entangled  states

Are there any procedure to distinguish between the two classes?

Schmidt decomposition

Separable states

Entangled  states

Schmidt number 
Number of nonzero coefficients in 
Schmidt decomposition

The eigenvalues of the marginal 
density operators (the same for A and B)

= The rank of the marginal density operators

Schmidt number = 1

Schmidt number > 1

Range and Kernel of 

Subspace in which 

Subspace in which 

‘Symmetry’ between A and B
The same set of eigenvalues
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Pure states with the same marginal state

A B

Marginal state

Purification
Pure Extension

(unique)

(not unique)
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Pure states with the same marginal state

A B

Schmidt decomposition

Orthonormal basis

Orthonormal basis
unitary
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Pure states with the same marginal state

A B
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Sealed move (封じ手)

Bb5
４六銀

Chess, Go, Shogi …

• Alice should not learn the sealed move.

Let us call it a day and shall we start over tomorrow, with Bob’s move.

• Bob should not alter the sealed move.

While they are (suppose to be) sleeping...

http://i-aquos-blog.com/archives/omc062-s.jpg
http://ja.wikipedia.org/wiki/%E7%94%BB%E5%83%8F:Chess_Screenshot.PNG
http://images.google.co.jp/imgres?imgurl=http://ykoizumi5.cocolog-nifty.com/photos/uncategorized/kinko.gif&imgrefurl=http://ykoizumi5.cocolog-nifty.com/blog/cat5579641/index.html&h=230&w=230&sz=23&hl=ja&start=1&um=1&tbnid=GhRHqVcBf5p2JM:&tbnh=108&tbnw=108&prev=/images%3Fq%3D%25E9%2587%2591%25E5%25BA%25AB%26svnum%3D10%26um%3D1%26hl%3Dja%26safe%3Doff%26rls%3DGGLG,GGLG:2006-12,GGLG:ja%26sa%3DN
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A B

Sealed move

If there is no reliable safe available …
(If there is no system out of both Alice’s and Bob’s reach …)

Alice has no knowledge

Bob can alter the states

Function of the “safe” 
cannot be realized. 

Impossibility of unconditionally secure quantum bit commitment
(Lo, Mayers)

• Alice should not learn the sealed move.
• Bob should not alter the sealed move.
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Ensembles with the same density operator

A scheme to realize the ensemble

Orthonormal basisPrepare system AB in state

Measure system B on basis 
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Ensembles with the same density operator

Measure system B on basis Measure system B on basis 

Prepare system AB in state

Apply unitary operation        to system B
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A B

BobAlice

Bob can remotely decide which of the 
states the system A is in.

Can Alice distinguish the two states 
even partially?

Bob can postpone his decision 
indefinitely.

Ensembles with the same density operator

NO!

Density operator

Physical state
One-to-one
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Ensembles with the same density operator: an alternative condition

A necessary and sufficient condition for 

Unitary matrix
Proof:
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3. Qubits

Pauli operators (Pauli matrices)

Bloch representation (Bloch sphere)

Orthogonal measurement

Unitary operation
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Qubit

Take a standard basis 

Linear operator 

Matrix representation (for                   )

4 complex parameters
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Pauli operators (Pauli matrices) Take a standard basis 

Unitary and self-adjoint

‘Orthogonality’ with respect to 

Levi-Civita symbol 

Einstein notation 
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Pauli operators (Pauli matrices)

Linear operator 4 complex parameters
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Pauli operators (Pauli matrices)

Eigenvalues



41

Bloch representation (Bloch sphere)

Density operator Positive & Unit trace

Density operator for a qubit system
A 3D real vector of length no greater than 1 

A point inside or on the sphere of radius 1  

x

y

z

Pure states

On the sphere

Bloch vector
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Pure states

x

y

z

Orthogonal states 

Orthonormal basis A line through the origin
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Examples

x

y

z

x

y

z

x

y

z
Spin ½ particle

Bloch vector = Spin vector

Polarization of 
a single photon
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Orthogonal measurement

x

y

z

Orthonormal basis

Example

Measurement of observable 

Z axis

A line through the origin
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Unitary operation

The same physical state

The same physical operation

: Set of       with               

(2 to 1 correspondence to the physical unitary operations)

group

Self-adjoint, traceless

We can parameterize the elements of SU(2) as

Unit vector
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Unitary operation

How does the Bloch vector changes? 

Infinitesimal change
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x

y

z
Unitary operation

Examples

Hadamard transform
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4. Power of an ancillary system

Kraus representation (Operator-sum rep.) 
Generalized measurement 

Unambiguous state discrimination

Quantum operation (Quantum channel, CPTP map) 

A maximally entangled state and relative states 
Relation between quantum operations and bipartite states 

Kraus operators for the same CPTP map 
What can we do in principle?

Size of the auxiliary system
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Power of an ancilla system 

Unitary operations
Orthogonal measurements

Basic operations

measurement

An auxiliary system 
(ancilla)+

probability
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Power of an ancilla system 

Unitary operations
Orthogonal measurements

Basic operations

measurement

An auxiliary system 
(ancilla)+

probability
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Power of an ancilla system 
measurement

probability
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Kraus representation (Operator-sum rep.) 

Kraus operators

Representation with no reference to the ancilla system
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Kraus operators        Physical realization 

Kraus operators
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Generalized measurement 

POVM
Positive operator valued measure

positive
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Generalized measurement 

Examples

x

y

z
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Minimum-error discrimination

?

or

50% 50%

measurement

(maybe) 0

(maybe) 1

qubit

Distinguishing two nonorthogonal states

Unambiguous state discrimination

?

or

50% 50%

measurement

(surely) 0

(surely) 1

2 (I don’t know)

qubit
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Unambiguous state discrimination

?

or

50% 50%

measurement

(surely) 0

(surely) 1

2 (I don’t know)

Orthogonal measurement

(surely) 12 (I don’t know)

qubit

If the initial state is 

it always fails. 

If the initial state is 

it fails with prob. 

1

1
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Unambiguous state discrimination

?

or

50% 50%

measurement

(surely) 0

(surely) 1

2 (I don’t know)

Generalized measurement

qubit

The only constraint on      comes from

1

1

The optimum: 
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Quantum operation (Quantum channel, CPTP map) 

completely-positive trace-preserving map
CPTP map 
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Positive maps and completely-positive maps 
Linear map

“positive”: 

“completely-positive”: 
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Maximally entangled states 

Orthonormal
bases 

Maximally entangled state



62

Relative states 
Fix a maximally 
entangled state

Relative states

Orthogonal 
measurement 

outcome
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Quantum operation and bipartite state
We can remotely prepare system A in any state 

with a nonzero success probability.  
At any time

measurement

If this single state is known …

Output for every input state is known!

Characterization of a process = Characterization of a state

probability
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Size of the ancilla system 
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Kraus operators for the same CPTP map 

same
?
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Kraus operators for the same CPTP map 
same

Unitary matrix
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What can we do in principle?

We have seen what we can (at least) do by using an ancilla system. 

We also want to know what we cannot do.

Black box with classical and quantum output
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What can we do in principle?

Meas.

These should tell us everything about the black box.
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Some algebras...

(unnormalized states)

Applying 
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This is what we can do in principle

Any physical process should be represented in the following form:

Orthogonal measurement
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x

y

zUniversal NOT ? Spin reversal ?

Bloch vector

linear map

This map is positive, but...
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Universal NOT

?

has a negative eigenvalue!  (The map is not completely positive.)

Universal NOT is impossible.

Universal NOT ? Spin reversal ?
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5. Distinguishability

Trace norm and polar decomposition

Trace distance

Minimum-error discrimination
Fidelity

Local operations on a maximally entangled state
Fidelity and distinguishability

Fidelity and trace distance

No-cloning theorem
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Distinguishability

A quantity describing how we can distinguish 
between the  two states in principle.

Measure of distinguishability between two states

Quantum channel (CPTP map)

The distinguishability should never be 
improved by a quantum operation.

Monotonicity under quantum operations
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Distinguishability

A quantity describing how we can distinguish 
between the  two states in principle.

Measure of distinguishability between two states

Quantum channel (CPTP map)

The distinguishability should never be 
improved by a quantum operation.

•Attach an ancilla
•Apply a unitary
•Discard the ancilla
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Trace norm

Polar decomposition

number

linear operator
unitary positive
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Trace distance
Zero when

Unity when

(the same state)

(perfectly distinguishable)

Monotonicity?

•Discard the ancilla

•Attach an ancilla

•Apply a unitary

A R
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Trace distance

Monotonicity

This rule also applies to a measurement with outcome      :

0

0

0

0

This must hold for any measurement

Note: The equality holds for the orthogonal measurement 
for the observable 

(total variation distance)
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Minimum-error discrimination

? measurement

(maybe) it was

(maybe) it was

50% 50%

Input 

outcome

It was It was 

(outcome j=0)

(outcome j=1)

( j=0) ( j=1)
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Minimum-error discrimination

? measurement

(maybe) it was

(maybe) it was

50% 50%

Optimal measurement: orthogonal measurement

Operational meaning of the trace distance
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Discrimination between two pure states

?

or

50% 50%

measurement

(maybe) 0

(maybe) 1

qubit
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Fidelity R

(purifications)

is a purification of 

Any purification can be written as
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Local operations on a maximally entangled state

transpose

Equivalent
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Fidelity

(the same state)

(perfectly distinguishable)

Operational meaning of the fidelity

YES

NO
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Fidelity

(the same state)

(perfectly distinguishable)

Operational meaning of the fidelity

But not applicable to general 

Direct generalization of the 
magnitude of the inner product 

Multiplicativity

Classical case

Hard to find a operational meaning…
There exists a measurement that preserves the fidelity:

Projection to the range of 
Measure the observable

Measure

is a measure of distinguishability. (not a distance)
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Fidelity and distinguishability

is a measure of distinguishability. (not a distance)

•Discard the ancilla

•Attach an ancilla

•Apply a unitary

R

Monotonicity
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Fidelity and trace distance

1

1

0Tr
ac

e 
di

st
an

ce

Measurement preserving the fidelity
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Fidelity and trace distance

1

1

0Tr
ac

e 
di

st
an

ce

Purifications satisfying

The fidelity is preserved in the physical process

=
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No-cloning theorem

Monotonicity

Multiplicativity

Is it possible to realize ?

Possible only when 

It is impossible to create independent copies of two inputs 
that are neither distinguishable nor identical.
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No-cloning theorem for classical case?

It is impossible to create independent copies of two inputs 
that are neither distinguishable nor identical.

It is possible to create correlated copies.

The marginal states are the same as the input.

If we allow mixed states, partial distinguishability is not rare 
even in classical states.  

(Broadcasting)
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No-cloning theorem for pure states

It is impossible to create independent copies of two inputs 
that are neither distinguishable nor identical.

It is impossible to create copies of two nonorthogonal and 
nonidentical pure states.

If the marginal state is pure, the subsystem has no correlation to other systems. 

Of course, it is impossible to create copies of unknown pure states.
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Partially distinguishable

What is peculiar about quantum mechanics?

No independent copies

Pure No correlation

These implications are not unique to quantum mechanics.

In quantum mechanics, there are cases where states are 
partially distinguish and pure.
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Information – disturbance tradeoff
Suppose that 

If a process causes absolutely no disturbance on two nonorthogonal states, 
it leaves no trace about which of the states has been fed to the input.

Basic principle for a quantum cryptography scheme, called B92 protocol.
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6. Communication resources
Classical channel
Quantum channel
Entanglement

How does the state evolve under LOCC? 

Resource conversion protocols and bounds

Properties of maximally entangled states
Bell basis

Quantum dense coding

Entanglement swapping
Quantum teleportation
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Classical channel

0
1

0
1

0
1

0
1

a
b
c

a
b
c

Parallel use of channels

0a
0b
0c
1a
1b
1c

0a
0b
0c
1a
1b
1c

d-symbol ideal classical channel

d’-symbol ideal classical channel
(dd’)-symbol ideal classical channel

d-symbol ideal classical channel (log d) bits 
Additive for ideal channels

Ideal classical channel: faithful transfer of any 
signal chosen from d symbols 

Measure of usefulness
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Quantum channel

Ideal quantum channel: faithful transfer of any state 
(including unknown states) of an d-level system 
(Hilbert space of dimension d)

Faithful transfer of any state

for any input 

Faithful transfer of any correlation

A

A

R
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Quantum channel

d-level ideal quantum channel (log d) qubits
Additive for ideal channels

Ideal quantum channel: faithful transfer of any 
state of an d-level system 
(Hilbert space of dimension d)

d levels

d’ levels
(dd’)-level system

Parallel use of channels

Measure of usefulness
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Can classical channels substitute a quantum channel? 
NO (with no other resources)

Classical info 
can be copied The same procedure should 

result in the same state.

Any size of classical channel 

Suppose that it was possible …

This amounts to the cloning of unknown quantum states, 
which is forbidden.
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Can a quantum channel substitute a classical channel? 

But not so bizarre (with no other resources).

Of course yes.

n-qubit ideal quantum channel can only substitute a n-bit classical channel. 

(Holevo bound)
Suppose that transfer of an d-level system can convey any 
signal from s symbols faithfully. 

Measurement

Always 

Recall that any measurement must be described by a POVM.
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Difference between quantum and classical channels

We have seen that a quantum channel is 
more powerful than a classical channel.

Can we pin down what is missing in a classical channel? 

+
Other resource

I’ve already bought a classical channel, 
but now I want to use a quantum channel. 
Do I have to buy the quantum channel?

Oh, you can buy this optional package for 
a cheaper price, and upgrade the 

classical channel to a quantum channel!
Entanglement
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Operational definition of entanglement

“Correlations that cannot be created over classical channels”

LOCC: Local operations and classical communication

Operations (including measurements) on a local subsystem are free.

Communication between Alice and Bob only uses classical channels.

Alice has a subsystem A, and Bob has a subsystem B.

Separable states: The states that can be created under LOCC from scratch.

Entangled states: The states that cannot be created under LOCC from scratch.

A B

Classical channels
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Any LOCC procedure can be made a sequential one: Alice appies local operations
Alice communicates to Bob
Bob applies local operations
Bob communicates to Alice
Alice  …..

How does the state evolve under LOCC? 

When Alice operates

Probability 

Schmidt number never increases under LOCC (even probabilistically)

Any such functional of the marginal density operator 
(e.g., von Neumann entropy) is monotone decreasing 
under LOCC on average.

Schmidt number >1 Impossible under LOCC

If a concave functional S only depends on the eigenvalues, 

outcome
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Maximally entangled states (MES) “ideal” entangled states

Schmidt number = d

Schmidt number d

Schmidt number d’

MES
Putting two MESs together

MES

MES with 

Schmidt number dd’

Measure of entanglement

MES with Schmidt number d (log d) ebits

Additive for MESs



104

Ebits and bits are mutually exclusive

Classical channels cannot increase (ideal) entanglement.

Schmidt number never increases under LOCC.

d-symbol ideal classical channel  
The outcome can be correctly predicted with probability at least 1/d.

Success probability 1

Success probability 1/d

Entanglement cannot assist (ideal) classical channels

(log d) bits

Transfer of d’(>d) symbols

Transfer of d’(>d) symbols
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Resource conversion protocols

bits

qubits

ebits

Conversion to ebits

Entanglement sharing

1 qubit 1 ebit

Conversion to bits

Quantum dense coding

1 qubit + 1 ebit 2 bits

Conversion to qubits

Quantum teleportation

2 bits + 1 ebit 1 qubit

Quantum 

Classical Static
Non-directional

Dynamic
Directional

bits alone no ebits

ebits alone no bits

Restrictions

1 qubit alone no more than 1 bit
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Properties of maximally entangled states

Pair of local states (relative states)

Pair of local operations 

Orthonormal basis (Bell basis) 

Convertibility via local unitary

measurement

There exists an orthonormal basis composed of MESs.

Locally maximally mixed
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Bell basis for a pair of qubits
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Basis

Eigenvalues: 

Bell basis

Bell basis: 

(Unitary)

All states are orthogonal.
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Quantum dense coding
1 qubit + 1 ebit 2 bits

Orthonormal basis (Bell basis) 

Convertibility via local unitary

n qubits + n ebits 2n bits

MES

Measurement
on the Bell basis
(Bell measurement)
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Creating entanglement by nonlocal measurement 

A B

A’ C

measurement

(More precisely, obtaining an 
outcome corresponding to a 
POVM element                 )

Relative state of 
Same entanglement

A B

A’ C

Initially no 
entanglement

When                is an entangled state,

entangled

The measurement cannot be implemented over LOCC.

(e.g., Bell measurement)
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Entanglement swapping

A B

A’ C

Bell 
measurement

A B

A’ C

?

Bell 
measurement
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Entanglement swapping

Bell measurement

A B

A’

C

Classical channel (2log d  bits)

B

C

Final state
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Quantum teleportation

Bell 
measurement

A B

A’

C

Classical channel (2log d  bits)

B

C
Measurement Measurement

1 ebit + 2 bit 1 qubit
n ebits + 2n bits n qubits
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Quantum teleportation

If the cost of classical communication is neglected …

One can reserve the quantum channel by storing a quantum state. 

One can use a quantum channel in the opposite direction.

A convenient way of quantum error correction (failure       retry).

Noisy quantum channel

Recovering
Failure      no recovery.

Noisy quantum channel

Noisy entanglement

Recovering
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Resource conversion protocols and bounds

Conversion to ebits

Entanglement sharing

1 qubit 1 ebit

Conversion to bits

Quantum dense coding

1 qubit + 1 ebit 2 bits

Conversion to qubits

Quantum teleportation

2 bits + 1 ebit 1 qubit

We can do the following…

0

1

1

2

Teleportation

Entanglement sharing

Dense coding
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Resource conversion protocols and bounds
We can do the following…

0

1

1

2

Teleportation

Entanglement sharing

Dense coding
bits alone no ebits

ebits alone no bits

Restrictions

1 qubit alone no more than 1 bit
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Resource conversion protocols and bounds
We can do the following…

0

1

1

2

Teleportation

Entanglement sharing

Dense coding
bits alone no ebits

ebits alone no bits

Restrictions

1 qubit alone no more than 1 bit
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Resource conversion protocols and bounds
We can do the following…

0

1

1

2

Teleportation

Entanglement sharing

Dense coding
bits alone no ebits

ebits alone no bits

Restrictions

1 qubit alone no more than 1 bit
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Resource conversion protocols and bounds

Conversion to ebits

Entanglement sharing

1 qubit 1 ebit

Conversion to bits

Quantum dense coding

1 qubit + 1 ebit 2 bits

Conversion to qubits

Quantum teleportation

2 bits + 1 ebit 1 qubit

Holevo + ES,QD

Classical channels cannot increase 
entanglement

+ QT,ES

We can do the following… We cannot violate the following …

Entanglement never assists
classical channels 

+ QD,QT
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Teleportation

Dense coding

Entanglement sharing

0

1

1

2

Resource conversion protocols and bounds
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