4.6 Specific Ising models for benchmarking

* Single MAX-CUT on cubic graph (MAX-CUT-3)

—> Divide vertices into two groups which maximizes the number
of edges connecting between the vertices in two sub-groups

—p This problem is NP-complete

;X

» Ising problem on two-layer lattice

—) Find the ground state if only nearest neighbor coupling with
weights J;=—1, 0 or +1 exist.

—p This problem is NP-complete

[F. Barahoma, J. Phys. A: Math Gen. 15, 3241 (1982)
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4.7 Self-learning steps

Initial kick and subsequent driving force

= intrinsic quantum noise of slave lasers

Vs

The laser network converges to a steady state after a time longer than
the transient time determined by the polarization-dependent loss

Vs

This spontaneous evolution can find a correct answer if a given problem
is simple.

Vs

However, if a given problem is complex, the spontaneous evolution is
not sufficient to reach a correct answer. Instead, the system is trapped in
a metastable excited state.

- A notorious problem:

There are only few degenerate ground states, while there are many first
excited states with a very small energy difference ~O (J;).

Vs

To avoid this defect, we can implement “self-learning steps” via
detection of intermediate results, consulting with the parity check and
instructing the system to drift toward a proper direction.
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Temporary spin

+1 (“{<T3'§1)

- indeterminable spin
6i=—= 0 (—y<7<+7) <—

(zero spin)
-1 (-1<7<—y)

v : arbitrary small number

Parity check measure

f)..s__ —_- - Z Jijgj
J

: sum of three injection signals from the connected slave lasers
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Problem 1: zero spin pair (or connected zero spin groups)

R L R L
§ ¢
€
Y R . fix th -
5 -3 (3,5) ixthe %
,— . Wwholepart 5

6,=6,=0 and P =P, =0

(frustrated anti-ferromagnetic pair).

1) take a majority vote for i-th spin
if P;>0, then & =1
if P;<0, then & =-—1

1) fix j-th spin by

5,‘ :_Z(‘]ijgi)

i11) when instructing the systems by injecting the Zeeman terms
A, via mn,, we also fix the surrounding spins.

Vs

Avoid the migration of the frustrated zero spin pair to other parts.
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Problem 2: isolated zero spins (&, = 0)

R
$ strong R
R s~
_

moderate L

moderate L

1) take a majority vote for i-th spin
if P;>0, then & =+1
if P,<0, then & =—1

i1) we also fix the three connected spins to avoid the undesired
spin flips in the surrounding.



Problem 3: incompatible results (5i # Signff%)

A
¢ e

i) set three sites as & =0

11) proceed to the zero spin pair fixing step.

——bl 1. Drive the system with phase noise

v

2. Search for zero spins —>

Parity
Check

None
l Found

Fix one zero spin pair
l None

4. Fix all single zero spins
Update and surrounding spins

onA .l, No update on A
5. SNR improvement

3. Fix a frustrated part of a Failed
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4.8 Benchmarking results
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Stochastic simulation on a single MAX-CUT-3 problem with M=16.
After the initial noise-only drive up to t=50nsec, 7 self-learning steps
are implemented to obtain a ground state.

o ={+1,+1,-1,—-1,—-1,+1,+1, -1, +1,+1,—-1,—-1,—-1,—1,+1



Problem Size /M 4 6 3 10 12 14 16 1% 20
# of problems 1 2 3 19 85 509 4060 41301 510489
Largest ground & 6 3 10 38 42 44 152 250
state degeneracy
Lowest success 100 100 1040 98 92 69 79 42 27
probability of 2
problem (%)
Longast 150ns | 100ns | 100ns | 100ns | 200ns | 200ns | 250ns 250m= 350ms
computational
ftime
Maximum # of 2 1 1 1 3 3 4 4 &
self-learming
steps

Summary of the numerical simulation on simple MAX-CUT-3 problems.

All possible problems are exhausted. Each problem is simulated 10 times. If the
system fails to find a correct answer even once out of 10 trials, such problems are
simulated 100 times to obtain the accurate success probabilities.

ProblemSize/m [ 50 | 100 | 200 [ 400 | 800
5

problems
The maximum 1.98% 5.87% 11.9% 20.6% 34.2%
energy
difference
between the

best of the laser

network and GA
Minimum 21 81 99 100 100

probability of
outperforming
GA (%)
Longest 200ns 250ns 400ns 450ns 400ns
computation
time
Maximum # of 3 4 7 8 7

self-learning
steps

Summary of the numerical simulation on two-layer lattice problems. Every
sampled problem (5 problems for each M) is simulated 100 times. The best result
of 100 rounds of Genetic Algorithm (GA) is used as a standard (threshold) to
define the success probability.
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== == = Classical brute-force search
Quantum counting algorithm
- Injection-locked laser network on MAX-CUT-3

102 Injection-locked laser network on two-layer lattices |
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The computational time t. to pass all the parity check &, = F;
is relatively incentive to the problem size M.

Classical brute force search has an exponential sealing ~ O (2M)
while quantum search based on Grover iteration has also an
exponential scaling ~ O (2M?)

To guarantee sufficient success probabilities, we can repeat
simulations with a certain number of times. Because the success
probability for a single trial is sufficiently high, the overall time

complexity of the proposed laser network remains unchanged (non-
exponential).
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