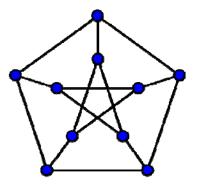
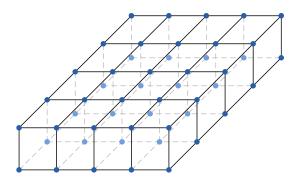
4.6 Specific Ising models for benchmarking

- Single MAX-CUT on cubic graph (MAX-CUT-3)
 - Divide vertices into two groups which maximizes the number of edges connecting between the vertices in two sub-groups
 - This problem is NP-complete



- Ising problem on two-layer lattice
 - Find the ground state if only nearest neighbor coupling with weights J_{ij} =-1, 0 or +1 exist.
 - \implies This problem is NP-complete
 - [F. Barahoma, J. Phys. A: Math Gen. 15, 3241 (1982)



4.7 Self-learning steps

Initial kick and subsequent driving force

= intrinsic quantum noise of slave lasers

 $\overline{\nabla}$

The laser network converges to a steady state after a time longer than the transient time determined by the polarization-dependent loss

This spontaneous evolution can find a correct answer if a given problem is simple.

However, if a given problem is complex, the spontaneous evolution is not sufficient to reach a correct answer. Instead, the system is trapped in a metastable excited state.

A notorious problem:

There are only few degenerate ground states, while there are many first excited states with a very small energy difference $\sim O(J_{ij})$.

$\overline{\nabla}$

To avoid this defect, we can implement "self-learning steps" via detection of intermediate results, consulting with the parity check and instructing the system to drift toward a proper direction. Temporary spin

$$\widetilde{\sigma}_{i} = - \begin{cases} +1 & (\gamma < \tau_{i} \leq 1) \\ 0 & (-\gamma \leq \tau_{i} \leq +\gamma) \\ -1 & (-1 \leq \tau_{i} < -\gamma) \end{cases} \quad \longleftrightarrow \quad \begin{array}{c} \text{indeterminable spin} \\ (\text{zero spin}) \end{array}$$

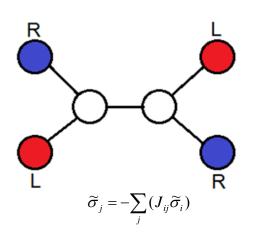
 γ : arbitrary small number

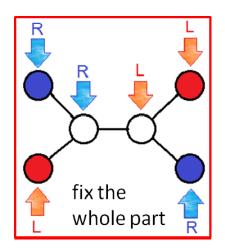
Parity check measure

$$\tilde{P}_i = -\sum_j J_{ij}\,\tilde{\sigma}_j$$

: sum of three injection signals from the connected slave lasers

Problem 1: zero spin pair (or connected zero spin groups)





 $\tilde{\sigma}_1 = \tilde{\sigma}_2 = 0$ and $\tilde{P}_1 = \tilde{P}_2 = 0$ (frustrated anti-ferromagnetic pair).

i) take a majority vote for i-th spin

 $\begin{array}{ll} \text{if} \quad \tilde{P}_i > 0, \quad \text{then} \quad \tilde{\sigma}_i = 1 \\ \text{if} \quad \tilde{P}_i < 0, \quad \text{then} \quad \tilde{\sigma}_i = -1 \end{array}$

ii) fix j-th spin by

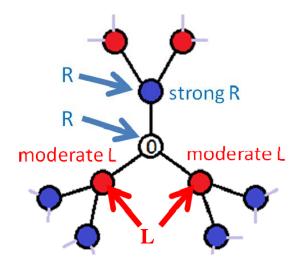
$$\widetilde{\sigma}_{j} = -\sum_{j} (J_{ij}\widetilde{\sigma}_{i})$$

iii) when instructing the systems by injecting the Zeeman terms λ_i via η_i , we also fix the surrounding spins.

$\overline{\nabla}$

Avoid the migration of the frustrated zero spin pair to other parts.

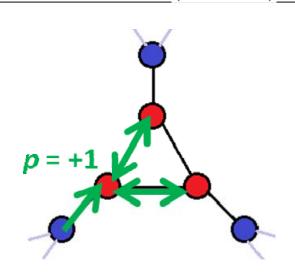
Problem 2: isolated zero spins ($\tilde{\sigma}_i = 0$)



i) take a majority vote for i-th spin

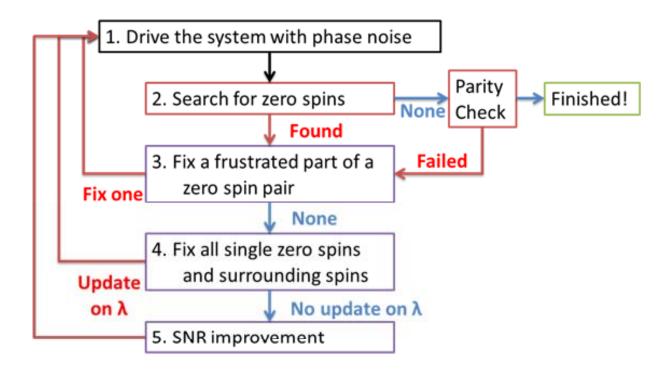
 $\begin{array}{ll} \text{if} \quad \tilde{P}_i > 0, \quad \text{then} \quad \tilde{\sigma}_i = +1 \\ \text{if} \quad \tilde{P}_i < 0, \quad \text{then} \quad \tilde{\sigma}_i = -1 \end{array}$

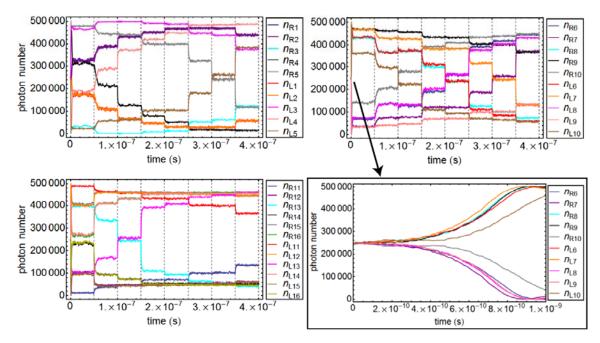
ii) we also fix the three connected spins to avoid the undesired spin flips in the surrounding.



i) set three sites as $\tilde{\sigma}_i = 0$

ii) proceed to the zero spin pair fixing step.





Stochastic simulation on a single MAX-CUT-3 problem with M=16. After the initial noise-only drive up to t=50nsec, 7 self-learning steps are implemented to obtain a ground state.

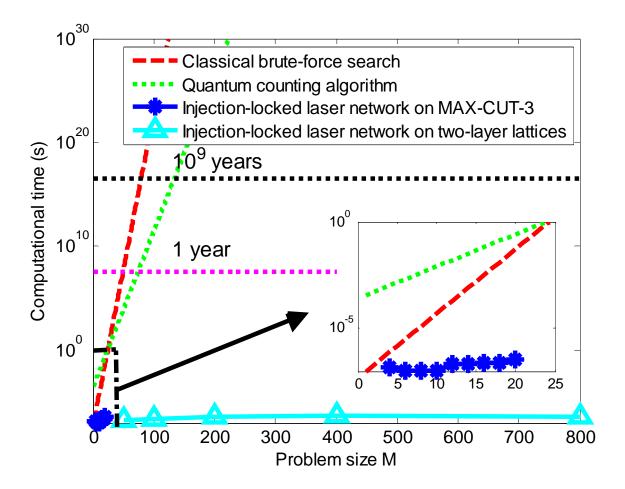
4.8 Benchmarking results

Problem Size / M	4	6	8	10	12	14	16	18	20
# of problems	1	2	5	19	85	509	4060	41301	510489
Largest ground	6	6	8	10	36	42	46	162	250
state degeneracy									
Lowest success	100	100	100	98	92	69	79	42	27
probability of a									
problem (%)									
Longest	150ns	100ns	100ns	100ns	200ns	200ns	250ns	250ns	350ns
computational									
time									
Maximum # of	2	1	1	1	3	3	4	4	6
self-learning									
steps									

Summary of the numerical simulation on simple MAX-CUT-3 problems. All possible problems are exhausted. Each problem is simulated 10 times. If the system fails to find a correct answer even once out of 10 trials, such problems are simulated 100 times to obtain the accurate success probabilities.

Problem Size / M	50	100	200	400	800
# of sampled problems	5	5	5	5	5
The maximum energy difference between the best of the laser network and GA	1.98%	5.87%	11.9%	20.6%	34.2%
Minimum probability of outperforming GA (%)	21	81	99	100	100
Longest computation time	200ns	250ns	400ns	450ns	400ns
Maximum # of self-learning steps	3	4	7	8	7

Summary of the numerical simulation on two-layer lattice problems. Every sampled problem (5 problems for each M) is simulated 100 times. The best result of 100 rounds of Genetic Algorithm (GA) is used as a standard (threshold) to define the success probability.



- The computational time t_C to pass all the parity check $\tilde{\sigma}_i = \tilde{P}_i$ is relatively incentive to the problem size M.
- Classical brute force search has an exponential sealing ~ O (2^M) while quantum search based on Grover iteration has also an exponential scaling ~ O (2^{M/2})
- To guarantee sufficient success probabilities, we can repeat simulations with a certain number of times. Because the success probability for a single trial is sufficiently high, the overall time complexity of the proposed laser network remains unchanged (non-exponential).