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4.1 Ising model

e Optimization problems are ubiquitous in our modern life.

—» Find the specific values of M variables G, G, O, to minimize
the cost function E(G; G, . GOy).



If such an optimization problem can be solved in polynomial time
only by non-deterministic Turing machine, such a problem is said to
belong to

—)> | class NP (Non-deterministic Polynomial)

However, this non-deterministic Turing machine cannot be simulated
efficiently by a deterministic Turing machine, and thus

— class NP is computationally hard

e NP-complete problem — subset of class NP

Any NP problems can be mapped to an arbitrary NP-complete problem.

) | If one has an efficient machine to solve one
particular NP-complete problem, then one
can solve any NP problems efficiently.

R. M. Karp, Reducibility among combinatorial problems, in Complexity
of Computation (Plenum, New York, 1972) P.85, eds: R. E. Miller and
J. W. Thatcher

e The ground state search problem of an Ising Hamiltonian,
H = ZJijGizsz +Zﬂ“iaiz
i<j i

is NP-complete if the Ising coupling J;; cannot be represented in a two-
dimensional graph without crossing. Such a problem is called a 3D or
non-planar Ising model.



It is also NP-complete if J; can be represented in a two-dimensional
graph but there is a Zeeman term (induced by dc magnetic field),

Le. )\, #0 .

Here an Ising spin takes only 65, = +1 or —1.

[F. Barahona, J. Phys. A: Math. Gen. 15, 3241 (1982)]

4.2 Injection-locked laser network
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Purple line : injection signal from master laser to slave lasers,
Blue line : mutually injection signals between slave lasers,
Red line : read out signals from all slave lasers

e Ising spin o,= *1 i1s represented by the right or left circular
polarization of the lasing photon in the slave laser i (i=1,2, ... M).



* A master laser output is split into M paths and injected into M
slave lasers. If the master laser output is vertically polarized, the
polarization state of each photon in the master laser output is

V) = —(IR) + |L)).

R

right circular left circular
polarization polarization

» [t is expected that the polarization state of the slave laser is injection-
locked to that of the injection signal from the master laser so that the
polarization state of a slave laser is in a so-called “spin coherent state”:

) = TL—s(1R) +11) =10 = 5.0 = 0)

initial \

slave laser 1 slave laser 2 slave laser M

* The Ising interaction term J; can be implemented by a horizontal
polarizer in the optical path between the two slave lasers 1 and j, as will
be shown later.



e The Zeeman term A, can be implemented by including a horizontal
polarization component in the injection signal from the master
laser, as will be shown later. Experimentally, this can be achieved
by inserting a half-wave plate and quantum-wave plate in the
optical path between the master laser and the slave laser 1.
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e (Coherent computation is switched on either by abruptly implementing
the Ising coupling J; at t=0 or by gradually increasing the pump rates
for all slave lasers from below threshold to above threshold.

» Computational results can be read out by detecting the right and left
circularly polarized photons from each slave laser and making a
majority vote.



4.3 Theoretical model
4.3.1 Quantum theory of an injection-locked laser

Glauber-Sudarshan diagonal P(a) representation:

aleN 2
p(t) - /P(a,t)|a) <a‘d o statistical mixture of

/ ‘\ Im(a) coherent states
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field density operator positive, real @\ )
of a right or left P(a, 1) N> "
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circular polarization @

mode
! ! . Re(a)

Substitution into the master equation of an injection-locked laser.
[H.A, Haus and Y. Yamamoto, PRA 29, 1261 (1984)]
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Quantum mechanical Fokker-Planck equation:

%p(a,t) _ _% {a% [G _ (%) _ S‘{EF} aP(a,t) + c.c.}
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injection term



G: linear gain coefficient Effective Gain

,S: saturation parameter A Gon G .
— : photon decay rate R
Q p y N //, S|(l'|2
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T >
= Pump Rate
w : o :
K= 0 : coupling constant of an injection signal into a slave laser
€

A3 : (complex) eigenvalue of an injection signal
(|8|?= average photon number per second)

w : master laser (angular) frequency

wj; : slave laser (angular) frequency
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Equivalent to c-number stochastic differential equation (CSDE):
d 1 W —t(wj—w
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diffusion term

E., :stimulated emission rate

E,. :absorption rate



(Ta(t) =0

} Markovian noise
<Fa(t)ra(tf)> - 26(t - t!)

* The noise term (diffusion term) does not include the vacuum
fluctuation associated with the out-coupling loss —. This is because the
zero-point-fluctuation is already included in the basis states, i.e.
coherent states @),

4.3.2 Minimum gain principle

If we neglect the noise terms in the CSDE, we can write down the rate
equations for the average photon number n(t) = |a(t)|* and the average
electron number N for each slave laser:

d w
R = T (— - Ecm;) nri + Eevi
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nyr - average photon number of the master laser
W - W )
Qe QM’ e ‘

Tsp © Spontaneous emission lifetime

equal external Q values for slave and master lasers

p: pumping rate (electrons per second)

E,. = 0 : no absorption ( — complete population inversion)

¢ : fraction of vertical polarization component in the master signal

i+ fraction of horizontal polarization component in the master signal
( — implementation of Zeeman term)

&i; - Mutual coupling coefficient between slave lasers 1 and j
( — implementation of Ising coupling term)
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The injection-locked laser network has an overall threshold gain,

M
E Ec'ué
1=1

which depends on the polarization configurations {ng;, n;;} of all
slave lasers.

The injection-locked laser network chooses a particular

polarization configuration which minimizes the overall threshold

gain, M and realizes a single mode oscillation with this

cvt
i=1
particular polarization configuration.

U

Minimum gain principle

After such a minimum gain mode is selected by the injection-locked
laser network, np ~ng; > N or NT =nLi > nRr; . Then,

w \NMm (\/’HR»,-: + \/’RL«,-:) w N
Q nr Q nr

/

constant and independent of the polarization state

If we define the effective Ising spin by
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A\ \

constant Jij Ai

U

The single lasing mode is identical to the ground state of the Ising
model which minimizes the cost function:

— N < - < .
14 (012,022 - "OMz) = L Jij0i20jz + L AiCj,
i<j i
e Actual choice of the amplitude attenuation parameter a for the
injection signal is determined by the relation,
J;gj
max {[Ji;], [ A}

é}jzaf

nr A\

i =
L nar max {|J;;], [ \i|}

We choose « <1 in order to operate the injection-locked laser
network in a weak perturbation regime.

4.3.3 Working equations

We employ the diagonal linear polarization states (|D).|D))

as the basis set. The polarization evolution from the initial state |V)
to the final state, |R) or |L), can be described by the phase rotations
from zero to £7/2 of the two polarization modes, while the
amplitudes of the two modes are kept almost constant.
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