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4.1 Ising model

• Optimization problems are ubiquitous in our modern life.

Find the specific values of M variables 1 , 2,  M to minimize 

the cost function E(1 , 2,  M ).
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If such an optimization problem can be solved in polynomial time 
only by non-deterministic Turing machine, such a problem is said to 
belong to

class NP (Non-deterministic Polynomial)

However, this non-deterministic Turing machine cannot be simulated 
efficiently by a deterministic Turing machine, and thus

class NP is computationally hard

• NP-complete problem  subset of class NP

Any NP problems can be mapped to an arbitrary NP-complete problem.y p pp y p p

If one has an efficient machine to solve one 
particular NP-complete problem, then one 

can solve any NP problems efficiently.

• The ground state search problem of an Ising Hamiltonian,

R. M. Karp, Reducibility among combinatorial problems, in Complexity 
of Computation (Plenum, New York, 1972) P.85, eds: R. E. Miller and 
J. W. Thatcher

is NP-complete if the Ising coupling Jij cannot be represented in a two-
dimensional graph without crossing Such a problem is called a 3D or
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dimensional graph without crossing. Such a problem is called a 3D or 
non-planar Ising model.



It is also NP-complete if Jij can be represented in a two-dimensional 
graph but there is a Zeeman term (induced by dc magnetic field), 
i.e.               . 

Here an Ising spin takes only                   or  −1 . 

[F. Barahona, J. Phys. A: Math. Gen. 15, 3241 (1982)]

4.2 Injection-locked laser network



j

i = 1• Ising spin is represented by the right or left circular
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iz  1Ising spin                 is represented by the right or left circular 
polarization of the lasing photon in the slave laser i (i=1,2, … M).



• A master laser output is split into M paths and injected into M 
slave lasers. If the master laser output is vertically polarized, the 
polarization state of each photon in the master laser output is

right circular
polarization

left circular
polarization

• It is expected that the polarization state of the slave laser is injection-
locked to that of the injection signal from the master laser so that the 
polarization state of a slave laser is in a so-called “spin coherent state”:

• The Ising interaction term Jij can be implemented by a horizontal
polarizer in the optical path between the two slave lasers i and j, as will 
be shown later.
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• The Zeeman term i can be implemented by including a horizontal 
polarization component in the injection signal from the master 
laser, as will be shown later. Experimentally, this can be achieved 
by inserting a half-wave plate and quantum-wave plate in the 

i l h b h l d h l l ioptical path between the master laser and the slave laser i. 

• Coherent computation is switched on either by abruptly implementing 
the Ising coupling Jij at t=0 or by gradually increasing the pump rates 
for all slave lasers from below threshold to above threshold.

• Computational results can be read out by detecting the right and left 
circularly polarized photons from each slave laser and making a 
majority vote.
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Glauber-Sudarshan diagonal P() representation:

4.3 Theoretical model

4.3.1 Quantum theory of an injection-locked laser

field density operator
of a right or left

g ( ) p

positive, real

statistical mixture of 
coherent states

P( t)

S b i i i h i f i j i l k d l

of a right or left
circular polarization
mode

P(, t)

Substitution into the master equation of an injection-locked laser.
[H.A, Haus and Y. Yamamoto, PRA 29, 1261 (1984)]

Quantum mechanical Fokker-Planck equation:

drift termdrift term

diffusion term
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G: linear gain coefficient
S: saturation parameter

Effective Gain

: photon decay rate

Pump Rate

coupling constant of an injection signal into a slave laser

(complex) eigenvalue of an injection signal

( = average photon number per second)

master laser (angular) frequency

slave laser (angular) frequency

Equivalent to c-number stochastic differential equation (CSDE):

drift term injection term
excitation amplitude
of lasing mode

diffusion term

: stimulated emission rate
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Markovian noise

• The noise term (diffusion term) does not include the vacuum 
fluctuation associated with the out-coupling loss     . This is because the 
zero-point-fluctuation is already included in the basis states, i.e. 
coherent states     .

4.3.2 Minimum gain principle

If we neglect the noise terms in the CSDE, we can write down the rate 
equations for the average photon number                         and the average 
electron number N for each slave laser:

Rin

Lin + +
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average photon number of the master laser

equal external Q values for slave and master lasers

spontaneous emission lifetimespontaneous emission lifetime

pumping rate (electrons per second)

no absorption (  complete population inversion)

fraction of vertical polarization component in the master signalp p g

fraction of horizontal polarization component in the master signal
(  implementation of Zeeman term)

Mutual coupling coefficient between slave lasers i and j
(  implementation of Ising coupling term)(  implementation of Ising coupling term)

Steady state solution (given by                                              ) :

reduced threshold gain by vertically 
polarized master signal

modulated threshold modulated threshold gain 
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gain by horizontally 
polarized master signal 

by horizontally polarized 
slave laser signals



• The injection-locked laser network has an overall threshold gain,

which depends on the polarization configurations {nRi, nLi} of all 
slave lasers.

• The injection-locked laser network chooses a particular 
polarization configuration which minimizes the overall threshold 
gain,               , and realizes a single mode oscillation with this g , , g

particular polarization configuration.

Minimum gain principleMinimum gain principle

• After such a minimum gain mode is selected by the injection-locked 
laser network,                                or .  Then,Lin

constant and independent of the polarization state

• If we define the effective Ising spin byIf we define the effective Ising spin by

iz
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constant

  

The single lasing mode is identical to the ground state of the Ising
model which minimizes the cost function:

constant

• Actual choice of the amplitude attenuation parameter  for the 
injection signal is determined by the relation,

     iz

We choose               in order to operate the injection-locked laser 
network in a weak perturbation regime.

4.3.3 Working equations

We employ the diagonal linear polarization states  
as the basis set. The polarization evolution from the initial state |V
to the final state, |R or |L, can be described by the phase rotations 
from zero to           of the two polarization modes, while the 
amplitudes of the two modes are kept almost constant.  
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