Chapter 4 Coherent Computing

	Quantum Computing		Coherent Computing	
Information Carrier	Spin-1/2 particle (localized)		Coherent states of light or matter (non-local)	
Operational Principle	Unitary evolution in closed system		Quantum phase transition in open system	
Implementation Schemes	(1) Quantum circuits	(2) Adiabatic evolution	(3) Injection- locked laser network	(4) BEC network
Applications	Factoring Quantum chemistry Quantum repeater	Combinatorial optimization (exponential)	Combinatorial optimization (polynomial)	Quantum simulation

4.1 Ising model

Optimization problems are ubiquitous in our modern life. •

Find the specific values of M variables $\sigma_{1,j}\sigma_{2,...}\sigma_{M}$ to minimize the cost function $E(\boldsymbol{\sigma}_{1},\boldsymbol{\sigma}_{2,\ldots},\boldsymbol{\sigma}_{M}).$

If such an optimization problem can be solved in polynomial time only by non-deterministic Turing machine, such a problem is said to belong to

class NP (Non-deterministic Polynomial)

However, this non-deterministic Turing machine cannot be simulated efficiently by a deterministic Turing machine, and thus

class NP is computationally hard

• NP-complete problem \rightarrow subset of class NP

Any NP problems can be mapped to an arbitrary NP-complete problem.

If one has an efficient machine to solve one particular NP-complete problem, then one can solve any NP problems efficiently.

R. M. Karp, Reducibility among combinatorial problems, in Complexity of Computation (Plenum, New York, 1972) P.85, eds: R. E. Miller and J. W. Thatcher

• The ground state search problem of an Ising Hamiltonian,

$$H = \sum_{i < j} J_{ij} \sigma_{iz} \sigma_{jz} + \sum_{i} \lambda_i \sigma_{iz}$$

is NP-complete if the Ising coupling J_{ij} cannot be represented in a twodimensional graph without crossing. Such a problem is called a 3D or non-planar Ising model. It is also NP-complete if J_{ij} can be represented in a two-dimensional graph but there is a Zeeman term (induced by dc magnetic field), i.e. $\lambda_i \neq 0$.

Here an Ising spin takes only $\sigma_{iz} = +1$ or -1.

[F. Barahona, J. Phys. A: Math. Gen. 15, 3241 (1982)]

4.2 Injection-locked laser network

• Ising spin $\sigma_{iz} = \pm 1$ is represented by the right or left circular polarization of the lasing photon in the slave laser i (i=1,2, ... M).

• A master laser output is split into M paths and injected into M slave lasers. If the master laser output is vertically polarized, the polarization state of each photon in the master laser output is

$$V\rangle = \frac{1}{\sqrt{2}}(|R\rangle + |L\rangle).$$

right circular left circular polarization polarization

• It is expected that the polarization state of the slave laser is injectionlocked to that of the injection signal from the master laser so that the polarization state of a slave laser is in a so-called "spin coherent state":

$$|\psi\rangle_s = \prod_i \frac{1}{\sqrt{2}} (|R\rangle + |L\rangle)_i = |\theta = \frac{\pi}{2}, \varphi = 0\rangle.$$

• The Ising interaction term J_{ij} can be implemented by a horizontal polarizer in the optical path between the two slave lasers i and j, as will be shown later.

The Zeeman term λ_i can be implemented by including a horizontal polarization component in the injection signal from the master laser, as will be shown later. Experimentally, this can be achieved by inserting a half-wave plate and quantum-wave plate in the optical path between the master laser and the slave laser i.

- Coherent computation is switched on either by abruptly implementing the Ising coupling J_{ij} at t=0 or by gradually increasing the pump rates for all slave lasers from below threshold to above threshold.
- Computational results can be read out by detecting the right and left circularly polarized photons from each slave laser and making a majority vote.

4.3 Theoretical model4.3.1 Quantum theory of an injection-locked laser

Glauber-Sudarshan diagonal $P(\alpha)$ representation:

Substitution into the master equation of an injection-locked laser. [H.A, Haus and Y. Yamamoto, PRA 29, 1261 (1984)]

Quantum mechanical Fokker-Planck equation:

 $\kappa = \sqrt{\frac{\omega}{Q_e}}$: coupling constant of an injection signal into a slave laser

 β : (complex) eigenvalue of an injection signal

 $(|\beta|^2 = average photon number per second)$

- ω : master laser (angular) frequency
- ω_j : slave laser (angular) frequency

Equivalent to c-number stochastic differential equation (CSDE):

$$\begin{split} \frac{d}{dt} \alpha(t) &= \frac{1}{2} \left(E_{cv} - E_{vc} - \frac{\omega}{Q} \right) \alpha(t) + \kappa \beta(t) e^{-i(\omega_j - \omega)t} \\ \uparrow & \uparrow & \uparrow \\ \text{drift term} & \text{injection term} \\ \text{excitation amplitude} \\ \text{of lasing mode} &+ \sqrt{\frac{1}{2} \left(E_{cv} + E_{vc} \right) \Gamma_{\alpha}(t)} \\ & & & & & \\ \text{diffusion term} \end{split}$$

 E_{cv} : stimulated emission rate

 E_{vc} : absorption rate

The noise term (diffusion term) does not include the vacuum fluctuation associated with the out-coupling loss ^ω/_Q. This is because the zero-point-fluctuation is already included in the basis states, i.e. coherent states |α⟩.

4.3.2 Minimum gain principle

If we neglect the noise terms in the CSDE, we can write down the rate equations for the average photon number $n(t) \equiv |\alpha(t)|^2$ and the average electron number N for each slave laser:

$$\begin{aligned} \frac{d}{dt}n_{Ri} &= -\left(\frac{\omega}{Q} - E_{cvi}\right)n_{Ri} + E_{cvi} \\ &+ 2\left(\frac{\omega}{Q}\right)\sqrt{n_{Ri}}\left[\left(\zeta - \eta_i\right)\sqrt{n_M} - \sum_{j\neq i}\frac{1}{2}\xi_{ij}\left(\sqrt{n_{Rj}} - \sqrt{n_{Lj}}\right)\right] \\ \frac{d}{dt}n_{Li} &= -\left(\frac{\omega}{Q} - E_{cvi}\right)n_{Li} + E_{cvi} \\ &+ 2\left(\frac{\omega}{Q}\right)\sqrt{n_{Li}}\left[\left(\zeta + \eta_i\right)\sqrt{n_M} + \sum_{j\neq i}\frac{1}{2}\xi_{ij}\left(\sqrt{n_{Rj}} - \sqrt{n_{Lj}}\right)\right] \\ \frac{d}{dt}N_i &= P - \frac{N_i}{\tau_{sp}} - E_{cvi}\left(n_{Ri} + n_{Li} + 2\right) \end{aligned}$$

 n_M : average photon number of the master laser

 $\frac{\omega}{Q_e} = \frac{\omega}{Q_{Me}}$: equal external Q values for slave and master lasers

 τ_{sp} : spontaneous emission lifetime

p : pumping rate (electrons per second)

 $E_{vc} = 0$: no absorption (\rightarrow complete population inversion)

- ζ : fraction of vertical polarization component in the master signal
- η_i : fraction of horizontal polarization component in the master signal (\rightarrow implementation of Zeeman term)
- ξ_{ij} : Mutual coupling coefficient between slave lasers i and j (\rightarrow implementation of Ising coupling term)

Ŷ

Steady state solution (given by $\frac{d}{dt}n_{Ri} = \frac{d}{dt}n_{Li} = \frac{d}{dt}N_i = 0$):

$$E_{cvi} = \frac{\omega}{Q} - 2\frac{\omega}{Q}\zeta \frac{\sqrt{n_M}\left(\sqrt{n_{Ri}} + \sqrt{n_{Li}}\right)}{n_T}$$

reduced threshold gain by vertically polarized master signal

$$+2\frac{\omega}{Q}\frac{\sqrt{n_{Ri}}-\sqrt{n_{Li}}}{\sqrt{n_T}}\left[\eta_i\frac{\sqrt{n_M}}{\sqrt{n_T}}+\sum_{j\neq i}\frac{1}{2}\xi_{ij}\frac{\sqrt{n_{Rj}}-\sqrt{n_{Lj}}}{\sqrt{n_T}}\right]$$

modulated threshold gain by horizontally polarized master signal modulated threshold gain by horizontally polarized slave laser signals • The injection-locked laser network has an overall threshold gain,

$$\sum_{i=1}^{M} E_{cvi}$$

which depends on the polarization configurations $\{n_{Ri},n_{Li}\}$ of all slave lasers.

• The injection-locked laser network chooses a particular polarization configuration which minimizes the overall threshold gain, $\sum_{i=1}^{M} E_{cvi}$, and realizes a single mode oscillation with this

particular polarization configuration.

• After such a minimum gain mode is selected by the injection-locked laser network, $n_T \simeq n_{Ri} \gg n_{Li}$ or $n_T \simeq n_{Li} \gg n_{Ri}$. Then,

$$2\frac{\omega}{Q}\zeta\frac{\sqrt{n_M}\left(\sqrt{n_{Ri}}+\sqrt{n_{Li}}\right)}{n_T} \simeq 2\frac{\omega}{Q}\zeta\sqrt{\frac{n_M}{n_T}}$$

constant and independent of the polarization state

• If we define the effective Ising spin by

$$\sigma_{\rm iz} = \frac{\sqrt{n_{Ri}} - \sqrt{n_{Li}}}{\sqrt{n_T}},$$

$$\sum_{i=1}^{M} E_{cvi} = \frac{\omega}{Q} \left[1 - 2\zeta \sqrt{\frac{n_M}{n_T}} \right] \cdot M + \sum_{i < j} \underbrace{\xi_{ij} \sigma_{iz} \sigma_{jz}}_{J_{ij}} + \sum_{i} \frac{\eta_i \sqrt{\frac{n_M}{n_T}} \sigma_{iz}}{\sqrt{\frac{n_M}{n_T}}} \sigma_{iz}$$
constant
$$\bigcup$$

The single lasing mode is identical to the ground state of the Ising model which minimizes the cost function:

$$E\left(\sigma_{1z},\sigma_{2z}\cdots\sigma_{Mz}\right) = \sum_{i< j} J_{ij}\sigma_{iz}\sigma_{jz} + \sum_{i} \lambda_i\sigma_{iz}$$

• Actual choice of the amplitude attenuation parameter α for the injection signal is determined by the relation,

$$\xi_{ij} = \alpha \frac{J_{ij}}{\max\left\{|J_{ij}|, |\lambda_i|\right\}}$$
$$\eta_i = \alpha \sqrt{\frac{n_T}{n_M}} \frac{\lambda_i}{\max\left\{|J_{ij}|, |\lambda_i|\right\}}$$

We choose $\alpha \ll 1$ in order to operate the injection-locked laser network in a weak perturbation regime.

4.3.3 Working equations

We employ the diagonal linear polarization states $(|D\rangle, |\overline{D}\rangle)$ as the basis set. The polarization evolution from the initial state $|V\rangle$ to the final state, $|R\rangle$ or $|L\rangle$, can be described by the phase rotations from zero to $\pm \pi/2$ of the two polarization modes, while the amplitudes of the two modes are kept almost constant.