
2.2.3. Multiple solutions

If there are r > 1 marked states and r is known, we can still speed up 
the search.

(We will discuss later on how to find r if it is not known
 phase estimation algorithm).

: linear superposition of marked (target) states̃ 
1


r

 : linear superposition of marked (target) states

rotation operator

  
r

 i
i1


ˆ Q   ˆ I 
ˆ U 1 ˆ I ̃ 

ˆ U 

ˆ I  2 i
i1

r

  i

ˆ rotates the vector in the 2-D vector space spanned by and 

, where

The initial state is transferred to the target state after 

ˆ Q 

ˆ U 1 ˜  by
sin ~ ~ 2

r

2n


a number of iterations 

In order to truncate the 
iteration at the optimum point, 
we must know r. 

projective measurement one of the target states


2 



4

2n

r

projective measurement one of the target states 
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2.2.4. Geometric picture

1
'

x

x
N r

 

 : sum over all x which are not the targets of 

the search problem.

1
"

x

x
r

   : sum over all x which are the targets of 
the search problem.

initial state cos sin
2 2

N r r      
   

2 2N N
  

(after the first W-H gate)

and all vectors in2
ψO

are now exactly 
orthogonal.

are reflected with respect to 
the corresponding vectors in

initial state

2

0

Grover oracle = reflection about the vector 

is preserved but
is flipped

1

 reflection about the vector 
= rotation by 

Continued application of Grover iterations: 

2 1 2 1k k    

16

2 1 2 1ˆ cos sin
2 2

k k k
Q             

   
optimum 
iteration: target state



2.2.5. Grover algorithm is optimum

Let’s consider the search problem with a single solution (target) x.

oracleoracle

initial state

unitary operation

without oracle 
operation

Measure of the deviation after k steps:

We aim to demonstrate

1) Dk can grow no faster than O(k2).
2) Dk must be  (N) if the probability of success is high.

“A quantum computer cannot search N items by consulting the oracle 
fewer than                times.”

“Grover algorithm is optimum.”

17



proof of 1): 

This is clearly true for k=0, where Dk=0. 

(            does not change             )( g )

(Cauchy-Schwarz inequality for 2nd term)

If                     , then

The inductive proof is completed.

18



proof of 2): 

Replacing        by              does not change the success probability.

for all x so that the success probability

without loss of generality

Define ,   then

Define ,   then

Cauchy-Schwarz inequality

19



for sufficiently  large N

constant less thanconstant less than 

Since                    ,  k must be greater than

To achieve a probability of success                for finding a solution in
the search problem, we must call the oracle                    times.

No further improvement is allowed by quantum mechanics. This is 
because there is no (hidden) structure in the Grever search problem.

2 2 6 A i l h t i t f t f i l ti2.2.6. A single photon interferometer for implementing 
Grover algorithm

photon
0
1 

0


0

answer

 i     i  0 

1
2

2 n 1

q  q q  q

1

2


2n 1

1

2


2n 1

q  q i   

i 
 i   
0 i   




i 
 i  0 
0 i  0 





2n repetition
20



2.3 Quantum Fourier transform

discrete Fourier transform

yk 
1

N
xle

i
2kl

N
N 1

 (N=2n)

input

quantum Fourier transform

N l 0


x0 , x1,    xN1 

211 klN iF Nl e k


 

output y0, y1,    yN1 

0k

l e k
N 

 

1 1

0 0

N N
F

l k
l k

x l y k
 

 

 
Linear superposition Simultaneous calculation of all yk s. 

outputinput

notation for N=2n (n qubit case):

l  l1l2      ln  l  l12
n 1  l2 2 n2       ln 20

0 0l k

similarly, 1
1 2 1

0.
2 2 2

pm m
m m p p m

ll l
l l l l 

         

quantum Fourier transform (2)
22 1
2

1
n

n

kl
i

l e k


 

1

2

0

1 2
1 2 1 2

2 21 1 1

2

2 2

1
n

j
j

j

n
k

n n
n n

i l k

l e k

k k k k k k k

e k k k
 





 



     


        



 

 

21

1 2

1 2
0 0 02 n

nn
k k k

e k k k
  

  

2 2

1

j
j

n
i lk

j

e  




j1

n

 kj




1

2n
     

j1

n

e
i 2lk j 2 j

kn


k1

 kj

 1

2n
j1

n

 e
i 2lk j 2 j

k 0

1

 kj









2 j1 k j 0 


1

2n
j1

n

 0  ei 2l 2 j

1 
 1

2n
0  ei2 0.ln 1  0  ei2 0.ln1ln 1      0  ei2 0.l1l2 ln 1  

2

Example: j = 1
2

1 12
2 2

n n
nj

ll
l l

     0. nl

do not contribute to the phase factor (multiple of 2)

N = 3 case

third qubit

Circuit Implementation:

swap
second qubit

first qubit

2 controlled rotation
2

R


 
2

1 0

0
i

e


 
 
 
 

Controlled-phase shift gate is invariant if control and target 
qubits are exchanged. commute

3 controlled rotation
4

R


 
4

1 0

0
i

e


 
 
 
 
 

22
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In order to construct the quantum Fourier transform gate, we need a 
Walsh-Hadamard gate and controlled-phase shift gate:

Hi 
1

2

1 1

1 1






0
i

1
i

computational basis

2l

  computational basis

 2 1R l 

input state:  1 1
ˆ 2 0.

1 2

1
0 1

2
H i j

n nj j e j j      

 3 2R l 

ei2 0. j1 
1 : j1  0

1 : j1 1




 2 1 2
ˆ 2 0.

2

1
0 1

2
R i j j

ne j j  

 

  

3 4 1 2

2 1 2 2

ˆ ˆ ˆ 2 0.
2

ˆ 2 0. 2 0.
32

2
1

0 1
2

1
0 1 0 1

2

n n

n

R R R i j j j
n

H i j j j i j
n

e j j

e e j j



 

 



  

   

23

  2 1 1 2 2
ˆ ˆ 2 0. 2 0.

32

1
0 1 0 1

2
n n nR R i j j j i j j

ne e j j      



1

2n
0  ei 2 0. j1 j2  j n 1  0  ei2 0. j2  j n 1 

continuation of the similar operations

1 i 2 0 j  i2 0 j j 

2

   0  ei 2 0. j n 1 
swap operation

1

2n
0  ei 2 0. j n 1  0  ei2 0. jn1 j n 1 

   0  ei 2 0. j1 j2  j n 1 

24



Appendix. Number theoretic preparation for Shor’s algorithm

Factoring algorithm

1 Choose a positive integer number x randomly which is smaller1 Choose a positive integer number x randomly which is smaller 
than N and relatively prime to N. Find an order r defined by the 
relation:

xr  1 mod N  xr  p N  1

smallest positive 
integer

positive integer

2 If r is an even number,

, and alsox
r

2 1



 


 x

r

2 1



 


 pN

provides the factors of N.

if , or

greatest common divisor

   

gcd x
r

2 1, N



 


gcd x

r

2 1, N



 


x

r

2  1  0 mod N 

3 If r is an odd number or , and

provide the trivial factors 1 and N.

try another positive integer number x

x
r

2  1 0 mod N  gcd x
r

2 1, N



 




gcd x
r

2 1, N



 




The probability of finding a desired r for a randomly chosen 
x is greater than 50%. (Chinese reminder theorem)

1 
1

2k 1 
1

2
k: # of distinct oddk: # of distinct odd 

primes of N
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Example: N = 15, x = {2, 4, 7, 8, 11, 13, 14}

i) x = 2 x 4 = 16 = 15 + 1

r = 4 (order)r = 4 (order)

x r/2 - 1 = 3

x r/2 + 1 = 5

gcd (3, 15) = 3

gcd (5, 15) = 5

ii) x = 4 x 2 = 16 = 15 + 1

r = 2 (order)

x r/2 - 1 = 3

x r/2 + 1 = 5

iii) x = 7 x 4 = 2401 = 15 x 60 + 1) x 0 5 60

r = 4 (order)

x r/2 - 1 = 48

x r/2 + 1 = 50

gcd (48, 15) = 3

gcd (50, 15) = 5

i ) 8 4 4096 15 273 + 1iv) x = 8 x 4 = 4096 = 15 x 273 + 1

r = 4 (order)

x r/2 - 1 = 63

x r/2 + 1 = 65

gcd (63, 15) = 3

gcd (65, 15) = 5

v) x = 11 x 2 = 121 = 15 x 8 + 1

r = 2 (order)

x r/2 - 1 = 10

x r/2 + 1 = 12

gcd (10, 15) = 3

gcd (12, 15) = 5
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vi) x = 13 x 4 = 28561 = 15 x 1904 + 1

r = 4 (order)

x r/2 - 1 = 168

x r/2 + 1 = 170

gcd (168, 15) = 3

gcd (170 15) = 5

vii) x = 14 x 2 = 196 = 15 x 13 + 1

r = 2 (order)

x r/2 - 1 = 13 gcd (13, 15) = 1

x r/2 + 1 = 170 gcd (170, 15)  5

x r/2 + 1 = 15 gcd (15, 15) = 15

Euclidean algorithm for gcd (x r/2 1, N  )

gcd (a, b) (a > b)gcd (a, b) (a b)

(1) Compare a-b and b, subtract a small number from a large number

(2) Repeat the process.

(3) The number just before the final result (zero) is a desired result gcd (a, b).

Example: gcd (20, 12)

a b

20 12

8

4

4

0
final
result

desired
result
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Interpretation:

If there is a non-
t i i l d f d

How many?

trivial gcd for a and 
b, we can put this 
number of coins in 
each packet.

20 12How
many

?

8 4

?

zero

Finding a gcd (x r/2 1, N ) takes ~( log N )3 computation steps.

polynomial time 

4

The difficulty of factoring a large compound number N is the step 
of finding an order r. 
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