2.2.3. Multiple solutions

If there are r > 1 marked states and r is known, we can still speed up

the search.

(We will discuss later on how to find r if it is not known
—  phase estimation algorithm).

|;) - % Z|Ti> : linear superposition of marked (target) states
i=1

"N

. A A | g
rotation operator Q ==L U ".U
\ ~ r
| - 22|Ti>(fi|
i=1
(Ag rotates the vector in the 2-D vector space spanned by |y) and

U77) by @, where ”
sin@~ @9 ~ ZJ;

The initial state [} is transferred to the target state {7 ~1|7) after
a number of iterations

T T [2" In order to truncate the
—2 0 = Z — < jteration at the optimum point,
' r we must know r.

U

projective measurement ——>> one of the target states
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2.2.4. Geometric picture

)=
53

N =2"

initial state |gy / | \/7|,B cos—| +S|n—|,6’>

(after the first W-H gate)

> : sum over all x which are not the targets of
the search problem.

x> : sum over all x which are the targets of
the search problem.

4 13)
) and |5) e all vectors in Olw)
Gl
are now exactly -,,_M are reflected with respect to
orthogonal. the corresponding vectors in |1)
v V) <—(0) initial state
)

ol ) is preserved but
LA 18) is flipped

Grover oracle = reflection about the vector ‘Ot>
x reflection about the vector ‘z//>

= rotation by &

Continued application of Grover iterations:
Q" y) = cos(2k2+1¢9j\ a) +sin(2k2+16?j\,8>

optimum 2k+1,  ~m
iteration: T‘g—g :> target state  |£5) 16




2.2.5. Grover algorithm is optimum

Let’s consider the search problem with a single solution (target) x.
= oracle O, =1 —2|z){z|

7y = UpOpUp 104 -+ - - U0 1o
,\ N initial state

unitary operation

\ without oracle
operation

Measure of the deviation after k steps: D = > _ || — ¥ ||
= N X

Vi) |Pk)

We aim to demonstrate

1) D, can grow no faster than O(k?).
2) D, must be 2 (N) if the probability of success is high.

4

“A quantum computer cannot search N items by consulting the oracle
fewer than o (vVN) times.”

4

“Grover algorithm is optimum.”



proof of 1): D, < 4k?

This is clearly true for k=0, where D,=0.
Dyy1 =Y 11020 — vell® (04 doesnot change D41 )

Di1 < Y (19 = dull® + 4108 — welll(zleon)] + 4/ (Vul)]?)

(Cauchy-Schwarz inequality for 2" term)
1/2 1/2
<Dy +4 (Z [k — ¢k||2) (Z |(¢k|$'>’2) +4

< Dp+4v D +4

U

If D, < 4k* | then

Djy1 < 4k* + 8k +4 = 4(k +1)*

U

The inductive proof is completed.

18



proof of 2): |{z|¥F)]|? > 1/2 for all x so that the success probability > 1/2

Replacing ) by e®|z) does not change the success probability.

4

{(x|vg) = |{z|yr)| without loss of generality

4

I —z)|* = 2 = 2Jefvf)| < 2- V2

Define B =Y [ — i, then By < (2~ V2) N

Define Fr =Y |l —¢§|*, then Fx >2N —2VN

I
@ {(l—\/—lﬁ) +(N—l)><%}><N

D= SN0~ )+ (e~ )P
> Z 1 —50||2—QZH% — x|z — x| +Z||3?—¢k|!2
= By + Fj, —QZH% — x|z — i

Cauchy-Schwarz inequality

Z e — z[lllz — il < v ErF

i

2
D, > Ep + Fy — 2/E F, = (\/E _ \/Fk)

19



4

Dy > C' - N forsufficiently large N

2
constant less than (\/5 _ 49 _ \/5) ~ (.42

Since Dy, < 4k?, k must be greater than & > M%N

&

To achieve a probability of success > 1/2 for finding a solution in
the search problem, we must call the oracle (\/N) times.

4

No further improvement is allowed by quantum mechanics. This is
because there is no (hidden) structure in the Grever search problem.

2.2.6. A single photon interferometer for implementing
Grover algorithm

photon
[ 7aVaV¥a® N Bamn @ @ —
1 — () (3 |
2 (4 ()
axap v faxql o TTTTAX0] A @ (i=17)
\ g ! ' answer
1l -
|z (i=1) Jz (i=0)
\\"j"{o (i # 7) ﬂ‘{o (i+0) p
\/

J2" repetition
20



2.3 Quantum Fourier transform
discrete Fourier transform

1 v —2n
Yo==2xe v (N2
//, N _
output (yo, Yoo yN_l) Input (XO'Xl’ o XN—l)

quantum Fourier transform
N—1 .27kl

H— ZENH

Linear superposition = Simultaneous calculation of all y, s.

TZ?XI‘I>LA)EZ_:yk‘k>
BN AN

input output
notation for N=2" (n qubit case):
n-1 n-2 0
=1l — 1 =12""41,2"% o] 2
similarly, | =0.1.l_.----- | _Iﬂ+|m+1+ ..... + Ip
L m m+1 p 2 22 2p—m+1

quantum Fourier transform (2)
on_ 27zk|

N3

—k=kk, -k =k2""+k, 2" +---+k

2’"‘2—1 / é()eiz;zlkj 2] C;()|kj>

k—0 =1



_ @ [qo>+ ei27r0.|n|1>ﬂ0>+ei2ﬂ'0.|n1|n |1>) ..... q0> 1 @270kl -1y |1>):|
|

Example:j=1

I_-:|12n—2 +....+In_l+% :> O, Iﬂ

2 W J

do not contribute to the phase factor (multiple of 2x)

Circuit Implementation:

N = 3 case
third qubit  |z1)— H R; Rs Y1)
| swap
second qubit |z2) H R, |y2)
first qubit  |x3) . l H ) lys)
1 0
R, =contro|led—%rotation —> { ]
0 e?

1 0
R3=controlled—%rotation —> [ ]

0 e*

Controlled-phase shift gate is invariant if control and target

qubits are exchanged. commute
1) —| BT T | Y1)
x swap
|20)——— Ry H T |92)
|
|23) R Ry H ) ly3)

22



In order to construct the quantum Fourier transform gate, we need a
Walsh-Hadamard gate and controlled-phase shift gate:

Lo 11 110,
T2 -,
T computational basis
L {Jo)
: ¢ 1), ),
0=§ - computational basis
, (1=1)
; (! 22)
input state:| j, -+ j,) ul >j§(\0>+ei2”0'jl 1>)Uz""jn>
ei27z0.j1 _ 1 jl :0
-1} =1
R 1 i270. ;] H -
R, ﬁ(‘O>+ez 01112‘1>)‘ i, .ln>

RR, R S \;_E (‘O>_|_ei2;zo.j1j2...jn ‘1>)‘ j2 Jn>

H, 1 (‘O>+ei27z0.jlj2-~-jn‘1>)(‘0>+ei27r0.j2

D) s+ i)




@ continuation of the similar operations

1

¥2"

QO) + e‘2”°-1'11'2'"in|1))10> + eizﬂo-h"'in|1))- .
(|0} + €7 [2))

@ swap operation

qo>+ei27z0.jn|1>xo>+eizﬁo.jn_ljnl:[))m
Q()) + eiZ”O-jljz---jnll»

1

¥2"
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Appendix. Number theoretic preparation for Shor’s algorithm

Factoring algorithm

1 Choose a positive integer number x randomly which is smaller
than N and relatively prime to N. Find an order r defined by the
relation:

X' =1(modN) —> x'=p-N+1

/ N\

smallest positive  positive integer

_ integer
2 Ifris an even number,

(xz +1](xE —1) = PN | and also

r r r
if x2+1#0(modN) , gcd(x2 +1, Nj or gcd[x2 -1, N]
provides the factors of N.

greatest common divisor

3 Ifrisanodd numberor x2+1=0(modN), gchXE +1, Nj and
gcd(xE -1, Nj provide the trivial factors 1 and N.

> try another positive integer number x

The probability of finding a desired r for a randomly chosen

X is greater than 50%. (Chinese reminder theorem) 1 1
o — >—
k-1

2 2
k: # of distinct odd
primes of N



Example: N=15,x={2,4,7, 8, 11, 13, 14}

) x=2 x4=16=15+1
r = 4 (order)
x"-1=3 — ged (3,15) =3
x"+1=5——> gcd (5,15 =5

i) x=4 x?2=16=15+1
r = 2 (order)
x"-1=3
X" +1=5

l)yx=7 Xx4=2401=15x60+1
r = 4 (order)
x2-1=48 — gcd(43,15)=3
X" +1=50—— gcd (50, 15) =5

iv) x=8 Xx4=4096=15x 273 +1
r = 4 (order)
Xx"”_.1=63 ——» ng(63, 15):3
X" +1=65—— ng (65, 15):5

V) x=11 x2=121=15x8+1
r = 2 (order)
x7”_.1=10 —— ng(lO,lS):?)
X" +1=12 —— gcd(12,15) =5



vi)x=13  x4=28561=15x1904 +1
r = 4 (order)
X" -1=168 — gcd (168, 15) =3
X "2 +1=170 — gcd (170, 15) =5

vi)x=14 x2=196=15x13+1
r = 2 (order)
1= d(13,15) =1
Xx"-1=13 ~ \ ged ( )
x”+1=15 7\ gcd(15,15)=15

Euclidean algorithm for ged (x "2+ 1, N )

gcd (a, b) (@a>Dh)

(1) Compare a-b and b, subtract a small number from a large number
(2) Repeat the process.

(3) The number just before the final result (zero) is a desired result gcd (a, b).
Example: gcd (20, 12)
AN
a b

20 —> 12

8 — 4

desired —=> / — final
result > 0 result



Interpretation: How many?

@

Finding a gcd (x "2£ 1, N') takes ~( log N )3 computation steps.
—> polynomial time

The difficulty of factoring a large compound number N is the step
of finding an order r.

If there is a non-
trivial ged for a and
b, we can put this
number of coins in
each packet.

&
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