2.2.3. Multiple solutions

If there are r > 1 marked states and r is known, we can still speed up the search.

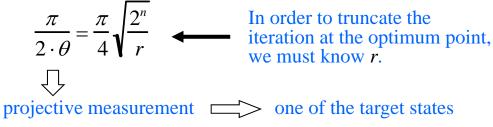
(We will discuss later on how to find r if it is not known \rightarrow phase estimation algorithm).

 $|\tilde{\tau}\rangle = \frac{1}{\sqrt{r}} \sum_{i=1}^{r} |\tau_i\rangle$: linear superposition of marked (target) states

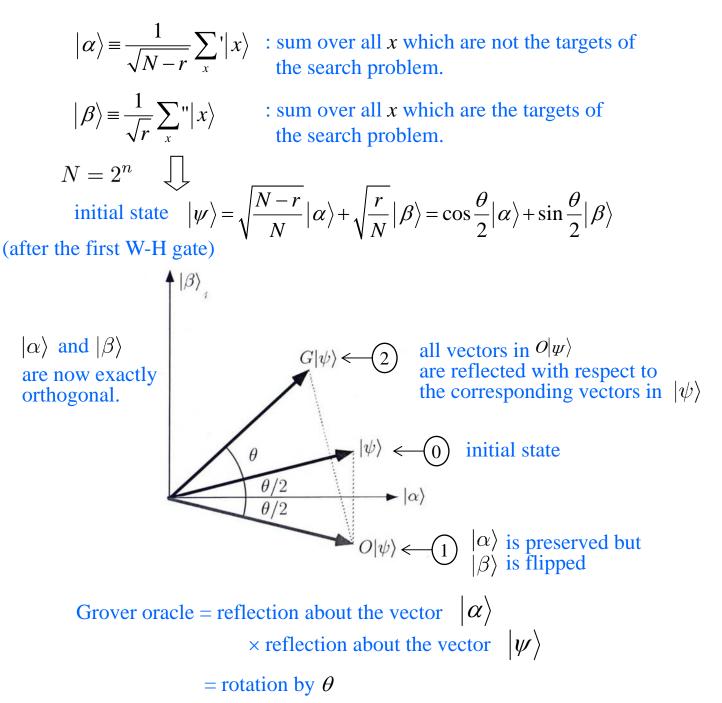
rotation operator $\hat{Q} = -\hat{I}_{\gamma}\hat{U}^{-1}\hat{I}_{\tilde{\tau}}\hat{U}$ $\hat{I} - 2\sum_{i=1}^{r} |\tau_i \rangle \langle \tau_i |$

 \hat{Q} rotates the vector in the 2-D vector space spanned by $|\gamma\rangle$ and $\hat{U}^{_{-1}} | \tilde{ au}
angle$ by heta , where $\sin\theta \sim \theta \sim 2\sqrt{\frac{r}{2^n}}$

The initial state $|\gamma\rangle$ is transferred to the target state $\hat{U}^{-1}|\tilde{\tau}\rangle$ after a number of iterations



2.2.4. Geometric picture



Continued application of Grover iterations:

$$\hat{Q}^{k} |\psi\rangle = \cos\left(\frac{2k+1}{2}\theta\right) |\alpha\rangle + \sin\left(\frac{2k+1}{2}\theta\right) |\beta\rangle$$

optimum iteration: $\frac{2k+1}{2}\theta \simeq \frac{\pi}{2}$ \longrightarrow target state $|\beta\rangle$ 16

2.2.5. Grover algorithm is optimum

Let's consider the search problem with a single solution (target) x.

unitary operation

$$|\psi_k\rangle = \hat{U}_k \hat{U}_{k-1} \cdots \hat{U}_1 |\psi_0\rangle$$

without oracle operation

Measure of the deviation after *k* steps:

$$D_k = \sum_{x} ||\psi_k^x - \psi_k||^2$$
$$|\psi_k^x\rangle \quad |\psi_k\rangle$$

We aim to demonstrate

1) D_k can grow no faster than $O(k^2)$.

2) D_k must be $\Omega(N)$ if the probability of success is high.

Ŷ

"A quantum computer cannot search N items by consulting the oracle fewer than $O(\sqrt{N})$ times."

Û

"Grover algorithm is optimum."

proof of 1): $D_k \leq 4k^2$

This is clearly true for k=0, where $D_k=0$. $D_{k+1} = \sum \|\hat{O}_x \psi_k^x - \psi_k\|^2 \quad (\hat{U}_{k+1} \text{ does not change } D_{k+1})$ $= \sum_{k} \|\hat{O}_{x} (\psi_{k}^{x} - \psi_{k}) + \left(\hat{O}_{x} - \hat{I}\right) \psi_{k}\|^{2}$ 个 $||b + c||^2 \le ||b||^2 + 2||b|| ||c|| + ||c||^2$ $\int \hat{O}_x - \hat{I} \psi_k = -2\langle x | \psi_k \rangle | x \rangle$ $\hat{O}_x \left(\psi_k^x - \psi_k \right)$ $D_{k+1} \le \sum_{k=1}^{\infty} \left(\|\psi_k^x - \psi_k\|^2 + 4\|\psi_k^x - \psi_k\| |\langle x|\psi_k\rangle| + 4|\langle \psi_k|x\rangle|^2 \right)$ (Cauchy-Schwarz inequality for 2nd term) $\leq D_k + 4\left(\sum \|\psi_k^x - \psi_k\|^2\right)^{1/2} \left(\sum |\langle \psi_k | x' \rangle|^2\right)^{1/2} + 4$ $\leq D_k + 4\sqrt{D_k} + 4$ If $D_k \leq 4k^2$, then $D_{k+1} < 4k^2 + 8k + 4 = 4(k+1)^2$ ጘዞ

The inductive proof is completed.

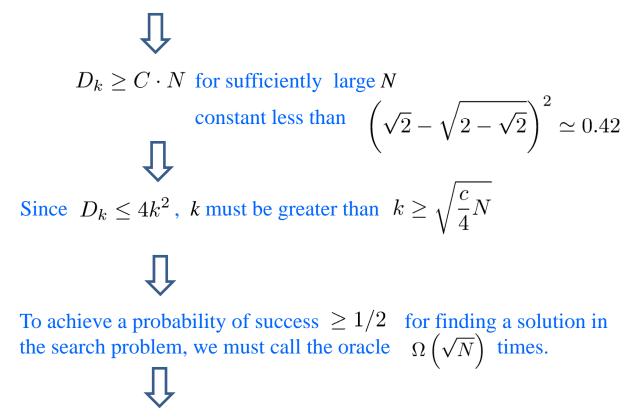
proof of 2): $|\langle x | \psi_k^x \rangle|^2 > 1/2$ for all x so that the success probability > 1/2Replacing $|x\rangle$ by $e^{i\theta}|x\rangle$ does not change the success probability.

$$\langle x | \psi_k^x \rangle = |\langle x | \psi_k^x \rangle| \text{ without loss of generality}$$

$$\int \\ \|\psi_k^x - x\|^2 = 2 - 2|x|\psi_k^x\rangle| \le 2 - \sqrt{2}$$
Define $E_k \equiv \sum \|\psi_k^x - x\|^2$, then $E_k \le \left(2 - \sqrt{2}\right) N$

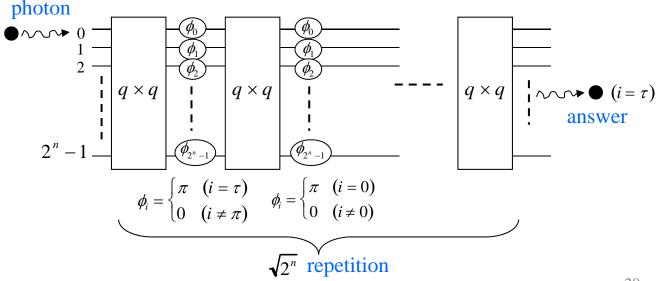
Define
$$E_k \equiv \sum_x ||\psi_k^x - x||^2$$
, then $E_k \le (2 - \sqrt{2}) N$
Define $F_k \equiv \sum_x ||x - \psi_k^x||^2$, then $F_k \ge 2N - 2\sqrt{N}$
 $f = \sum_x ||x - \psi_k^x||^2$, then $F_k \ge 2N - 2\sqrt{N}$
 $\int ||x - \frac{1}{\sqrt{N}}|^2 + (N - 1) \times \frac{1}{N}| \times N$
 $D_k = \sum_x ||\psi_k^x - x|| + (x - \psi_k)||^2$
 $\ge \sum_x ||\psi_k^x - x||^2 - 2\sum_x ||\psi_k^x - x|| ||x - \psi_k|| + \sum_x ||x - \psi_k||^2$
 $= E_k + F_k - 2\sum_x ||\psi_k^x - x|| ||x - \psi_k||$
 $\int ||x - \psi_k|| \le \sqrt{E_k F_k}$
 $D_k \ge E_k + F_k - 2\sqrt{E_k F_k} = (\sqrt{E_k} - \sqrt{F_k})^2$

19



No further improvement is allowed by quantum mechanics. This is because there is no (hidden) structure in the Grever search problem.

2.2.6. A single photon interferometer for implementing Grover algorithm



2.3 Quantum Fourier transform

discrete Fourier transform

$$y_{k} = \frac{1}{\sqrt{N}} \sum_{l=0}^{N-1} x_{l} e^{i\frac{2\pi kl}{N}} \qquad (N=2^{n})$$

output $(y_{0}, y_{1}, \cdots, y_{N-1})$ input $(x_{0}, x_{1}, \cdots, x_{N-1})$

quantum Fourier transform

$$|l\rangle \xrightarrow{\hat{F}} \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{i\frac{2\pi kl}{N}} |k\rangle$$

Linear superposition \implies Simultaneous calculation of all y_k s.



notation for $N=2^n$ (*n* qubit case):

$$l = l_1 l_2 \cdots l_n \longrightarrow l = l_1 2^{n-1} + l_2 2^{n-2} + \cdots + l_n 2^0$$

similarly, $l = 0$. $l_m l_{m+1} \cdots l_p = \frac{l_m}{2} + \frac{l_{m+1}}{2^2} + \cdots + \frac{l_p}{2^{p-m+1}}$

quantum Fourier transform (2)

$$|l\rangle \longrightarrow \frac{1}{\sqrt{2^{n}}} \sum_{k=0}^{2^{n}-1} e^{i\frac{2\pi kl}{2^{n}}} |k\rangle$$

$$\leftarrow k = k_{1}k_{2}\cdots k_{n} = k_{1}2^{n-1} + k_{2}2^{n-2} + \dots + k_{n}$$

$$= \frac{1}{\sqrt{2^{n}}} \sum_{k_{1}=0}^{1} \sum_{k_{2}=0}^{1} \cdots \sum_{k_{n}=0}^{1} e^{i2\pi l\sum_{j=1}^{n} k_{j}2^{-j}} |k_{1}k_{2}\cdots k_{n}\rangle$$

$$\sum_{k=0}^{2^{n}-1} \sum_{k=0}^{n} e^{i2\pi lk_{j}2^{-j}} \bigotimes_{j=1}^{n} |k_{j}\rangle \qquad 21$$

$$= \frac{1}{\sqrt{2^{n}}} \sum_{k_{1}} \cdots \sum_{k_{n}} \bigotimes_{j=1}^{n} e^{i2\pi k_{j} 2^{-j}} |k_{j}\rangle$$

$$= \frac{1}{\sqrt{2^{n}}} \bigotimes_{j=1}^{n} \left[\sum_{k_{j}=0}^{1} e^{i2\pi l k_{j} 2^{-j}} |k_{j}\rangle \right]$$

$$= \frac{1}{\sqrt{2^{n}}} \bigotimes_{j=1}^{n} \left[0 \rangle + e^{i2\pi l k_{j} 2^{-j}} |1\rangle \right]$$

$$= \frac{1}{\sqrt{2^{n}}} \left[(0) + e^{i2\pi l k_{j} 2^{-j}} |1\rangle \right] (0) + e^{i2\pi l k_{j} 2^{-j}} |1\rangle$$

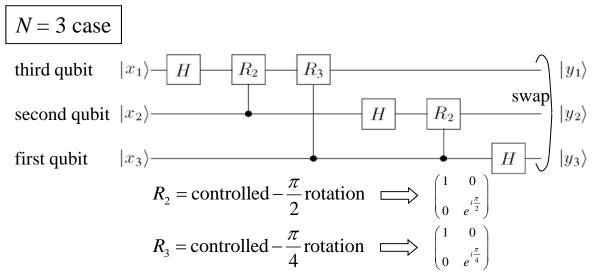
Example:
$$j = 1$$

$$\frac{l}{2^{j}} = \underbrace{l_{1}2^{n-2} + \dots + l_{n-1}}_{2} + \underbrace{\frac{l_{n}}{2}}_{2} \longrightarrow 0. \ l_{n}$$

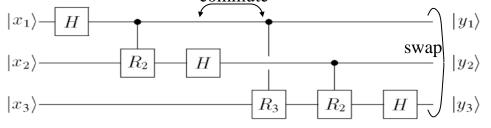
do not contribute to the phase factor (multiple of 2π)

22

Circuit Implementation:



Controlled-phase shift gate is invariant if control and target qubits are exchanged. commute



In order to construct the quantum Fourier transform gate, we need a Walsh-Hadamard gate and controlled-phase shift gate:

$$H_{i} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} |0\rangle_{i}$$

$$computational basis$$

$$R_{l} = \begin{bmatrix} 1 & & & \\ 1 & & & \\ & 1 & & \\ & & e^{i\theta} \end{bmatrix} |0\rangle_{i} |0\rangle_{k}$$

$$|0\rangle_{j} |1\rangle_{k}$$

$$|0\rangle_{j} |1\rangle_{k}$$

$$|1\rangle_{j} |0\rangle_{k}$$

$$|1\rangle_{j} |1\rangle_{k}$$

$$\theta = \frac{\pi}{2^{l}}$$

$$R_{2} \quad (l = 1)$$

$$R_{3} \quad (l = 2)$$

$$\vdots$$

input state:
$$|j_{1}\cdots j_{n}\rangle \xrightarrow{\hat{H}_{1}} \frac{1}{\sqrt{2}} (|0\rangle + e^{i2\pi 0.j_{1}}|1\rangle) |j_{2}\cdots j_{n}\rangle$$

 $e^{i2\pi 0.j_{1}} = \begin{cases} 1:j_{1} = 0\\ -1:j_{1} = 1 \end{cases}$
 $\xrightarrow{\hat{R}_{2}} \frac{1}{\sqrt{2}} (|0\rangle + e^{i2\pi 0.j_{1}j_{2}}|1\rangle) |j_{2}\cdots j_{n}\rangle$
 $\xrightarrow{\hat{R}_{3}\hat{R}_{4}\cdots\hat{R}_{n}} \frac{1}{\sqrt{2}} (|0\rangle + e^{i2\pi 0.j_{1}j_{2}\cdots j_{n}}|1\rangle) |j_{2}\cdots j_{n}\rangle$
 $\xrightarrow{\hat{H}_{2}} \frac{1}{\sqrt{2^{2}}} (|0\rangle + e^{i2\pi 0.j_{1}j_{2}\cdots j_{n}}|1\rangle) (|0\rangle + e^{i2\pi 0.j_{2}}|1\rangle) |j_{3}\cdots j_{n}\rangle$
 $\xrightarrow{\hat{R}_{2}\cdots\hat{R}_{n-1}} \frac{1}{\sqrt{2^{2}}} (|0\rangle + e^{i2\pi 0.j_{1}j_{2}\cdots j_{n}}|1\rangle) (|0\rangle + e^{i2\pi 0.j_{2}\cdots j_{n}}|1\rangle) |j_{3}\cdots j_{n}\rangle$

23

$$\int \operatorname{continuation of the similar operations} \\
\frac{1}{\sqrt{2^{n}}} \left(0 \right) + e^{i 2 \pi 0. j_{1} j_{2} \cdots j_{n}} |1\rangle \left(0 \right) + e^{i 2 \pi 0. j_{2} \cdots j_{n}} |1\rangle \cdots \\
\cdots \left(0 \right) + e^{i 2 \pi 0. j_{n}} |1\rangle \\
\int \operatorname{swap operation} \\
\frac{1}{\sqrt{2^{n}}} \left(0 \right) + e^{i 2 \pi 0. j_{n}} |1\rangle \left(0 \right) + e^{i 2 \pi 0. j_{n-1} j_{n}} |1\rangle \cdots \\
\cdots \left(0 \right) + e^{i 2 \pi 0. j_{1} j_{2} \cdots j_{n}} |1\rangle \right)$$

Appendix. Number theoretic preparation for Shor's algorithm

Factoring algorithm

1 Choose a positive integer number *x* randomly which is smaller than *N* and relatively prime to *N*. Find an order r defined by the relation:

$$x^{r} \equiv 1 \pmod{N} \qquad \square > \qquad x^{r} = p \cdot N + 1$$

smallest positive positive integer integer

2 If *r* is an even number,

$$\left(x^{\frac{r}{2}}+1\right)\left(x^{\frac{r}{2}}-1\right) = pN$$
, and also

if $x^{\frac{r}{2}} \pm 1 \neq 0 \pmod{N}$, $gcd\left(x^{\frac{r}{2}} + 1, N\right)$ or $gcd\left(x^{\frac{r}{2}} - 1, N\right)$ provides the factors of N.

greatest common divisor

3 If r is an odd number or $x^{\frac{r}{2}} \pm 1 = 0 \pmod{N}$, $gcd\left(x^{\frac{r}{2}} + 1, N\right)$ and $gcd\left(x^{\frac{r}{2}} - 1, N\right)$ provide the trivial factors 1 and N. $rac{1}{>}$ try another positive integer number x $rac{1}{>}$ try another positive integer number x

The probability of finding a desired *r* for a randomly chosen *x* is greater than 50%. (Chinese reminder theorem) $1 - \frac{1}{1 -$

$$-\frac{1}{2^{k-1}} > \frac{1}{2}$$

k: # of distinct odd primes of N

Example: N = 15, $x = \{2, 4, 7, 8, 11, 13, 14\}$

i)
$$x = 2$$

 $x^{4} = 16 = 15 + 1$
 $r = 4 \text{ (order)}$
 $x^{r/2} - 1 = 3 \longrightarrow \text{gcd } (3, 15) = 3$
 $x^{r/2} + 1 = 5 \longrightarrow \text{gcd } (5, 15) = 5$

ii)
$$x = 4$$

 $x^2 = 16 = 15 + 1$
 $r = 2 \text{ (order)}$
 $x^{r/2} - 1 = 3$
 $x^{r/2} + 1 = 5$

iii)
$$x = 7$$
 $x^{4} = 2401 = 15 \times 60 + 1$
 $r = 4 \text{ (order)}$
 $x^{r/2} - 1 = 48 \longrightarrow \text{gcd } (48, 15) = 3$
 $x^{r/2} + 1 = 50 \longrightarrow \text{gcd } (50, 15) = 5$

iv)
$$x = 8$$
 $x^{4} = 4096 = 15 \times 273 + 1$
 $r = 4 \text{ (order)}$
 $x^{r/2} - 1 = 63 \longrightarrow \text{gcd } (63, 15) = 3$
 $x^{r/2} + 1 = 65 \longrightarrow \text{gcd } (65, 15) = 5$

v)
$$x = 11$$

 $x^2 = 121 = 15 \times 8 + 1$
 $r = 2 \text{ (order)}$
 $x^{r/2} - 1 = 10 \longrightarrow \text{gcd } (10, 15) = 3$
 $x^{r/2} + 1 = 12 \longrightarrow \text{gcd } (12, 15) = 5$

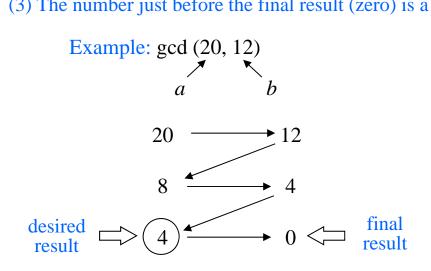
vi)
$$x = 13$$
 $x^{4} = 28561 = 15 \times 1904 + 1$
 $r = 4 \text{ (order)}$
 $x^{r/2} - 1 = 168 \longrightarrow \text{gcd}(168, 15) = 3$
 $x^{r/2} + 1 = 170 \longrightarrow \text{gcd}(170, 15) - 5$

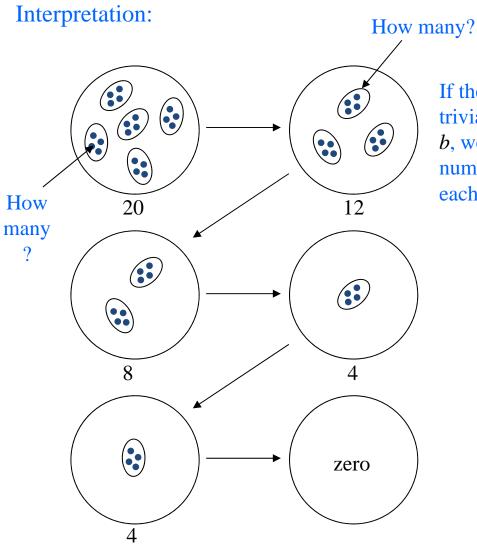
vii)
$$x = 14$$
 $x^2 = 196 = 15 \times 13 + 1$
 $r = 2 \text{ (order)}$
 $x^{r/2} - 1 = 13$
 $x^{r/2} + 1 = 15$ \longrightarrow $\gcd(13, 15) = 1$
 $\gcd(15, 15) = 15$

Euclidean algorithm for gcd ($x^{r/2} \pm 1, N$)

gcd(a, b) (a > b)

- (1) Compare *a-b* and *b*, subtract a small number from a large number
- (2) Repeat the process.
- (3) The number just before the final result (zero) is a desired result gcd(a, b).





If there is a nontrivial gcd for *a* and *b*, we can put this number of coins in each packet.

Finding a gcd ($x^{r/2} \pm 1, N$) takes ~(log N)³ computation steps. \Box polynomial time

The difficulty of factoring a large compound number N is the step of finding an order r.