
Chapter 1. Quantum interference

1.1 Single photon interference

b

a

Classical picture Two “real physical waves” consisting of 
independent energy quanta (photons) are 
mutually coherent and so they interfere.

input state: ket vector  in  1 a 0 b

y y

Quantum picture Each individual photon simultaneously exists in 
the two arms with finite “probability 
amplitudes”, which interfere.

Two states are uncorrelated.
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Two mutually exclusive 
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Hermitian operator represents a dynamical variable (observable).
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carries the amplitude &

of QM Pb  a 0
b

n out

2

c-number

phase information simultaneously



Probability

PbPa

QM is simply silent for an single event. 
The connection between the theory & 
experiment is only via statistics of 
many, many measurement events.

What interfere with each other are the two probability amplitudes of 
the linear superposition state, and1 a 0 b 0 a 1 b .

Phase shift
0  2

Origin of interference is the lack of information for which path a photon takes 
before it is detected.

One photon interference does not distinguish a quantum picture from a 
classical picture based on “two real physical waves.”

1.2 Symmetrization postulate and quantum indistinguishability

In order to see a truly quantum mechanical interference effect for which a 
classical picture fails, we need to study a multi-photon interference effect. 

The physical state of a system including several identical quantum particles are 
completely symmetric or anti-symmetric with respect to permutation of these 
particles.

1.2.1 statement of the postulate

C. Cohen-Tannoudji et al., Quantum Mechanics (John Wiley and Sons, New York, 1977)

: boson

: fermion
Identical quantum particles 

12 
1

2


1


2
  

1


2 
 

1

1




0




1 or 2(?)

Chapter1-3

q p
are indistinguishable. (orthogonal)

does not correspond to a physical state even 
though it is a mathematically legal state.
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1.2.2 Collision of two identical quantum particles

Spinless particles
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and exchange (ex. ) terms are selected out.

output particle flux

(direct term)

L 1 R 2  L 1 L 2

boson fermion
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bunching anti-bunching
(exchange term)
L 1 R 2
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final state stimulation
Bose condensation,
superconductivity

Pauli exclusion principle



1.2.3 Collision of two non-identical particles

Particle 1 is a muon -Particle 1 is a muon  .
Particle 2 is an electron e- .

The detector is only sensitive to the charge of the particles, giving no 
information about their masses.
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( 2, 0 ) 25%

( 0, 2 ) 25%

Quantum interference disappears even if the actual detector cannot
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Quantum interference disappears even if the actual detector cannot 
distinguish the two particles. The “theoretical possibility” of 
distinguishing the particle 1 and particle 2 is enough to eliminate the 
quantum interference effect.
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1.2.4 Collision of two identical particles 
with spins (EPR-Bell state)

A. Spin singlet state
RL
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orbital wavefunction

anti-symmetric
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output particle flux

boson
fermion

anti-symmetric overall
wavefunction: fermion
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fermionic collision
(anti-bunching)

bosonic collision
(bunching)



B. Spin triplet states

spin part of the wavefunction
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symmetric spin
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wavefunction

symmetric overall wavefunction: boson
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anti-symmetric overall wavefunction: fermion

output particle flux is identical to that of spinless particles.

boson bosonic collision
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boson

fermion

bosonic collision 

fermion collision
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1.2.5 Bell state analysis

A. Linear optics Bell state analyzer

Experimental set-up 
for collision of two 
identical particles

Coincidence rates CHV (  ) and CHV’ (  ) 
depending on the path length difference , 
for transmission of the state  

V 1   V 1

for transmission of the state      . 
The constructive interference for the rate 
CHV’ enables one to read the information 
associated with that state (bosonic singlet).



Symmetrization/anti-symmetrization is 

Coincidence rates CHV (  ) and CHV’ (  ) as 
f i f h h l h diff 

y y
not required if the two wavepackets do 
not overlap. “distinguishable from 
detection time”

functions of the path length difference 
when the state       is transmitted.
For perfect timing (=0), constructive 
interference occurs for CHV, allowing 
identification of the state sent (bosonic 
triplet)
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triplet).

Linear optics EPR-Bell state analyzer 
(cannot distinguish + and - states)



B. Full Bell State Analyzer (nonlinear quantum circuit)
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