
Chapter 6

Macroscopic pn Junctions

Shockley’s 1949 paper heralded a new era in the history of semiconductor device physics
and engineering[1]. Basic transport processes of a pn junction diode and transistor were
presented in this paper. In the same issue, the first report appeared on the noise of a
point contact transistor[2]. The observed noise figure was 50-70 dB above the intrinsic
noise limit! It took almost 60 years to suppress this excess noise (mainly due to 1/f noise
and surface recombination noise) and to obtain a noise figure very close to the theoretical
limit. This intrinsic noise of a pn junction device is determined by the thermal noise in
the bulk resistive region and the shot noise in the pn junction. In this chapter we will
study the inherent noise of pn junction diodes, which sets a fundamental limit on the noise
performance of various semiconductor pn junction devices, such as a semiconductor laser,
photodiode, avalanche photodiode and bipolar transistor.

There are two distinct bias conditions for a pn junction diode: constant voltage opera-
tion and constant current operation. The former is realized when the junction differential
resistance Rd is much larger than the source resistance Rs, and the latter is obtained in
the opposite limit. There are two types of junction diodes: a macroscopic pn junction and
mesoscopic pn junction. An electrostatic energy required for a single electron thermionic
emission, q2/2C, where C is a junction capacitance, is much smaller than the thermal
energy kBθ in a macroscopic pn junction and the opposite is true for a mesoscopic pn
junction. A junction diode features markedly different noise characteristics in such differ-
ent bias conditions and junction sizes.

Consider a pn junction diode biased by a constant voltage source with a source resis-
tance Rs, as shown in Fig. 6.1. If the source resistance Rs is much smaller than a diode
differential resistance defined by

Rd ≡
(

dI

dV

)−1

, (6.1)

where I and V are the junction current and the junction voltage, then the junction volt-
age V is always pinned by the source. There is no fluctuation in the junction voltage V
due to the fast relaxation time (CRs) of an external circuit, but there is a fluctuation
in the junction current I. This bias condition is referred to as “constant voltage oper-
ation.” Standard theoretical studies on the noise characteristics of a pn junction diode
have considered this mode of operation[3]; therefore, our analysis also starts with this bias
condition.
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Figure 6.1: A pn junction diode biased by an external voltage source with a
source resistance Rs, and a noise equivalent circuit.

On the other hand, when the source resistance Rs is much larger than the differential
resistance Rd of the diode, there is no fluctuation in the junction current I. However,
there is a fluctuation in the junction voltage V due to the slow relaxation time (CRs) of
an external circuit. This bias condition is referred to as “constant current operation.”

There are two types of pn junctions which feature drastically different noise character-
istics: macroscopic junctions and mesoscopic junctions. When a single-electron charging
energy, q2/2C, where C is the junction capacitance, is much smaller than the thermal
characteristic energy kBθ, the behavior of each individual electron does not affect the
junction dynamics. This is a macroscopic junction limit. On the other hand, when q2/2C
is much greater than kBθ, a so-called single-electron Coulomb blockade effect emerges and
a single-electron thermionic emission event determines the junction dynamics. This is a
mesoscopic junction limit.

Before we start the discussion on the noise of a pn junction diode, we will briefly revisit
the noise of a vacuum diode, which connects a microscopic, random process inside a device
and external circuit current noise.

6.1 Shot Noise in a Vacuum Diode: Revisit

6.1.1 Ramo Theorem

Suppose an electron is emitted from the cathode and is in transit to the anode in a vacuum
diode (Fig. 6.2). Assume the source resistance, Rs, is zero, so the voltage accross the diode
is held constant, Vd(t) = V . As the electron moves from time t′ = 0 to t, the energy it
gains from a constant electric field E = V/d is given by:

U ′ =
∫ t

0
dt′−→F · −→v = q

∫ t

0
dt′Ev(t) , (6.2)

where F = qE is an electro-static force on the electron, v(t) is the electron drift velocity,
and d is the cathode-anode spacing. If the current in the external circuit is i(t), the total
energy supplied by the external voltage source is

U ′′ =
∫ t

0
dt′V i(t′) . (6.3)
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Since the kinetic energy gained by the electron should be equal to the energy provided by
the voltage source, equating U ′ = U ′′ yields:

∫ t

0
dt′qEv(t) =

∫ t

0
dt′Edi(t′) . (6.4)

From this equation, we have a relation between the circuit current i(t) and the electron
velocity v(t),

i(t) =
qv(t)

d
. (6.5)

This relation is called Ramo theorem.

Figure 6.2: A vacuum diode biased by an external voltage source with a source
resistance Rs.

We consider next the case that the external circuit has a finite source resistance, Rs ,
and the circuit relaxation time, τc = RsC, is much longer than the electron transit time,
τt, where C is the capacitance between the cathode and the anode of the vacuum diode.

For τt ¿ τc , the voltage drop due to the electron transit event occurs “instantly,”
whereas the relaxation through the external circuit is very slow. Immediately following
the transit, the voltage across the vacuum diode is V − q/C, i.e., the voltage at the anode
is VA(t) = V − q/C at t = 0. Using Kirchoff’s law, and noting that the current from the
battery to the anode is equal to the current from the cathode to ground, we have

d

dt
VA(t) = −VA(t)

RsC
+

V

RsC
, (6.6)

and obtain the solution with the initial condition at t = 0 as

VA(t) = V − q

C
e−t/RsC . (6.7)

The relaxation current in the external circuit is then

i(t) =
V − VA

Rs
=

q

RsC
e−t/RsC . (6.8)

We now calculate the surface charges of the cathode and the anode as a function of
time for a single-electron traversal process in the following three cases:
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i) The electron drift velocity is assumed to be constant over the electron’s transit from
the cathode to the anode, and τc ¿ τt.

ii) The electron drift velocity is initially zero at the cathode and is accelerated by the
constant applied electric field, and τc ¿ τt.

iii) τc À τt. In this case, we assume the electron transit to be an impulsive event.

Since there is a voltage of V across the vacuum diode, there is a surface charge of CV
on the anode and −CV on the cathode, if no electron emission occurs. When an electron
with charge −q is emitted from the cathode, it induces a net charge of +q on the cathode.
If Rs = 0, this charge is compensated instantaneously by the current supplied from the
external circuit. The surface charge on the cathode is:

QC(t) = −CV + q −
∫ t

0
dt′i(t′) . (6.9)

For the case i): constant electron velocity, we perform the integration and obtain,

QC(t) =

{
−CV + q(1− v

d t) 0 < t < d
v

−CV otherwise
. (6.10)

The surface charge on the anode starts increasing by +q over the time τt = d/v, due to
the external current, from its t = 0 value of CV . Then, it is compensated by the electron
from the cathode. The surface charge on the anode is,

QA(t) = CV +
∫ t

0
dt′i(t′) =

{
CV + q v

d t 0 < t < d
v

CV otherwise
. (6.11)

Since the external voltage source supplies external current (without delay) to keep up with
the change inside the diode, the voltage across the diode is kept constant.

For the case ii) we allow the electron to be accelerated by the electric field. The electron
acquires a velocity,

v(t) =
qE

m
t . (6.12)

The transit time across the vacuum diode is obtained by the condition,
∫ d

0
dr =

∫ τt

0
dt′v(t′) . (6.13)

Solving the above equation, we obtain

τt =

√
2md2

qV
. (6.14)

The current can then be calculated as

i(t) =
q

d
v(t) =

q2V

md2
t . (6.15)
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The surface charge on the cathode is,

QC(t) = −CV + q −
∫ t

0
dt′i(t′)

=

{
−CV + q(1− v(t)

2d t) 0 < t < τt

−CV otherwise
. (6.16)

The surface charge on the anode is:

QA(t) = CV +
∫ t

0
dt′i(t′)

=

{
CV + qv(t)

2d t 0 < t < τt

CV otherwise
. (6.17)

Finally, for the case iii): impulsive electron transit, the charge on the anode is given
by

QA(t) = CVA(t) =

{
CV − qe−t/RC t > 0

CV t < 0
. (6.18)

And on the cathode,

QC(t) = −CVA(t) =

{
−CV + qe−t/RC t > 0

−CV t < 0
. (6.19)

Here, the voltage across the diode has an RC relaxation.

6.1.2 Current Noise

If each electron emission event and its transport process are mutually independent, we
can calculate the external current noise spectra for the above three cases by the Carson’s
theorem (Chapter 1).

i) τc ¿ τt and constant v

The Carson theorem states that for a random pulse train i(t) =
∑K

k=1 akf(t − tk)
with identical pulse shape f(t), the unilateral power spectrum is given by,

S(ω) = 2νa2|F (iω)|2 + 4π

[
νa

∫ ∞

−∞
dtf(t)

]2

δ(ω) , (6.20)

where ν is the average rate of electron emission and F (iω) is the Fourier transform
of f(t). In this case, each current pulse is given by

f(t) =

{
q v

d 0 < t < d
v

0 otherwise
,

and the Fourier transform is

F (iω) = qe−iωd/2v sin(ωd/2v)
(ωd/2v)

. (6.21)
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Using Eq. (6.20), we obtain

Si(ω) = 2νq2 sin2(ωd/2v)
(ωd/2v)2

+ 4πν2q2δ(ω) . (6.22)

Since the average electron emission rate is ν, the current is given by I = qν. There-
fore Eq. (6.22) can be written as

Si(ω) = 2qI
[
sinc(ωd/2v)

]2
+ 4πI2δ(ω) . (6.23)

In the low-frequency limit, 0 < ω ¿ v/d, since limx→0
sin x

x = 1, we have

Si(ω ¿ v/d) = 2qI , (6.24)

which is full shot noise.

ii) τc ¿ τt and accelerated v

In this case, each current pulse is given by

a =
q2V

d2m
and f(t) =

{
t 0 < t < Ttr

0 otherwise
.

It follows that:

a2 = a2 , (6.25)

F (iω) = iτt
e−iωτt

ω
− 1− e−iωτt

ω2
, (6.26)

|F (iω)|2 =
2 + ω2τ2

t − 2ωτt sin(ωτt)− 2 cos(ωτt)
ω4

. (6.27)

Plugging into the unilateral power spectral density as per the Carson theorem, we
have

Si(ω) = 2ν

(
q2V

d2m

)2 [
2 + ω2τ2

t − 2ωτt sin(ωτt)− 2 cos(ωτt)
ω4

]
+ 4πν2q2δ(ω) .

(6.28)
We use the following Taylor series expansions

sin(ωτt) = ωτt − 1
3!

(ωτt)3 + O(ω5) ,

cos(ωτt) = 1 +
1
2!

(ωτt)2 +
1
4!

(ωτt)4 + O(ω6) ,

in the small frequency limit, to rewrite the power spectral density as

Si(ω) = 2ν

(
q2V

d2m

)2 (
2
3!

τ4
t −

2
4!

τ4
t + O(ω5)

)
+ 4πν2q2δ(ω) . (6.29)

In the low-frequency limit, we can ignore O(ω5), and we have

Si

(
ω ¿ 1

τt

)
= 2qI . (6.30)

which is again full shot noise.
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iii) τt ¿ τc, impulsive electron transit

In this case, each current pulse is given by

f(t) =

{
q

CRs
e−t/RsC t > 0
0 t < 0

,

and the Fourier transform is

F (iω) =
q

1 + iωRsC
. (6.31)

The power spectral density is then,

Si(ω) = 2qI
1

1 + ω2R2
sC

2
+ 4πI2δ(ω) . (6.32)

In the low-frequency limit, we obtain

Si(ω ¿ 1/RsC) = 2qI , (6.33)

which is again full shot noise.

The origin of shot noise in a vacuum diode is the statistical independence of electron
emission events at the cathod. If there is a statistical dependence between the electron
emission events, this dependence manifests itself as a negative feedback process in which
subsequent electron emissions are modulated by earlier events. There are two notable
effects:

a) a space-charge effect in the τt À τc limit, in which the existence of many electrons
in the vacuum diode creates a potential modulation such that the rate of electron
emissions is substantially smoothed.

b) a memory effect in the external circuit in the τc À τt limit, in which the slow recovery
of the voltage across the vacuum diode suppresses the rate of the subsequent electron
emissions.

In both cases, the shot noise is suppressed to below full shot noise value. We will see the
essentially same physics, full shot noise under constant voltage operation and sub-shot
noise under constant current operation, in a pn junction diode in the remaining part of
this chapter.

6.2 pn Junction Diodes Under Constant Voltage Operation

6.2.1 Current-Voltage and Capacitance-Voltage Characteristics

The noise characteristics of a p+-N heterojunction with a heavily p-doped narrow bandgap
material and lightly n-doped wide bandgap material (Fig. 6.3) will be studied in this sec-
tion, rather than a conventional p-n homojunction. This is because this specific junc-
tion structure is used in various important semiconductor devices such as a double-
heterostructure semiconductor laser and heterojunction bipolar transistor. The extension
of the following analysis to a pn homojunction is straightforward[3].
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Figure 6.3: A p+-N heterostructure junction diode at equilibrium (V = 0) and
under a forward bias condition (V > 0).

The band diagram of a p+-N heterojunction diode at a zero bias condition (V = 0)
and a forward bias condition (V > 0) are shown in Fig. 6.3. The built-in potential VD is
divided into the potentials in the p+- and N -layers[4]:

VDp =
VD

K
, (6.34)

VDn = VD

(
1− 1

K

)
, (6.35)

where

K = 1 +
ε1(N−

A1 −N+
D1)

ε2(N+
D2 −N−

A2)
. (6.36)

Here, ε1, NA1, and ND1 are the dielectric constant, acceptor concentration, and donar
concentration of the p+-layer, and ε2, NA2, and ND2 are those of the N -layer. Since a
p+-N diode satisfies ε1 > ε2 and N−

A1−N+
D1 À N+

D2−N−
A2, we have K À 1. Consequently,

the built-in potential VD is mainly supported in the N -layer, i.e., VDn ' VD and VDp ' 0.
The transmitted electron flux from the N -layer to the p+-layer across the potential barrier
height VDn should be equal to the transmitted electron flux from the p+-layer to the N -
layer across the potential barrier ∆Ec/q because there is no net current at V = 0.

When a forward bias (V > 0) is applied, only the potential barrier seen by the electrons
in the N -layer decreases to VDn − V2 ' VD − V , where the applied voltage supported in
the N -layer is V2 = V

(
1− 1

K

)
' V . The electron density at the edge of the depletion

layer (x = 0) in the p+-layer is given by[4]

np = XnN0 exp
(
−VD − V

VT

)
= np0 exp

(
V

VT

)
, (6.37)
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where VT = kBθ
q is the thermal voltage and

np0 = XnN0 exp
(
−VD

VT

)
, (6.38)

is the thermal equilibrium electron density in the p+-layer. X is the transmission coefficient
of an electron at the heterojunction interface and nN0 is the electron density at the edge
of the depletion layer (t = −d) in the N -layer which is equal to the thermal equilibrium
electron density in the N -layer.

The excess electron density Eq. (6.37) at x = 0 diffuses towards x = W (not shown in
Fig. 6.3), where a p-side metal contact is located. The distribution of the excess electron
density n(x, t) obeys[4]

∂

∂t
n(x, t) = −n(x, t)− np0

τn
− 1

q

∂

∂x
in(x, t) , (6.39)

where τn is the electron lifetime and, since there is no electric field in the neutral p+-layer,
the current in(x, t) is carried only by a diffusion component

in(x, t) = −qDn
∂

∂x
n(x, t) . (6.40)

Here, Dn is the electron diffusion constant. Solving Eqs. (6.39) and (6.40) with the bound-
ary conditions,

np =

{
np0 exp

(
V
VT

)
at x = 0

np0 at x À Ln

, (6.41)

the steady-state solution for n(x) is now given by

np(x) = np0 + (np − np0)e−x/Ln , (6.42)

where Ln =
√

Dnτn is the electron diffusion length. The junction current density is
determined by the diffusion current Eq. (6.40) at x = 0:

i ≡ in(x = 0) =
qDn

Ln
(np − np0) =

qDnnp0

Ln

(
e

V
VT − 1

)
. (6.43)

The total current I = Ai vs. the junction voltage V is plotted in Fig. 6.4, where A is a
cross-sectional area.

The differential resistance Rd, defined by
(

dI
dV

)−1
, is approximately given by VT /I

under a reasonably strong forward bias condition. The diffusion capacitance Cdif of the
diode is defined as the voltage derivative of the total excess minority carrier charge:

Cdif ≡ d

dV
Q(minority carrier) = A

d

dV

[
q

∫ ∞

0
[np(x)− np0]dx

]

=
AqLnnp0

VT
e

V
VT

' I

VT
τn . (6.44)
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Figure 6.4: A current-voltage characteristic of a p+-N junction diode.

The CR time constant characterized by the differential resistance Rd and the diffusion
capacitance Cdif is thus equal to the electron lifetime τn.

The depletion-layer capacitance Cdep of the diode is defined as the voltage derivative
of the total space charge in the depletion region:

Cdep ≡ d

dV
Q(space charge)

=
ε2

Wdep
A

=

√
qε2ND2

2(VD − V )
A (6.45)

Here, Wdep =
√

2ε2
qND2

(VD − V ) is the depletion layer width in the N -layer. The capacitance
contributed by the depletion layer in the p+-layer is neglected. The CR time constant
characterized by the differential resistance Rd and the depletion layer capacitance Cdep is
equal to the thermionic emission time τte, the physical meaning of which will be discussed
later in this chapter.

It will be shown that the thermionic emission time τte = CdepRd is a key parameter
for determining the noise characteristics of a pn junction diode under weak forward bias,
while the minority-carrier lifetime τn = CdifRd is a key parameter for determining the
noise characteristics of a pn junction diode under strong forward bias. This conclusion is
somewhat expected, because the junction capacitance of a pn junction is determined by
the depletion-layer capacitance under weak forward bias and by the diffusion capacitance
under strong forward bias.
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6.2.2 Thermal Diffusion Noise

When a pn junction is biased by a constant voltage source, the electron densities at x = 0
(edge of the depletion layer) and x = W (p-side metal contact) are always held constant to
np0 eV/VT and np0, respectively. The electron density fluctuates, however, between x = 0
and x = W due to microscopic random electron motion induced by thermal agitation and
by generation and recombination processes. In order to keep the boundary conditions
at x = 0 and x = W and to restore the steady-state electron distribution in this bulk
p+-region, the relaxation current pulse flows in the entire p+-region between x = 0 and
x = W . This relaxation current inside the p+-region results in the departure from charge
neutrality of this region, unless we consider the carrier injection by the external circuit.
Indeed, to sustain the charge neutrality of the bulk region, the external circuit current is
induced. Our analysis in this and next sections follow the argument presented in ref. [3].

If an electron makes a transit over a small distance `f between collisions with the
lattice, an instantaneous current qδ(t) flows at the two locations x = x

′
and x = x

′
+ `f ,

as shown in Fig. 6.5. This instantaneous current creates the departure from the steady-
state electron distribution Eq. (6.42) and triggers the relaxation current to remove this
deviation in the entire p+-region between x = 0 and x = W , which, after a reasonably short
time, restores the steady-state electron distribution Eq. (6.42). The electron distribution
deviation n

′
(x, t) = n(x, t)−np0(x), which results in such a relaxation current in the entire

region, satisfies the diffusion equation Eq. (6.39) and the boundary conditions n
′
= 0 at

x = 0 and x = W at all time. The Fourier transform of the diffusion equation Eq. (6.39)

Figure 6.5: The initial current and subsequent relaxation current for a thermal
diffusion process of a minority carrier.

11



is given by
∂2

∂x2
N
′
(iω) =

1
L2

N
′
(iω) , (6.46)

where N
′
(iω) is the Fourier transform of n

′
(x, t) and

L2 =
L2

n

1 + iωτn
. (6.47)

The Fourier transform of the relaxation currents i
′
1(t) at x = x

′
and i

′
2(t) at x = x

′
+ `f

are expressed in terms of the Fourier-transformed electron density deviations N
′
1(iω) at

x = x
′
and N

′
2(iω) at x = x

′
+ `f [3]:

I
′
1(iω) = qDn

∂N
′
(iω)

∂x

∣∣∣x=x′ = k1N
′
1(iω) , (6.48)

I
′
2(iω) = qDn

∂N
′
(iω)

∂x

∣∣∣x=x′+`f
= −k2N

′
2(iω) , (6.49)

where

k1 =
qDn

L
coth

(
x
′

L

)
, (6.50)

k2 =
qDn

L
coth

(
W − x

′

L

)
. (6.51)

There are also direct return currents i
′
r1(t) and i

′
r2(t) between x

′
and x

′
+ `f , as shown in

Fig. 6.5. The Fourier-transformed return currents at x = x
′
and x = x

′
+ `f are identical

and are expressed by

I
′
r1(iω) = I

′
r2(iω) = −qDn

`f

[
N
′
1(iω)−N

′
2(iω)

]
. (6.52)

Since there can be no accumulation of charge at any point in the entire p+-layer, one
must have current continuity at x = x

′
and x = x

′
+ `f :

I
′
1(iω) + I

′
r1(iω) + q = 0 , (6.53)

I
′
2(iω) + I

′
r2(iω) + q = 0 . (6.54)

From Eqs. (6.53) and (6.54), one obtains

N
′
1(iω) =

`f

Dn

k1

k1 + k2
, (6.55)

N
′
2(iω) = − `f

Dn

k2

k1 + k2
. (6.56)

The Fourier-transformed electron density deviation N
′
(iω) calculated by Eq. (6.46) with

the boundary conditions Eqs. (6.55) and (6.56) is plotted in Fig. 6.5. The circuit current
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which actually flows in the external circuit is determined by the two relaxation currents
I
′
0(iω) at x = 0 and I

′
W (iω) at x = W :

I
′
T (iω) = I

′
0(iω)− I

′
W (iω), (6.57)

where
I
′
0(iω) = qDn

∂

∂x
N
′
(iω)

∣∣∣∣x=0 =
`f

Dn

k0k2

k1 + k2
, (6.58)

I
′
W (iω) = qDn

∂

∂x
N
′
(iω)

∣∣∣∣x=W =
`f

Dn

kW k1

k1 + k2
, (6.59)

k0 =
qDn

Ln
cosech

(
x
′

L

)
, (6.60)

kW =
qDn

Ln
cosech

(
W − x

′

L

)
. (6.61)

The reason why the total external circuit current I
′
T (iω) is given by the difference of

the two relaxation currents I
′
0(iω) and I

′
W (iω), rather than the sum of two, is that this

difference creates the departure from the charge neutrality in the entire p+-region [0,W ].
This should be compensated for by the external circuit current flow, which consists of the
electron flow across the depletion layer and the hole flow across the p-type metal contact, in
order to restore the charge neutrality. The external circuit current at the edge of junction
x = 0 is actually carried by many events of forward and backward electron thermionic
emission and can be considered a continuous charging process just as the hole injection at
x = W .

Equation (6.57) is the Fourier transform of the circuit current pulse due to a single-
electron event in the p+-layer. The average number of thermal diffusive transit events per
second in a small volume A∆x (where A is the cross-section and ∆x is the small distance
along x) is given by

γT =
n(x)A∆x

τ f
. (6.62)

Here τf is a mean-free time of the electron in the p+-region. Since each thermal diffusive
event occurs independently, the current fluctuation power spectral density due to such a
random pulse train generated in this small volume is calculated using the Carson theorem:

∆S
I
′
T
(ω) = 2γT |I ′T (iω)|2

=
2n(x)A∆x

τ f

`2
f

D2
n

∣∣∣∣
k0k2 − kW k1

k1 + k2

∣∣∣∣
2

=
4A

Dn
n(x)

∣∣∣∣
k0k2 − kW k1

k1 + k2

∣∣∣∣
2

∆x . (6.63)

Here, `2
f = 2Dnτf is used. The total current fluctuation power spectral density is given

by integrating this equation in the entire p+-layer:

S
I
′
T
(ω) =

4A

Dn

∫ W

0
n(x)

∣∣∣∣
k0k2 − kW k1

k1 + k2

∣∣∣∣
2

dx

' 4Aq2Dn

Ln

(
np − np0

3
+

np0

2

)
. (6.64)
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The second equality in the above expression is derived by assuming W À Ln and ωτn ¿ 1;
that is, the above expression is valid only for a long diode and a low-frequency fluctuation
component.

6.2.3 Generation-Recombination Noise

The initial action of this process is the instantaneous appearance or disappearance of an
electron. If an electron is generated at x = x

′
, an instantaneous current −qδ(t) flows from

nowhere to x = x
′
, as shown in Fig. 6.6.

Solving the Fourier-transformed diffusion Eq. (6.46) for the boundary conditions N
′′
(iω) =

0 at x = 0 and x = W and N
′′
(iω) = N

′′
1 at x = x

′
, one obtains

N
′′
(iω) =





N
′′
1

ex/L−e−x
′
/L

(ex/L − e−x/L) (0 ≤ x ≤ x
′
)

N
′′
1

e(W−x
′
)/L−e−(W−x

′
)/L

[e(W−x)/L − e−(W−x)/L] (x
′ ≤ x ≤ W )

. (6.65)

The counter-propagating relaxation currents I
′′
1 (iω) and I

′′
2 (iω) at x = x

′
are now obtained

Figure 6.6: The initial current and subsequent relaxation current for a gener-
ation process of a minority carrier.

as,

I
′′
1 (iω) = qDn

∂N
′′
(iω)

∂x

∣∣∣∣∣
x=x

′−0

= k1N
′′
1 (iω) , (6.66)

I
′′
2 (iω) = qDn

∂N
′′
(iω)

∂x

∣∣∣∣∣
x=x

′
+0

= −k2N
′′
1 (iω) . (6.67)
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The current continuity at x = x
′
imposes the following relation:

I
′′
1 (iω)− I

′′
2 (iω)− q = 0 . (6.68)

From this condition, one can determine the value of N
′′
1 (iω) as

N
′′
1 (iω) =

q

k1 + k2
. (6.69)

The Fourier-transformed electron density deviation is plotted in Fig. 6.6. The relaxation
currents at x = 0 and x = W are given by

I
′′
0 (iω) = qDn

∂N
′′
(iω)

∂x

∣∣∣∣∣
x=0

= q
k0

k1 + k2
, (6.70)

I
′′
W (iω) = qDn

∂N
′′
(iω)

∂x

∣∣∣∣∣
x=W

= −q
kW

k1 + k2
. (6.71)

The external circuit current is again given by the difference between Eqs. (6.70) and (6.71):

I
′′
T (iω) = q

(
k0 + kW

k1 + k2

)
. (6.72)

The average number of recombination events in a small volume A∆x is given by

γR =
n(x)A∆x

τn
, (6.73)

while the average number of generation events is

γG =
np0A∆x

τn
. (6.74)

Under the zero bias condition n(x) = np0, the recombination rate is equal to the generation
rate, as it should be in a thermal equilibrium condition. This is called detailed balance.
The current fluctuation power spectral density due to the generation and recombination
events in this small volume is

∆S
I
′′
T
(ω) = 2(γG + γR)

∣∣I ′′T (iω)
∣∣2

= 2
[n(x

′
) + np0]A∆x

τn
q2

∣∣∣∣
k0 + kW

k1 + k2

∣∣∣∣
2

. (6.75)

The total current fluctuation power spectral density is calculated by integrating (6.75)
from x = 0 to x = W :

S
I
′′
T
(ω) =

2Aq2

τn

∫ W

0
[n(x

′
) + np0]

∣∣∣∣
k0 + kW

k1 + k2

∣∣∣∣
2

dx
′

' 2Aq2Dn

Ln

[
np − np0

3
+ np0

]
, (6.76)

where W À Ln (long-diode limit) and ωτn ¿ 1 (low-frequency limit) are used to derive
the second equality.
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6.2.4 Total Current Noise

The total current fluctuation power spectral density is the simple sum of Eqs. (6.64) and
(6.76)

SIT
(ω) =

4Aq2Dn

Ln

(
np − np0

3
+

np0

2

)
+

4Aq2Dn

Ln

(
np − np0

6
+

np0

2

)

↗ ↗
Thermal Diffusion Noise Generation− Recombination Noise

.

(6.77)
The following three bias regions feature different noise characteristics:

(1) Zero Bias (V = 0)

In this case, np = np0, and thus Eq. (6.77) is simplified to

SIT
(ω) =

4Aq2Dnnp0

Ln
=

4kBθ

Rd(V = 0)
, (6.78)

where Rd(V = 0) = LnkBθ
Aq2Dnnp0

is the differential resistance
(

dI
dV

)−1
at V = 0. Equa-

tion (6.78) is the Johnson-Nyquist thermal noise. This result is expected because the
junction is in thermal equilibrium at V = 0 and thus the Johnson-Nyquist formula
should be applied.

However, note that only one-half of Eq. (6.78) stems from standard thermal dif-
fusion noise and the remaining half is due to generation-recombination noise. In
this sense, a simple microscopic theory of a thermal diffusion process for a metallic
conductor cannot describe the thermal equilibrium noise of a pn junction. On the
other hand, the Nyquist approach to thermal noise is very general; it does not de-
pend on the detailed microscopic process in a resistive element, but only requires
the resistive element be in thermal equilibrium with the environments. There are
two “environments” for a pn junction: lattice vibration (thermal phonon reservoirs)
which are responsible for thermal diffusion noise and electromagnetic field (thermal
photon reservoirs) which are responsible for generation-recombination noise. The
Johnson-Nyquist formula holds due to the equal contribution by phonon reservoirs
and photon reservoirs.

(2) Forward Bias (V > 0)

Equation (6.77), in this case, is reduced to

SIT
(ω) =

2Aq2Dn

Ln
(np + np0) = 2q(I + 2Is) , (6.79)

where the forward current I and the (reverse) saturation current Is are given by

I =
AqDn

Ln
(np − np0) , (6.80)

Is =
AqDn

Ln
np0 . (6.81)
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In a reasonably high forward bias voltage, Eq. (6.79) is reduced to the full-shot
noise 2qI since I À Is. Two-thirds of the full-shot noise is due to thermal diffu-
sion noise and one-third is due to generation-recombination noise. The generation-
recombination noise in this case is dominated by the radiative recombination (spon-
taneous emission) noise for a direct bandgap semiconductor. In this way, we can
conclude that two-thirds of the shot noise of a forward-biased pn junction is thermal
noise and one-third is quantum noise.

(3) Reverse Bias (V < 0)

In this case np ¿ np0, and thus Eq. (6.77) becomes

SIT
(ω) =

2Aq2Dn

Ln
np0 = 2qIs . (6.82)

This result is often referred to as a “dark current shot noise,” which is the dominant
noise source of a reverse-biased photodiode and avalanche photodiode. In this case,
one-third of the full-shot noise is due to thermal diffusion noise and two-thirds is due
to generation-recombination noise. The generation-recombination noise in this case
is dominated by the absorption of thermal photons. Thus, we can conclude that the
full shot noise of a reverse-biased pn junction is solely due to thermal noise.

6.2.5 Short Diode

Thus far a so-called long diode with a bulk p+-layer thickness W much longer than the
diffusion length Ln has been studied. However, some pn junction diodes, such as a double-
heterostructure semiconductor laser diode and heterojunction bipolar transistor, have a
much thinner p+-layer than the electron diffusion length (W ¿ Ln).

Consider a N -p+-P double-heterostructure diode, as shown in Fig. 6.7. An injected
electron from the N -layer to the p+-layer cannot diffuse freely toward the p-side metal
contact due to the conduction band discontinuity at the p+-P isotype heterojunction. A
junction current is not carried by a thermal diffusion process, but crosses an “imaginary
plane” between the conduction and valence bands by a “recombination process.” The
electron and hole densities are uniform in the p+-layer since W ¿ Ln. The electron
density in a relatively small bias voltage is given by[4]

np = np0 exp
(

V

VT

)
. (6.83)

The junction current is related to the total electron number in the p+-layer, Ne ≡ AWn,
by

I = q
Ne

τn
. (6.84)

The differential resistance Rd and diffusion capacitance Cdif are given by

Rd ≡
(

dI

dV

)−1

=
VT τn

qNe
, (6.85)

Cdif ≡
dQ(minority carrier)

dV
=

qNe

VT
. (6.86)
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Figure 6.7: A N -p+-P double heterostructure diode.

The depletion layer capacitance Cdep is still given by Eq. (6.45).
Next, the current-fluctuation power spectral density due to thermal diffusion noise and

generation-recombination noise will be calculated. When W ¿ Ln, one obtains

k0k2

k1 + k2
' kW k1

k1 + k2
' qDn

W
, (6.87)

and from Eqs. (6.58) and (6.59),

I
′
0(iω) ' I

′
W (iω) =

q`f

W
. (6.88)

At each boundary there is a fluctuating current with the power spectral density

S
I
′
0
(ω) = S

I
′
W

(ω) =
∫ W

0

2npA

τ f

(
q`f

W

)2

dx

= 4qI
(

Ln

W

)2

, (6.89)

where Dn = `2
f/2τ f = L2

n/τn is used. This current noise is much larger than the full-shot
noise since Ln/W À 1. However, as indicated in Eq. (6.88), the fluctuating currents
I
′
0(iω) and I

′
W (iω) are identical, i.e. positively correlated, and thus cancel out completely

to nullify the total external circuit current fluctuation,

I
′
T (iω) = I

′
0(iω)− I

′
W (iω) = 0 . (6.90)

The thermal diffusion noise does not produce any departure from the charge neutrality in
the p+-region [0,W ] and thus does not induce any external circuit current noise.
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When W ¿ Ln, one obtains

k0

k1 + k2
' 1− x

′

W
, (6.91)

kW

k1 + k2
' x

′

W
. (6.92)

Using these relations in Eqs. (6.70) and (6.71), one obtains

I
′′
0 (iω) = q

(
1− x

′

W

)
, (6.93)

I
′′
W (iω) = −q

x
′

W
, (6.94)

I
′′
T (iω) = I

′′
0 (iω)− I

′′
W (iω) = q . (6.95)

Each event of electron generation and recombination results in independent current pulses
with a time-integrated area equal to q in the external circuit and thus the low-frequency
power spectral density is given by the sum of the two contributions,

S
I
′′
T
(ω) = 2q2(Ne + Ne0)/τn . (6.96)

This expression is reduced to the Johnson-Nyquist formula of thermal noise at V = 0 and
the Schottky formula of full-shot noise at V > 0 or V < 0:

(1) Zero-Bias (V = 0)

S
I
′′
T
(ω) =

4q2Ne0

τn
=

4kBθ

Rd(V = 0)
. (6.97)

A pn junction is in equilibrium with thermal photon reservoir. One half of this
thermal noise is to thermal photon absorption and the remaining half is contributed
by radiative recombination (spontaneous emission).

(2) Forward-Bias (V > 0)

S
I
′′
T
(ω) = 2q2 Nc

τn
= 2qI . (6.98)

This full-shot noise is due solely to the radiative recombination (spontaneous emis-
sion) process, so it has a quantum mechanical origin.

(3) Reverse-Bias (V < 0)

S
I
′′
T
(ω) = 2q2 Nc0

τn
= 2qIs . (6.99)

This full-shot noise is due solely to the generation (thermal photon absorption)
process.
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6.3 Bipolar Transistor

The bipolar transistor (transfer resistor) is one of the most important semiconductor
devices and is now widely used in high speed computer and communication systems.
The noise figure of a bipolar transistor is determined by the shot noise of a pn junction
diode biased by a constant voltage source discussed above. We will study the basic noise
properties of a bipolar transistor in this section.

6.3.1 Current-Voltage Relationship

The basic structure of a p-n-p bipolar transistor is shown in Fig. 6.8(a), which consists of
a forward-biased emitter junction and reverse-biased collector junction. A bipolar tran-
sistor is usually used in two different circuit configurations. Figure 6.8(b) and (c) show
the common base configuration and common emitter configurations for a p-n-p bipolar
transistor.

Figure 6.8: The basic structure (a) and two circuit configurations of common-
base (b) and common emitter (c) for a p-n-p bipolar transistor.

Consider the p-n-p bipolar transistor with uniform doping profile and in a common
base configuration (Fig. 6.9). The continuity and current density equations in the neutral
base region are given by[4]

O = −p− pB

τB
+ DB

∂2p

∂x2
, (6.100)

Jp = −qDB
∂p

∂x
, (6.101)

Jn = Jtot + qDB
∂p

∂x
. (6.102)

The excess minority carrier densities at the edge of the emitter-base depletion layer are

p
′
(0) ≡ p(0)− pB = pB

[
exp

(
qVEB

kBT

)
− 1

]
, (6.103)

n
′
(−xE) ≡ n(−xE)− nE = nE

[
exp

(
qVEB

kBT

)
− 1

]
. (6.104)
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A similar set of equations can be found for the collector-base junction:

p
′
(W ) ≡ p(W )− pB = pB

[
exp

(
qVCB

kBT

)
− 1

]
, (6.105)

n
′
(xC) ≡ n(xC)− nC = nC

[
exp

(
qVCB

kBT

)
− 1

]
. (6.106)

The solutions for the minority carrier distributions in the base, emitter and collector
regions are easily obtained,

p(x) = pB +

[
p
′
(W )− p

′
(0)e−W/LB

2 sinh(W/LB)

]
ex/LB −

[
p
′
(W )− p

′
(0)eW/LB

2 sinh(W/LB)

]
e−x/LB , (6.107)

n(x) = nE + n
′
(−xE) exp

(
x + xE

LE

)
, (6.108)

n(x) = nC + n
′
(xC) exp

(
−x− xC

LC

)
. (6.109)

From Eqs. (6.101) and (6.102) we can obtain the total dc emitter current:

IE = A Jp(x = 0) + A Jn(x = −xE)

= A

(
−qDB

∂p

∂x

∣∣∣∣
x=0

)
+ A

(
−qDE

∂n

∂x

∣∣∣∣
x=−xE

)

= Aq
DBpB

LB
coth

(
W

LB

) [(
eqVEB/kBT − 1

)
− 1

cosh(W/LB)

(
eqVCB/kBT − 1

)]

+Aq
DEnE

LE

(
eqVEB/kBT − 1

)
. (6.110)

Similarly we can obtain the total dc collector current:

IC = A Jp(x = W ) + A Jn(x = xC)

= A

(
−qDB

∂p

∂x

∣∣∣∣
x=W

)
+ A

(
−qDC

∂n

∂x

∣∣∣∣
x=xC

)

= Aq
DBpB

LB
· 1
sinh(W/LB)

[(
eqVEB/kBT − 1

)
− cosh

(
W

LB

) (
eqVCB/kBT − 1

)]

+Aq
DCnC

LC

(
eqVCB/kBT − 1

)
. (6.111)

Here A is the cross-sectional area of the transistor. The difference between these two
currents appears as the base current:

IB = IE − IC . (6.112)
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Figure 6.9: The common-base configuration, doping profile and band diagram
of the p-n-p bipolar transistor.

6.3.2 Current Gain

The common-base current gain α0, often represented by hFB, is defined as

α0 =
∂IC

∂IE
=

∂IPE

∂IE

∂IPC

∂IPE

∂IC

∂IPC
, (6.113)

where IPE and IPC are the emitter and collector currents carried by holes, i.e. the first
term of Eqs. (6.110) and (6.111). The first term ∂IPE

∂IE
is called as the emitter efficiency γ,

the second term ∂IPC
∂IPE

the base transport factor αT , and the third term ∂IC
∂IPC

the collector
multiplication factor M . Since the transistor is normally operated well below the avalanche
breakdown voltage for a base-collector junction, the multiplication factor is M ' 1 and so
the static common-base current gain is given by

α0 ' γαT . (6.114)

On the other hand, the static common-emitter current gain β0, often represented by hFE,
is defined as

β0 =
∂IC

∂IB
=

α0

1− α0
, (6.115)

where we used Eq. (6.112).
Under the normal operating condition of a p-n-p bipolar transistor, VEB > 0 and

VCB ¿ 0, so the terms in Eqs. (6.110) and (6.111) associated with VCB can be neglected
compared to the reverse-bias saturation current. The emitter efficiency γ is calculated
from Eq. (6.110) as

γ =
∂ A JP (x = 0)

∂IE
=

[
1 +

nE DE LB

pB DB LE
tanh

(
W

LB

)]−1

. (6.116)
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The base transport factor αT is obtained from Eqs. (6.110) and (6.111) as

αT =
JP (x = W )
JP (x = 0)

=
1

cosh(W/LB)
. (6.117)

For bipolar transistors with base width much smaller than the diffusion length, αT is close
to one, and the current gain is determined solely by the emitter efficiency. Under this
condition,

β0 =
γ

1− γ
=

pB DB LE

nE DE LB
coth

(
W

LB

)
. (6.118)

For a given emitter doping level pE, the current gain β0 increases with decreasing the base
doping level nB.

6.3.3 Input vs. Output Characteristics

For a bipolar transistor with high emitter efficiency, the dc emitter and collector currents,
Eqs. (6.110) and (6.111), reduce to the hole currents, i.e. the terms proportional to ∂p

∂x at
x = 0 and x = W , respectively. That is, the emitter and collector currents are determined
by the hole density gradients at the edges of the base region. The base current is given
by the difference between the emitter and collector currents.

Figure 6.10(a) shows the input-output characteristics of the common-base configura-
tion. The collector current is practically equal to the emitter current, i.e. α0 ' 1 and is
independent of VCB. This means ∂p

∂x at x = 0 is equal to ∂p
∂x at x = W for varying VEB and

VCB, as shown in Fig. 6.11(a) and (b). To reduce the collector current to zero, a forward
bias voltage must be applied to the collector, where the hole density at x = W becomes
equal to the hole density at x = 0, as shown in Fig. 6.11(c). The collector saturation
current ICO (Fig. 6.10(a)) with the emitter circuit open (IE = 0) is considerably smaller
than the ordinary reverse bias current of a p-n junction, because ∂p

∂x = 0 at x = 0, which
results in the reduction of ∂p

∂x at x = W as shown in Fig. 6.11(d). At a sufficiently strong
bias voltage VCB, the collector current starts to increase rapidly (Fig. 6.10(a)). This is ei-
ther by the avalanche breakdown effect or the punch-through effect. In the latter case the
collector depletion region reaches the emitter depletion region and a large direct current
flows from the emitter to the collector.

Figure 6.10(b) shows the input-output characteristics of the common-emitter configu-
ration. The current gain in this case is much greater than one (β0 À 1). The saturation
current I

′
CO with the base circuit open (IB = 0) is much larger than (ICO), since

IB = IE − IC = IE − (ICO + α0IE) , (6.119)

and therefore
I
′
CO = IC(IB = 0) =

ICO

1− α0
À ICO . (6.120)

As VCE increases, the base width decreases and the current gain β0 increases. The lack
of saturation in the common-emitter output characteristics is called Early effect[4]. When
VCE decreases with a constant IB, the collector junction is eventually forward-biased and
the collector current becomes zero (Fig. 6.10(c)).
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Figure 6.10: Input-output characteristics for a p-n-p transistor in (a) common-
base configuration and (b) common-emitter configuration.

6.3.4 Current Noise

In the absence of emitter-base and collector-base depletion-layer recombination processes,
the current-voltage characteristics at the two junctions are governed by Schockley’s diffu-
sion theory of a pn junction. The bipolar transistor is called ideal in such a case. If the
emitter and collector currents are carried only by holes, the emitter and collector current
noise spectral densities are obtained from the analyses presented in the previous section
and written as

SiE (ω) =
4A

D
I1 +

2q2A

τR
I2 , (6.121)

SiC (ω) =
4A

D
I3 +

2q2A

τR
I4 , (6.122)

where the first terms in Eqs. (6.22) and (6.122) represent the thermal diffusion noise
of minority carriers, holes, in the base region, and the second terms in Eqs. (6.22) and
(6.122) represent the generation-recombination noise in the base region. The integrals
Ij(j = 1 to 4) take the same forms as those derived in the previous section:

I1 =
∫ W

0
p

∣∣∣∣
k0k2

k1 + k2

∣∣∣∣
2

dx , (6.123)

I2 =
∫ W

0
(p + pn)

∣∣∣∣
k0

k1 + k2

∣∣∣∣
2

dx , (6.124)

I3 =
∫ W

0
p

∣∣∣∣
k1kW

k1 + k2

∣∣∣∣
2

dx , (6.125)

I4 =
∫ W

0
(p + pn)

∣∣∣∣
kW

k1 + k2

∣∣∣∣
2

dx . (6.126)

By evaluating the integrals Eqs. (6.123)-(6.126), the spectral densities Eqs. (6.22) and
(6.122) reduce to the forms,

SiE (ω) = 4qIE

(
GE

GEO
− 1

2

)
, (6.127)
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Figure 6.11: Hole density in the base region of a p-n-p bipolar transistor. (a)
VCB = constant and VEB varying. (b) VEB = constant and VCB varying. (c)
VCB = forward, zero and reverse biased. (d) zero emitter current and zero
emitter voltage.

SiC (ω) = 2qIC . (6.128)

Here GE is the conductance of the forward-biased emitter-base junction and GEO is the
low frequency value of GE . At low frequencies, GE ' GEO and the forward-biased emitter
current shows full shot noise. The reverse-biased collector current features full shot noise
at all frequencies.

Since the same noise generation mechanisms are responsible for the emitter and col-
lector current noise, some degree of correlation should be expected between the two fluc-
tuations. When either thermal diffusion or generation-recombination event occurs in the
base region, the relaxation current pulses, fE(t) and fC(t), flow in the two junctions. The
cross-spectral density between iE and iC is given by the extended Carson theorem:

SCE(ω) = 2νa2FE(iω)FC(iω)∗ , (6.129)

where ν is the mean rate of the pulse emission, a (= q) is the pulse area and FE(iω) and
FC(iω) are the Fourier transform of the relaxation current pulse shape functions fE(t) and
fC(t). Using the expressions for the two-types of noise currents of the provious section,
Eq. (6.129) reduces to the form

SCE(ω) =
4A

D
I5 − 2q2A

τR
I6 , (6.130)
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where

I5 =
∫ W

0
p
k1kW k∗0k∗2
|k1 + k2|2

dx , (6.131)

I6 =
∫ W

0
(p + pn)

k∗0kW

|k1 + k2|2
dx . (6.132)

By evaluating the integrals in Eqs. (6.131) and (6.132), the cross-spectral density is ex-
pressed as

SCE(ω) = 2qIC
α0YE

α00GEO
, (6.133)

where α0 is the common-base current gain, α00 is the low-frequency value of α0, and YE

is the admittance of the emitter-base junction. For low frequencies, YE becomes equal to
GEO and Eq. (6.133) has the frequency independent form,

SCE(ω ' 0) = 2qIC . (6.134)

The normalized cross-spectral density between the emitter and collector currents is defined
as

ΓCE ≡ SCE(ω)

[SiE (ω) SiC (ω)]1/2
. (6.135)

For low frequencies, SiE (ω) = 2qIE = 2qIC/α00 and hence

ΓCE = α
1/2
00 . (6.136)

Since a modern bipolar transistor has α00 ' 1, the fluctuations in the emitter and collector
currents are highly and positively correlated.

The power spectrum of the fluctuations in the base current, IB = IE − IC , is given by

SiB (ω) = SiE (ω) + SiC (ω)− 2Re [SCE(ω)]

= 2qIC

[
1
β0

+
2GE − (α0YE + α∗0Y ∗

E)
α00GEO

− 2(1− α00)
α00

]
, (6.137)

where β0 = IC/IB is the common-emitter current gain. At low frequencies, SiB (ω) is
reduced to 2qIB, which features the full shot noise.

The cross-spectral density between IC and IB is given by

SCB(ω) = SCE(ω)− SiC (ω)

= −2qIC

[
1− α0YE

α00GEO

]
. (6.138)

The term α0YE is expanded to first order in frequency[3, 4]:

α0YE ' α00GEO

(
1− iωτB

3

)
, (6.139)

where τB = W 2/2DB is the base-layer charging time. Using Eq. (6.139) in (6.138), the
cross-spectral density and the normalized cross-spectral density are approximated by

SCB(ω) = −2qIC

(
iωτB

3

)
, (6.140)
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ΓCB(ω) ≡ SCB(ω)

[SiC (ω) SiB (ω)]1/2
= −β

1/2
0

(
iωτB

3

)
. (6.141)

Similarly we obtain the cross-spectral density and the normalized cross-spectral density
between the emitter and base currents:

SEB(ω) = SiE (ω)− SEC(ω)

= −2qIC

[
2GE

α00GEO
− 2

α00
+

1
β0

+ 1− α∗0Y ∗
E

α00GEO

]

' −2qIC/β0 (ω ' 0) , (6.142)

ΓEB ≡ SEB(ω)

[SiE (ω) SiB (ω)]1/2
' −

(
α0

β0

)1/2

(ω ' 0) . (6.143)

6.3.5 Noise Figure

For small signal condition the bipolar transistor is essentially a linear device and it is
represented by an equivalent circuit of a linear two-port, as shown in Fig. 6.12. The
admittance matrix of the intrinsic transistor, in which the base resistance is neglected, is

Y =

[
1

rBE
+ 1

rBC
+ iω(CBE + CBC) 1

rBC
+ iωCBC

−gm + 1
rBC

+ iωCBC
1

rBC
+ iωCBC

]
, (6.144)

where gm = ∂IC
∂VBE

is the mutual conductance of the transistor, rBE = β00

gm
and CBE =

gmτB[4]. In a normal operating condition, the reverse-biased base-collector junction has
the negligible admittance, that is, 1

rBC
¿ 1

rBE
and CBC ¿ CBE . Therefore, the two non-

zero components of admittance matrix reduce to Y11 ' gm

(
1

β00
+ iωτB

)
and Y21 = −gm,

respectively.

Figure 6.12: An equivalent circuit of the bipolar transistor.

The base current noise iB and the collector current noise iC , derived above, must
be added as the external noise sources to the above noiseless equivalent circuit. This is
shown in Fig. 6.13(a). The spectral densities and cross-spectral densities of these current
noise are given by Eqs. (6.128), (6.137) and (6.140). For calculating the noise figure of
the bipolar transistor of a common emitter configuration, it is convenient to transfer the
output noise generator to the input. We obtain the two new noise generators ina and vna

27



at the input, as shown in Fig. 6.13(b). This circuit is valid for calculating the output noise
but not for calculating the input noise as discussed in Chapter 3. The Fourier transform
of the new noise generators are

Vna = − IC

Y21
, (6.145)

Ina = IB − Y11

Y21
IC , (6.146)

where the Y parameters are given by Eq. (6.144). The spectral densities of the two
generators are

SV na(ω) ' 2qIC/G2
EO , (6.147)

SIna(ω) ' 2qIB +
4
3
qICω2τ2

B , (6.148)

and the cross-spectral density between them is

SV naIna(ω) ' 2qIC

(
1

β00
− 2

3
iωτB

)
/GEO . (6.149)

Figure 6.13: The noise equivalent circuits of the bipolar transistor.

The noise figure of the transistor is the ratio of total noise power at the output to the
noise power resulting from thermal noise in source resistance and is calculated from the
circuit shown in Fig. 6.14. Here is is the input signal current generator, Ys = Gs + iBs

is the source admittance, ins is the source resistance thermal noise with spectral density
equal to 4kBθGs, inb is the equivalent noise current generator to vna in Fig. 6.13(b). The
Fourier transform of this new noise current is (Chapter 13),

Inb = YsVna . (6.150)

The noise figure is calculated from Eqs. (6.147)-(6.149) as,

F = 1 +
2qIC

4kBTGs

[(
Bs

GEO
+

2
3
ωτB

)2

+
2
9
ω2τ2

B +
1
β0

+
G2

S

G2
EO

+
2Gs

GEOβ00

]
. (6.151)

The noise tuning condition (Chapter 3) is satisfied when the source susceptance Bs is equal
to

Bs = −2
3
ωτBGEO . (6.152)
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Figure 6.14: A noise equivalent circuit of the bipolar transistor including the
source admittance Ys and source resistance thermal noise current ins.

The optimum source conductance which minimizes the noise figure is obtained by the
condition, ∂F

∂Gs = 0, and is given by

Gs = GEO

(
1
β0

+
2
9
ω2τ2

B

)1/2

. (6.153)

If we substitute Eqs. (6.152) and (6.153) into Eq. (6.151), we have the minimum noise
figure

Fmin = 1 +
(

1
β0

+
2
9
ω2τ2

B

)1/2

, (6.154)

where GEO ' qIC/kBθ is used and 1/β00 ¿ 1 is neglected. At low frequencies, Fmin

reduces to 1 + β
− 1

2
0 , which results in F=0.4 dB for β = 100. At high frequencies, Fmin

increases with increasing frequency. In particular, Fmin is proportional to ω2 at medium
frequencies where ω ≤ 9/(2β0τ

2
B).

The above analysis does not include the finite base resistance and the excess noise
caused by the generation-recombination process in the two depletion layers, but the noise
analysis presented in this section is in good agreement with the observed noise behavior of
the bipolar transistor. This means that a modern bipolar transistor comes already close
to the ideal limit[4].

6.4 pn Junction Diodes Under Constant Current Operation

6.4.1 Effect of Finite Source Resistance

The origin of current noise in a constant-voltage-driven pn junction diode and bipolar tran-
sistor is the thermal diffusive transit between collisions with the lattice and the generation-
recombination of a minority carrier (an electron in the p-layer or a hole in the n-layer).
These events introduce the relaxation current in order to restore the steady-state distri-
bution of minority carriers, which causes the departure of the minority carrier density at
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the depletion layer edge. For instance, the temporal decrease in np in the p+-layer in
a p+-N junction results in excess forward thermionic emission from the N -layer to the
p+-layer, as compared to backward thermionic emission from the p+-layer to the N -layer.
This excess forward emission leads to the reduction of the electron density nN at the
other depletion layer edge in the N -layer. This departure of the electron density nN from
the steady-state value is eliminated immediately by a majority-carrier flow in the N -layer
and subsequently in the external circuit. On the other hand, the temporal increase in np

results in excess backward thermionic emission from the p+-layer to the N -layer, which
induces the increased electron density nN and, thus, an opposite-polarity, external-circuit
current flows.

When the voltage source has an infinitesimally small source resistance, the above
relaxation process is completed with a negligible delay time. A system does not memorize
a previous event of thermal diffusive transit or generation and recombination of a minority
carrier. Therefore, each event occurs satistically independently and this independence is
the physical origin for the full-shot noise of a pn junction diode under constant voltage
operation, as shown in Fig. 6.15(a).

However, if the source resistance Rs is not negligibly small, the modulation in the
density nN , induced by excess forward or backward thermionic emission of an electron,
cannot be instantaneously eliminated by an external circuit current. The junction voltage
is now allowed to fluctuate by the thermal diffusive transit and generation-recombination
events. If the recombination events for electrons in the p+-layer exceed the average value,
the junction voltage decreases due to excess forward thermionic emission of electrons.
While this junction-voltage decrease is not eliminated by the external circuit relaxation
current, the forward thermionic emission rate temporarily decreases and results in the
lower recombination events of electrons in the p+-layer. This sequence works as a self-
feedback stabilization mechanism for regulating the recombination process in the p+-layer.
At the same time, the external circuit current is smoothed due to overlapping pulses with
a long-relaxation time constant CRs , as shown in Fig. 6.15(b).

A noise equivalent circuit of such a pn junction is already shown in Fig. 6.1, where Cdep

is the depletion layer capacitance, Cdif is the diffusion capacitance, Rd is the differential
resistance, i is the current noise source associated with Rd, Rs is the source resistance,
and is is the current noise source associated with Rs. The Kirchhoff circuit equation for
this noise equivalent circuit is:

d

dt
vn = − vn

CRs
+ is − vn

CRd
+ i , (6.155)

where vn is the junction voltage-fluctuation and C = Cdep+Cdif is the total junction capac-
itance. The first term on the right-hand-side of Eq. (6.155) is the relaxation (dissipation)
rate of vn due to an external circuit relaxation current and the second term is the Johnson-
Nyquist thermal noise associated with Rs and its spectral density is Sis(ω) = 4kBθ/Rs.
The third term on the right-hand-side of Eq. (6.155) is the relaxation (dissipation) rate of
vn due to thermionic emission of electrons across the depletion layer and/or recombination
of electrons and the fourth term is the noise current associated with thermionic emission
and/or recombination.

There are two operational modes of pn junction diodes, as illustrated in Fig. 6.15.
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(1) Rs ¿ R (Constant Voltage Operation)

The junction voltage fluctuation induced by forward/backward thermionic emission
and generation-recombination of electrons is instantaneously eliminated by the ex-
ternal circuit relaxation current pulse; thus vn → 0. The system does not have a
memory effect for thermal diffusion and generation-recombination events of minority
carriers, so the noise current associated with these events features full-shot noise,
Si(ω) = 2qI, as demonstrated in the previous section.

(2) Rs À R (Constant Current Operation)

The external circuit current fluctuation is smoothed by a slow relaxation current
pulse due to a large source resistance Rs. The thermionic emission process becomes
regulated by the self-feedback mechanism mentioned above. Therefore, Si(ω) is
expected to feature a sub-shot-noise character, but the junction voltage fluctuation
vn is not suppressed.

Figure 6.15: Constant voltage operation (a) and constant current operation
(b) of a pn junction diode.

A pn junction diode under a strong forward bias condition often has a negligible dif-
ferential resistance, Rd = VT

I , compared to the source resistance Rs. A semiconductor
light emitting diode and laser are such examples. In such devices, the junction current
noise is lower than the standard full shot noise and the emitted photon flux also features
a sub-shot noise behaviour[6].

6.4.2 Current Noise Spectral Density

Let us consider the situation where a pn junction is driven by a voltage source with a
series resistance Rs. A noise equivalent circuit is shown in Fig. 6.1, as already mentioned.

31



Taking the Fourier transform of Eq. (6.155), we obtain
(

iωC +
1
Rs

+
1

Rd

)
Vn(ω) = I(ω)− Is(ω) , (6.156)

where Vn(ω), Is(ω) and I(ω) are now in their Fourier representations. The external circuit
current noise In is obtained from the Kirchhoff’s law:

In = −Is − Vn

Rs
. (6.157)

From Eqs. (6.156) and (6.157), we have

In(ω) =
−I(ω) +

(
iωRsC + Rs

Rd

)
Is(ω)

iωRsC + Rs
Rd

+ 1
. (6.158)

An external circuit current noise power spectral density is proportional to |In(ω)|2. Since
the two noise sources is and i are independent and their respective power spectral densities
are given by Si(ω) = 2qI and Sis(ω) = 4kBΘ/Rs, we have

Sin(ω) =
2qI +

[(
Rs
Rd

)2
+ (ωRsC)2

]
4kBΘ/Rs

(
1 + Rs

Rd

)2
+ (ωRsC)2

. (6.159)

Here, we assume strong forward bias, so I ∼ Ise
qV/kBΘ. The diode resistance is then well

approximated by Rd = I/VT, and consequently, 2qI = 2kBΘ
Rd

. We now look at two limits.

i) Constant voltage source: Rs ¿ Rd, 2qI = 2kBΘ/Rd ¿ 4kBΘ/Rs

Under this condition, the noise spectral density is reduced to

Sin(ω) =
2qI + (ωCRs)2 4kBΘ

Rs

1 + (ωCRs)2
. (6.160)

In a low frequency limit (ωCRs ¿ 1), we recover the full shot noise Sin(ω) = 2qI.
However, in an opposite limit (ωCRs À 1), we have the thermal noise current
Sin(ω) = 4kBΘ/Rs. This is because at high frequencies, the pn junction is shorted
by the junction capacitance C and the internal current noise i cannot be extracted
to the external circuit.

ii) Constant current source: Rs À Rd, 2qI = 2kBΘ/Rd À 4kBΘ/Rs

Under this condition, the noise spectral density is always the thermal noise limit:

Sin(ω) =
4kBΘ
Rs

. (6.161)

6.4.3 Voltage Noise Spectral Density

The Fourier transformed terminal voltage Vn(ω) of a pn junction is obtained from Eqs. (6.156)
and (6.157):

Vn(ω) =
I(ω)− Is(ω)(
1

Rs
+ 1

Rd
+ iωC

) . (6.162)
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The power spectral density for the junction voltage noise is given by

Svn(ω) =
2qIR2

d + 4kBΘR2
d/Rs(

1 + Rd
Rs

)2
+ (ωRdC)2

. (6.163)

We now look at two limits:

i) Constant voltage source:
Under this condition, we have

Svn(ω) =
2qIR2

s + 4kBΘRs

1 + (ωRsC)2
, (6.164)

and since 2qIR2
s ¿ 4kBΘRs,

Svn(ω) =
4kBΘRs

1 + (ωRsC)2
. (6.165)

This is just the thermal noise associated with the source resistance and, as Rs → 0,
the junction voltage noise is suppressed.

ii) Constant current source:
Under this condition, we obtain

Svn(ω) =
2qIR2

s

1 + (ωRdC)2
. (6.166)

If we normalize Svn(ω) by R2
d, we have the full shot noise spectral density. However,

this does not mean the junction current (or electron thermionic emission event) fluc-
tuates according to the Poisson-point-process. Both electron emission and external
current are regulated as shown in Fig. 6.15.
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