
Chapter 5

Mesoscopic Conductors

The previous chapter is concluded with a rather provocative statement that the inherent
noise of a macroscopic conductor is governed by Johnson-Nyguist thermal noise and quan-
tum mechanical zero-point fluctuation even when an internal current flow exists so that a
system is not at thermal equilibrium. This is a surprising result, because the equipartition
theorem, which is responsible for the thermal noise, can apply only for an equilibrium
system. Indeed, if a conductor size decreases and becomes comparable to the electron
scattering length, the shot noise normally appears on the dc current. We will show in this
chapter how such non-equilibrium transport noise is suppressed when a conductor size is
increased.

5.1 Electrons in Mesoscopic Two Dimensional Systems

For mesoscopic conductors, the length scale is inbetween microscopic and macroscopic
systems, and bounded on one side by the deBroglie wavelength of the electron, and on the
other, by the length scales for various scattering mechanisms that destroy the electron’s
phase coherence or momentum. A modulation doped, gallium arsenide two-dimensional
electron gas (GaAs-2DEG) is one system where devices can be fabricated to have dimen-
sions satisfying these requirements. A Ferm degenerate 2DEG is formed in the triangular
potential well created by charge transfer in the z direction at the interface between non-
doped GaAs and doped AlGaAs as shown in Fig. 5.1[1, 2].

The electron dynamics on the mesocopic scale can be well approximated by an enve-
lope function satisfying the effective mass equation. This Schrödinger-like equation forms
the mathematical foundation for mesoscopic electron transport. The exact Schrödinger
wavefunction, Φ, can be found in the independent electron approximation (which ignores
electron-electron interactions) by solving the single particle Schrödinger equation,

ih̄
d
dt

Φ = HΦ, H =
p2

2me
+ V (r, t) , (5.1)

where me is the free electron mass, and p and r are the momentum and position operators.
In general, the potential, V (r, t) seen by the 2DEG electrons includes the periodic lat-
tice potential, Vl(r), its time-dependent fluctuations (phonons), Vph(r, t), the electrostatic
confinement potential, Ve(r), and the random disorder potential, Vd(r), due to various
defects and impurities.
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Figure 5.1: (a) The epitaxial structure of a GaAs-2DEG. (b) Conduction band
energy diagram near the interface between the non-doped GaAs and AlGaAs.
A two dimensional electron gas forms in the triangular well.

Starting with just the periodic potential, the structure of the electron’s wavefunction
and energy would generally be found using Bloch’s theorem[3]. This theorem states that
the exact wavefunctions of a static periodic potential can be described as the product of
a plane wave of wavevector k and a periodic function,

Φnk(r) = unk(r) exp(ik · r) , (5.2)

where unk(r) has the same periodicity as the lattice potential. Here, n is the band index
which labels the discrete set of periodic functions that satisfy the Schrödinger equation
subject to periodic boundary conditions.

Since this is a fairly difficult problem to solve, and since in practice, only the regions
near the minimum of the conduction band at the Brillouin zone center are important
for electron transport in the GaAs 2DEG, several simplifying assumptions can be made.
Because k is small in this region, a k · p expansion in the Schrödinger equation can be
made around the known Bloch wavefunctions and energies at the zone center[4, 5]. From
symmetry arguments on the periodic potential, it can be shown using second-order time
independent perturbation theory that the conduction band energy depends quadratically
on the wavevector,

Ec(k) = Ec0 +
h̄2k2

2m
, (5.3)

where c has been substituted for n to indicate the conduction band with an effective mass,
m = 0.067me, that depends on the energy gap between conduction and valence bands,
and the dipole moments for the zone center Bloch wavefunctions. Moreover, the functions
unk(r) can also be expanded in terms of the zone center Bloch wavefunctions, and possess
a term linear in k · p.

Within this approximation, it appears that the energy of the electron can be decom-
posed into two portions – a constant potential energy term Ec0 due solely to the band

2



structure, and a parabolic kinetic energy term h̄2k2

2m due to the plane wave propagation.
Through the effective mass, this latter term implicitly includes the effect that the period-
icity has on the inertia of the free electron.

Now if a nonperiodic potential is added (e.g., the confinement potential), the time-
independent single-particle Schrödinger equation,

[
p̂2

2me
+ Vl(r̂) + Ve(r̂)

]
Φ(r) = EΦ(r) , (5.4)

where E is the new energy eigenvalue, can be solved by using the Bloch functions as an
expansion basis,

Φ(r) =
1√
Ω

∑

n,k

cn,kunk(r) exp(ik · r) , (5.5)

where Ω is the normalization volume. If the reasonable assumption is made that the
nonperiodic potential varies slowly in space as compared to the periodic lattice of the
atomic scale, then it can be shown using Eq. (5.3) that the Schrödinger equation gives rise
to the single band effective mass equation[6, 7],

[
p̂2

2m
+ Ve(r̂)

]
Ψ(r) = EΨ(r) , (5.6)

for the effective mass wavefunction (or the envelope of the Bloch functions),

Ψn(r) =
1√
Ω

∑

k

cn,k exp(ik · r) . (5.7)

In other words, if coefficients cn,k can be found so that Ψn(r) satisfies the effective mass
equation, (5.6), then the exact wavefunctions (within the k · p approximation) are given
by (5.5).

The advantage of (5.6) is that now all details about the atomic scale periodicity are
taken into account by the effective mass, m, leaving only a Schrödinger-like equation
to describe the behavior of the plane wave envelopes of the Bloch functions to the slowly
varying potentials. The removal of the periodic portions of the Bloch wavefunctions reflects
the fact that, to this order of approximation, there are two very different length scales
over which the wavefunction varies – rapid variations on the order of the lattice spacing
occur for unk(r), and slow variations on the scale of 2π/k for the plane wave. The slowly
varying potentials only affect the latter, a point which can usually be verified by the same
second-order perturbation theory mentioned above. With this in mind, throughout the
remainder of this chapter, the effective mass approximation will be assumed, and any
reference to an “electron” refers to the effective mass wavefunction rather than the exact
wavefunction.

If the z direction confinement potential is translationally invariant in the lateral direc-
tion, a separation of the conduction band wavefunctions, Ψc(r) from (5.7), into a standing
wave in the z direction and plane waves in the lateral directions is possible. Now the
energy can be written as

E(k) = Ec(0) + Es +
h̄2k2

2m
, (5.8)
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where Es is the confinement energy along z direction (subband energy), and k from now
on refers to the 2D lateral wave vector.

For the electron dynamics within this well, a wave packet centered around a particular
value of k can be constructed which would then be evolved by the time-dependent version
of the effective mass equation. From Eq. (5.8), the group velocity of this wave packet is
just

v(k) =
1
h̄
∇kE(k) =

h̄k
m

. (5.9)

Here, h̄k is recognized as the crystal momentum which represents the momentum of the
wave packet moving between many unit cells (in contrast to the real momentum, which
is dominated mainly by the motion of the free electron wave packet within a unit cell).
Throughout the remainder of this chapter, momentum will be used to refer to the crystal
momentum as long as the effective mass equation is valid.

Thus far, only a single electron has been considered. In a 2DEG though, there is a de-
generate gas of two dimensional plane wave electrons. At low temperatures, Θ, Fermi-Dirac
statistics are appropriate, giving an average occupation per energy of f(E) = fFD(E). The
density of states per subband of the well (including spin degeneracy) can be derived from
(5.8),

ρ2D(E) =
m

πh̄2 , (5.10)

and is independent of energy. The sheet density, ns, can be found by integrating the
product of this density of states with the Fermi-Dirac distribution function, yielding a
sheet density proportional to the Fermi energy. For a GaAs-2DEG, this is typically on the
order of 1011 ∼ 1012 cm−2. Moreover, for densities below approximately 7 × 1011 cm−2,
usually only the lowest subband of the well is occupied.

Because of the degenerate nature of the electrons, the conductance properties are
determined mainly by the electrons at the Fermi energy. In contrast, in the classical theory
of conduction by Drude, which assumes a Maxwell-Boltzman distribution of electrons,
there is a contribution from all of the electrons. In the degenerate case, the electrons
near the Fermi surface only contributes to net transport and have the Fermi wavelength
(deBroglie wavelength),

λF =
h

pF
=

√
2π

ns
, (5.11)

which is around 40 nm in a GaAs 2DEG. Here pF = h̄kF is the electron momentum at a
Fermi energy.

5.2 Ballistic Transport

5.2.1 Conductance Quantization

It is possible to produce devices with a length and width smaller than the momentum
relaxation length (mean free path). In this regime, the transport is ballistic. If the phase
relaxation length is also longer than the device dimensions, then the transport is clearly
coherent.

Electron waveguides are essentially wires narrow enough (on the order of the deBroglie
wavelength) that the electron wavefunction must be quantized in the transverse dimension.
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The simplest realization of this is the quantum point contact (QPC), shown schematically
in Fig. 5.2. In the QPC, the 1D subbands are widely spaced (uniformly if the confining
potential is parabolic). For each subband, the energy of the 1D electrons is given by

Ej(k) = Ej(0) +
h̄2k2

2m
, (5.12)

where Ej(0) is the confinement subband energy and k is now the longitudinal wavevector.
The quadratic term generally leads to spreading in the wave packets of electrons as the
different waves propagate at different speeds. Practically though, in the electron case, for
small energy changes compared to the Fermi energy, this is usually ignored.

Figure 5.2: A schematic of a quantum point contact (QPC) of nominal length
L, connected to large electron reservoirs. The first transverse mode propagates
through the point contact. Because of the small dimension, the discrete modes,
Ej(0) are well separated. In contrast, in the reservoirs, a large density of modes
exists, usually one of which is mode-matched to the QPC.

For transport through this device to occur, it must be connected to contacts which
inject electrons. The only available source for electrons in this case is a degenerate, thermal
reservoir of electrons in the contacts. Like the QPC, a finite size contact has transverse
modes, but since its very large, the number of transverse modes is correspondingly large
as depicted schematically in Fig. 5.2. All of these modes are assumed to be identically
populated with electrons according to the Fermi-Dirac function with a common chemical
potential, µ. We assume that for a given energy below the chemical potential, all of
the modes have exactly the same number of electrons, which is simply unity due to the
Pauli exclusion principle (or two if spin degeneracy is included). This property is called
Fermi-degeneracy.

Electronic conduction between the contact reservoirs is determined by treating the
transport through the device as a transmission problem. This idea was first formulated
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by R. Landauer[10] for a chain of scatterers between two leads. Only the transmission
characteristics of the electrons at the Fermi energy are important. In the independent
electron approximation, this transmission can be found by assuming an incident electron
state and solving the effective mass equation with the device’s electrostatic potential.

Qualitatively, in the case of the QPC, if the Fermi energy is below the lowest subband
level, E1, then the device is pinched off: the transmission, T , goes to zero. If the QPC
width is widened so that the subband level drops with respect to the Fermi energy, a finite
transmission can be allowed because the evanescently decaying wave may leak through the
barrier. Then, when the subband energy drops below the Fermi level, the transmission
for electrons at the Fermi level approaches unity if the potential variation over an electron
Fermi wavelength λF = 2π

kF
is small, as shown in Fig. 5.3.

Figure 5.3: (a) QPC near pinchoff. The plane wave electron decays evanes-
cently through the barrier, giving only a small transmission. (b) Open QPC.
The subband level is now below the Fermi level so that all electrons can be
transmitted with unity probability.

Unity transmission through the device, however, does not imply zero resistance. First,
there can still be considerable reflection at the interface between the device and the reser-
voirs which are the sources and sinks for the electrons. Usually, the transitions at the
interfaces occur adiabatically; electrons in the transmitting mode can propagate out of
the device into the sink contacts with little reflection[11]. However, most electrons prop-
agating from the source reservoir into the device are reflected, unless they are properly
mode-matched with the transverse mode in the QPC.

Second, even for this mode, the current is limited by the Pauli exclusion principle.
If a bias is applied between the reservoir chemical potentials, i.e. µ1 = µ2 + eV , then
(concentrating only on the states above µ2 which contribute to net current) the net current
in reservoir 2 is given by the transmitted flux from reservoir 1,

I2 =
2e

h

∫ µ2+eV

µ2

dEρ1D(E)v(E)Tf1(E) (5.13)
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=
2e

h
eV T (5.14)

since only a single electron is allowed per state per spin. Note the fact that the group
velocity υ(E) = 1

h̄
dE
dk = h̄k/m and the density of states, ρ1D = 1

L
dN
dE = 1

2πh̄υ(E) , cancels
in 1D permits a straightforward integration of the degenerate term Dirac distribution
function. This results in a conductance of

G = 2GQT , (5.15)

where

GQ =
e2

h
(5.16)

is the quantum unit of conductance, determined only by fundamental constants. The factor
of two arises because of spin degeneracy. This is the Landauer formula for the conductance
in terms of transmission through a single mode. The heat dissipation associated with it
does not occur in the QPC since there is no inelastic scattering there. Instead, it occurs
in the reservoirs, and can be attributed to the inelastic processes which relax the reflected
electrons at the input interface, and the transmitted electrons at the output.

Figure 5.4: The conductance of a QPC vs. the gate voltage. The conductance
is quantized in units of 2e2/h. At each plateau, all electrons injected into the
transmission modes without reflection contribute to the conductance. At each
step, the transmission probability of the highest transverse mode transitions
from zero to unity.

Experimentally, this quantized conductance was first observed in 1988, in the GaAs
2DEG system[12, 13]. Besides the first plateau, additional plateaux can be observed as
the channel width increases to allow more transverse modes to propagate. In this case,
the conductance is expressed by the multimode formula,

G =
2e2

h

∑

j

Tj , (5.17)
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where Tj are the transmission probabilities for each mode. This results in steps in the con-
ductance of a fundamental magnitude 2e2/h each time the transmission for each transverse
mode transitions from zero to unity (Fig. 5.4)[14].

Figure 5.5: The wave packet picture of ballistic transport. An energy bias of
eV injects wave packets of nominal time width h/eV into the QPC. Because
of the zero temperature Fermi-Dirac distribution, the injection is quiet.

Although this discussion focuses on the longitudinal plane wave states, wave packets
can have easily be constructed as well, as shown in Fig. 5.5. This viewpoint is perhaps
more natural when considering the particle nature of the ballistic transport. A voltage drop
eV across the QPC represents the range of electron energies which can contribute to the
wave packet construction. In the simplest picture, at zero temperature, the Fermi-Dirac
distribution restricts wave packets to a width of h

eV (≈ 41 ps for 100µV). Again, because
of the Pauli exclusion principle, each wave packet only accomodates a single electron per
spin. These packets are then regularly injected into the QPC for every τ = h

eV seconds,
and coherently transmitted or reflected. Once absorbed into one reservoir or the other
though, the wave packets can be considered to be either transmitted or reflected, just like
classical billiard balls, resulting in the current I = 2e

τ T = 2e2

h V T .

5.2.2 Current Noise at Thermal Equilibrium

Thus far, the focus of the discussion has been on the averaged transport properties of
electronic devices in the mesoscopic regime. The Landauer approach has proved to be a
very successful paradigm for this. However, it does raise a few questions in relation to
noise. As is well known from the Fluctuation-Dissipation Theorem, any dissipation from
a system to a reservoir should be associated with a fluctuation injected into the system
from the reservoir at equilibrium[15]. In fact, from linear response theory, it is possible to
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derive a relationship between the fluctuating properties of a system and the response of
the system to external perturbations. The generalized Johnson-Nyquist noise is exactly
this kind of relation, as we have seen in the previous chapter.

In the case of mesoscopic devices, the Landauer formula implies that a ballistic con-
ductor with transmission, T = 1, has a linear response conductance of GQ. The conductor
should therefore exhibit fluctuations in its current at equilibrium. However, since this
dissipation is associated with processes in the reservoir rather than the conductor itself,
there is some ambiguity concering how these fluctuations should be interpreted. An elegant
picture for this emerges from the wave packet point of view[16].

From this perspective, the electron reservoir is coupled to a thermal bath with which
energy can be exchanged to maintain the equilibrium Fermi-Dirac distribution for the elec-
trons. At zero temperature, due to the unity occupation, all wave packets associated with
energies below the chemical potential are always occupied, while those above the Fermi
energy are always unoccupied. At finite temperature, though, within the approximate
width kBΘ of the Fermi energy, the average occupation changes from zero to unity. This
implies that some of the wave packets are partially occupied.

At thermal equilibrium, both reservoirs of a ballistic conductor are identical so that no
net transport occurs. However, each reservoir can be envisioned as independently injecting
these wave packets into the conductor in different directions. Since each travelling wave
packet carries an electron flux consitituting a current, the statistical, thermal fluctuations
in the occupations result in equilibrium current fluctuations.

Consider the one-dimensional mesoscopic conductor (Fig. 5.6), in which electrons prop-
agate from one electrode to the other without being scattered (ballistic transport). The
electron emission process from each reservoir electrode obeys a binomial distribution with
the average emission rate f(E).

Figure 5.6: One-dimensional mesoscopic conductor at thermal equilibrium.

The electron occupation number in each longitudinal mode with energy E and wave
vector k in the reservoir is given by the Fermi-Dirac distribution. We can think of the
Fermi-Dirac distribution as a probability distribution describing the probability of an
electron occupying a propagating mode accross the mesoscopic conductor. The Fermi-
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Dirac distribution of electrode 1 (Fig. 5.6) is given by:

f1(E) =
1

e(E−µ1)/kBθ + 1
, (5.18)

where µ1 is the chemical potential (Fermi energy) at electrode 1, kB is the Boltzmann con-
stant, and θ is the temperature. For each longitudinal mode, the wavevector is quantized
to

kN =
2π

L
N , (5.19)

where N is a positive integer and L is the length of the conductor in the direction of
transport. The number of modes per unit energy interval centered at an energy E is
called the mode density, and is given by:

D(E) =
dN(E)

dE
=

dN(kN)
dkN

dkN

dE
=

L

2π

1
h̄vN(E)

, (5.20)

where the relations

dN

dkN
=

L

2π
, E =

h̄2k2
N

2m
and vN =

h̄kN

m
,

are used. Here, vN is the group velocity of the plane wave electron. We also assume that
L is large enough that we can take D(E) to be a continuous function.

Current is defined as the number of charges per unit time entering (or leaving) the
conductor. Here, each charge travels at a velocity, vN, over a length L. Thus, for a given
mode, the transit time of an electron is TR = L/vN, and consequently, the number of
charges per second is vN/L. To get the current carried by a given longitudinal mode, we
must multiply by the Fermi-Dirac distribution, which is essentially the probability that
an electron enters a given mode. Lastly, to get the total current, we integrate over the
current per mode times the number of modes per energy over all energy range. Therefore,
the total current from electrode 1 (to electrode 2) is:

I1 = 2
∫ ∞

0
(dE)

[
e

TR

]
· f1(E) ·D(E)

= 2
∫ ∞

0
(dE)

[
e
vN(E)

L

]
· f1(E) · L

2πh̄vN(E)

=
2e

h

∫ ∞

0
(dE)

1
e(E−µ1)/kBθ + 1

. (5.21)

Similarly, the current from electrode 2 (to electrode 1) is,

I2 =
2e

h

∫ ∞

0
(dE)

1
e(E−µ2)/kBθ + 1

. (5.22)

The net current is Itot = I1 − I2 = 0 for µ1 = µ2, as it should be. We can make the
following interpretations:

i) e/h (dE) is the contribution to the current by all the longitudinal modes in the
energy band [E, E + dE] for a given spin.
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ii) f(E) is the probability that the modes in the band [E, E + dE] are filled.

iii) The total current is given by the sum of the contributions over all energies.

Using this interpretation, the power spectral density (PSD) at zero frequency limit can be
found from the variance for such a random partition process [Carson theorem in chapter
1]. The probability of electron emission is f(E), and the variance is thus f(1 − f). This
essentially becomes a binomial problem. The noise PSD for the energy band [E, E + dE]
is given by:

SI1(ω = 0)dE = 2ν〈∆a2〉|F (iω ' 0)|2

= 2 · 2dE

h
· e2f1(E) [1− f1(E)] · 1

= 2 · 2e2

h
· f1(E)(1− f1(E))dE . (5.23)

Note that ν = dI
e = 2

hdE is the frequency of (electron) pulse emission into a channel
in the energy range [E, E + dE] and 〈∆a2〉 = e2f1(E) [1− f1(E)] is the variance of the
(electron) current pulse. Since the current is real, the PSD can be defined unilaterally
over the positive frequencies, with a simple factor of 2 accounting for the contributions of
the negative frequencies. The total noise current from electrode 1 is

SI1(ω = 0) = 2
2e2

h

∫ ∞

0
(dE)

1
e(E−µ1)/kBθ + 1

e(E−µ1)/kBθ

e(E−µ1)/kBθ + 1
. (5.24)

If we introduce a parameter x = e(E−µ1)/kBθ + 1, we obtain

SI1(ω = 0) = 4GQ

∫ ∞

e−µ1/kBθ+1
(dx)

1
x2

kBθ

= 4kBθGQ
1

e−µ1/kBθ + 1
. (5.25)

The total noise current PSD from electrode 2 is identical. The two PSD’s add since they
are independent. Thus, the total noise current PSD is

SItot(ω = 0) = 8kBθGQ
1

e−µ1/kBθ + 1
. (5.26)

In the limit µ1 À kBθ,
SItot(ω = 0) = 4kBθG , (5.27)

where G = 2GQ is the total conductance including two spins. Thus, we have obtained the
Johnson-Nyquist thermal noise, starting with the random partition process based on the
Fermi-Dirac distribution function.

The current noise at finite frequency, ω, stems from the beat between the occupied
wave packet at energy E and the empty wave packets at energies E ± h̄ω [We will show
the mathematical proof for this later].

SI1(ω)dE = 2 · 2e2

h
f1(E) · 1

2

[
(1− f1(E + h̄ω)) + (1− f1(E − h̄ω))

]
dE (5.28)
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We again introduce x = e(E−µ1)/kBθ and α = exh̄ω/kBθ and note that:

kBθ

∫ ∞

e−µ1/kBθ
(dx)

1
x + 1

· α

αx + 1
= kBθ

α

1− α

[
ln

αe−µ1/kBθ + 1
e−µ1/kBθ + 1

− ln α

]
.

Using these results, we have the current noise PSD at finite frequency ω:

SI1(ω) = kBθGQ

[
eh̄ω/kBθ

1− eh̄ω/kBθ
·
(

ln
e(h̄ω−µ1)/kBθ + 1

e−µ1/kBθ + 1
− h̄ω

kBθ

)

+
e−h̄ω/kBθ

1− e−h̄ω/kBθ
·
(

ln
e−(h̄ω+µ1)/kBθ + 1

e−µ1/kBθ + 1
+

h̄ω

kBθ

)]
. (5.29)

If we look at the regime:

µ1 À h̄ω, kBθ ⇒ ln
e(−µ1∓h̄ω)/kBθ + 1

e−µ1/kBθ + 1
→ 0 ,

we find that:
SI1(ω) = 2GQh̄ω coth

h̄ω

2kBθ
. (5.30)

The calculation is identical for the noise current PSD from electrode 2. Since the two
noise current PSDs are independent and additive, we have

SItot(ω) = 2Gh̄ω coth
h̄ω

2kBθ
. (5.31)

Thus, we have the generalized Nyquist noise formula, which reduces to the Johnson-
Nyquist thermal noise 4kBθG in the limit of h̄ω ¿ kBθ and the quantum zero-point noise
2h̄ωG in the limit of h̄ω À kBθ.

5.2.3 Current Noise at Non-Equilibrium

We now have an applied bias voltage such that, µ2 = µ1 − eV . Following the similar
procedure of the previous section, we see that the net current is:

Itot = I1 − I2 =
2e

h

∫ ∞

0
(dE)

[
1

e(E−µ1)/kBθ + 1
− 1

e(E−µ1+eV )/kBθ + 1

]
=

2e2

h
V = GV .

We recover the main result of Sec. (5.2.1). The current noise PSD is calculated by replacing
f2(E) with theFermi-Dirac distribution function with a chemical potential µ2 = µ1 − eV
in (5.28). Performing the similar integration as that of the previous section, we find the
solution is general, and is independent of the bias eV as long as eV ¿ µ1, µ2. Thus, in
this limit, the noise current PSD remains unchanged:

SItot(ω) = 2Gh̄ω coth
h̄ω

2kBθ
.

From the above discussion, it is clear that at equilibrium, not only the dissipation but
also the fluctuations of the mesoscopic system can be associated with the contact reser-
voirs. This is in sharp contrast to the macroscopic conductor, in which both dissipation
and fluctuation are associated with the conductor itself. It is interesting to ask how the
transition occurs between these two extreme cases. We will discuss this important issue
in the remaining of this chapter.
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5.3 Partition Noise in Mesoscopic Conductors

Under nonequilibrium conditions, a net current flows through a device, giving the possi-
bility of additional noise. This is not the case if a mesoscopic conductor has a ballistic
transport. In the previous section, we established a very important conclusion: a ballis-
tic conductor with unity transmission coefficient features a generalized Johnson-Nyquist
noise even at non-equilibrium situation. However, if a mesoscopic conductor has a scat-
terer along its path, a new noise source emerges. This noise is partition noise, which can
actually be viewed as a general phenomenon in many systems. It refers to the fluctuations
arising from the independent, random division of discrete objects – in this case, electrons.
It has an essentially classical origin, as the simple probabilistic arguements presented in
chapter 1. In other words, the electrons in the branching circuit can be replaced by scat-
tering billiard balls, or even random coin tosses; in all cases, the output statistics are just
determined by the binomial distribution.

But rather than appearing in the classical limit of tranport where electrons are con-
sidered solely as classical particles, electron partition noise appears only in the mesoscopic
regime, where the wave nature manifests. In other words, this partition noise is not ob-
served in a macroscopic conductor. It is a surprising experimental finding that macroscopic
conductor features also a generalized Johnson-Nyquist noise at non-equilibrium situation.
To understand this, it is useful to treat the partition noise phenomenon within a larger
context that takes into account the electron’s wave-particle duality. This analysis should
therefore simultaneously consider both the amplitude and phase of the electron.

The basis for this kind of treatment lies in the coherent scattering (Landauer-Büttiker)
approach, a generalization of the Landauer transmission concept to multiple ports[17].
This theory begins by defining single electron states based on the scattering matrix for
the coherent device. For each electron state, partitioning by the scatterer introduces
intrinsic quantum fluctuations of the appropriately defined number and phase difference
operators for the electron. The fluctuations can be elegantly represented on a Bloch
sphere diagram, and satisfy the complementarity imposed by the Heisenberg uncertainty
relation[18]. The coupling of vacuum fluctuations through the scattering matrix gives
rise to these fluctuations[19, 20], and the full quantum mechanical analysis reveals the
importance of vacuum fluctuations for not only the number, but also the phase noise due
to partitioning.

5.3.1 Coherent Scattering Theory

The coherent scattering theory for a general device with P ports is similar to the quantum
circuit theory of Chapter 3 and begins by defining the asymptotic states in the ports.
Assuming only a lattice potential, and no other interactions, and within the effective mass
and independent electron approximations, these states in general are simply plane waves,
such as in (5.7). The ports are assumed to be semi-infinite in the longitudinal (along the
direction into the device) direction, and bounded in the transverse direction, as shown in
Fig. 5.7. The two dimensional problem can be decoupled, giving wavefunctions ζαj(yα)
for the jth transverse mode in reservoir α (which has Jα total modes), and a plane wave
exp(±ikαjxα) in the longitudinal directon. The associated energy dispersion relation is
given by (5.12). Note that xα, yα are the local Cartesian coordinates of reservoir α, and
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xα always points into the device.

Figure 5.7: Coherent scattering model. A scattering matrix, s couples the
plane wave state incident from one reservoir, e. g. ψ+1, with outgoing plane
waves in other reservoirs.

Since the device is coherent, a unitary, energy dependent scattering matrix s with
elements sβαij(E) which couples the incident longitudinal wave with transverse mode j
and wavevector kαj(E) in reservoir α to the outgoing longitudinal wave with transverse
mode i and wavevector kβi(E) in reservoir β can be determined . This matrix can then
be used to write the stationary scattering states ψ+αj(E) for longitudinal waves incident
on the device from reservoir α and mode j:

ψ+αj(E, x, y) =



∑Jα
i=1

[
δijζαj(yα)eikαjxα +

(
vαj

vαi

) 1
2 sααijζαi(yα)e−ikαixα

]
(x, y) ∈ (xα, yα)

∑Jβ

i=1

(
vαj

vβi

) 1
2 sβαijζβi(yβ)e−ikβixβ (x, y) ∈ (xβ, yβ), β 6= α ,

(5.32)

where vαj is the (energy-dependent) velocity associated with the kαj plane wave state in
reservoir α and mode j. Alternatively, a complete set of outgoing states, ψ−αj(E), instead
of incident states can also be defined,

ψ−αj(E, x, y) =



∑Jα
i=1

[(
vαj

vαi

) 1
2 sααjiζαi(yα)eikαixα + δijζαj(yα)e−ikαjxα

]
(x, y) ∈ (xα, yα)

∑Jβ

i=1

(
vαj

vβi

) 1
2 sαβjiζβi(yβ)eikβixβ (x, y) ∈ (xβ, yβ), β 6= α ,

(5.33)
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where sαβji(B) = sβαij(−B) (where B is the magnetic field) due to time reversal symme-
try.

It is convenient to introduce second quantization notation, and associate the ladder
operators â+αj(E) and â−αj(E) with the amplitude of the states ψ+αj(E) and ψ−αj(E),
respectively. These operators obey an anticommutation relation,

{â†±αj(E), â±βi(E′)}+ = δαβδjiδ(E − E′) . (5.34)

Moreover, they are related to each other through the scattering matrix,

â†−αj(E) =
P∑

β=1

Jβ∑

i=1

sαβji(E)â†+βi(E) . (5.35)

From this description, it is obvious that an electron in an outgoing state is created from
the superposition of incident electrons created in different ports, all coupled through the
scattering matrix.

If the variance, 〈δN2
−αj〉 = 〈â†−αj â−αj â

†
−αj â−αj〉 − 〈â†−αj â−αj〉2, is calculated, terms

proportional to 〈â†+βiâ+β′i′ â
†
+β′i′ â+βi〉 appear. Use of the anticommutation relation then

explicitly recovers contributions to the noise from the vacuum. In other words, fluctuations
in the occupation of the outgoing state are induced by the coupling of the vacuum. From
the quantum mechanical point of view, this is the fundamental origin of the partition
noise. Notice that this noise is fundamentally different from the fluctuations due to the
statistical occupation of the electron state according to a distribution function.

5.3.2 Number–Phase Complementarity

Consider the ideal single mode beam splitter in Fig. 5.8 which equally splits a particle
incident from one input port into two output ports. This four-port device can be described
by the scattering matrix,




â−1

â−2

â−3

â−4


 =




0
1√
2

1√
2

− 1√
2

1√
2

1√
2

− 1√
2

1√
2

1√
2

0







â+1

â+2

â+3

â+4


 . (5.36)

A number difference operator, N ′, for the difference in outgoing particle number at
the output ports 3 (N−3 = â†−3â−3) and 4 (N−4 = â†−4â−4), is defined by

2S′z = N ′ ←→ [â†−3â−3 − â†−4â−4] . (5.37)
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Figure 5.8: (a) An ideal 50-50% electron beam splitter. Operators âi are the
second quantized ladder operators for the incident and outgoing states of port
i. An incident state from port 1 is split into the two output ports, 3 and 4,
where the number operators, N−i, i = 3, 4, are used to determine the outgoing
particle flux. (b) Interferometer geometry for inferring the phase difference
fluctuations induced by the first beam splitter. The output fluxes, â†−3â−3 and
â†−4â−4 are sensitive to the phase difference, θ, between the two paths.

Here S′ = (S′x, S′y, S′z) is the collective spin operators, which is often used to describe the
assembly of two-level atoms (spin −1

2 systems) [21]. This corresponds to a projection of
the total spin along the z axis (population difference) of the Bloch sphere, and its average
value is clearly indicative of the splitting ratio of the beam splitter in the context of the
partitioned system.

Similarly, a relative phase difference operator, Φ′, is defined analogous way as the
dipole moment operator of the atomic system,

S′y
|〈S′x〉|

= Φ′ ←→ −i[â†−3â−4 − â†−4â−3]

|〈[â†−3â−4 + â†−4â−3]〉|
. (5.38)

When the total spin lies close to the x-axis on the Bloch sphere (which can always be
achieved by the proper rotation), this operator corresponds to the azimuthal angle of the
spin away from the x-axis.

For the partitioned system, this operator is indicative of the phase difference between
the two partial waves in the two outputs of the beam splitter.

By defining number and phase difference in this fashion, the spin commutation relation
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immediately establishes a Heisenberg uncertainty relation between these two operators.
In other words, a complementarity exists between the fluctuations in relative number and
phase difference for the ensemble of single particle split into two ports, and it can be
expressed as

〈δN ′2〉〈δΦ′2〉 ≥ 1 . (5.39)

The number and phase difference noises arise from the incident vacuum fluctuations.
To see this, it is convenient to write the second quantized ladder operators in terms of their
quadrature field components, â+α = â+αc + iâ+αs. Using the anticommutation relations

{â+αc, â+βc}+ = 1
2δαβ ,

{â+αs, â+βs}+ = 1
2δαβ

(5.40)

(all other relations being zero), and the beam splitter scattering matrix (5.36), the number
and phase difference operators can be expressed as

N ′ = 2[â+1câ+2s + â+2câ+1s]
Φ′ = 2i

〈N〉 [â+1câ+2c − â+2sâ+1s] .
(5.41)

For the fermion beam splitter, the number difference operator arises from the beating
of the quadrature components of the two incident states, while the beating of the in-
phase components yields the phase difference operator[20]. Although the explicit form
differs from the boson results[22], the number and phase difference noise arising from the
partition of a single incident fermion is nonetheless traced back to an interference between
the vacuum fluctuations in one input and the occupied state in the other. The vacuum
fluctuations are therefore essential for maintaining the Heisenberg uncertainty relation,
(5.39).

The number difference noise is first determined from the beam splitter geometry (µ1 >
µ2 = µ3 = µ4 in Fig. 5.8(a)). An average current only flows from the biased input reservoir
1 to the two output reservoirs 3 and 4:

〈N3〉 = 〈N4〉 = −1
2〈N1〉 = − 1

2Bh(µ1 − µ2)
〈N2〉 = 0 .

(5.42)

Here 1/B is a measurement time interval. The fluctuations are

〈δN2
1 〉 = 〈δN2

2 〉 = 0
〈δN1δN2〉 = 〈δN2δN1〉 = 0

〈δN2
3 〉 = 1

2 |〈N3〉|
〈δN2

4 〉 = 1
2 |〈N4〉|

〈δN3δN4〉 = 〈δN4δN3〉 = −〈δN2
3 〉.

(5.43)

Notice that the fluctuation in each output reservoir is just half of the full shot noise, as
expected from the T (1− T ) dependence of the partition noise at T = 1/2. It is now easy
to conclude that

δN3 = −δN4 . (5.44)

Thus the electron streams in the output reservoirs are completely anticorrelated. The
physical interpretation of this result is simple. Since the chemical potentials are fixed, the

17



incident current from reservoir 1 is noiseless. The scattering matrix from (5.36) does not
permit a reflected stream back into reservoir 1. Thus δN1 = 0. Similarly, δN2 = 0, using
the fact that no average current flows into reservoir 2. Current conservation requires that
δN1 + δN2 + δN3 + δN4 = 0, so an increase in reservoir 3 forces a corresponding decrease
in reservoir 4. This anticorrelation immediately implies

〈δN ′2〉
|〈N 〉| =

〈(δN3 − δN4)2〉
|〈N1〉| =

〈δN2
3 〉+ 〈δN2

4 〉 − 2〈δN3δN4〉
|〈N1〉| =

4〈δN2
3 〉

|〈N1〉| = 1 , (5.45)

where δN ′ is the number difference fluctuation of the beam splitter output ports, and
〈N〉 = 〈N1〉, the incident electron number. The Poissonian noise that is expected in the
ballistic division limit has thus been recovered.

Figure 5.9: Bloch sphere diagram of the input and output spin states of the 50-
50 beam splitter. The input state exhibits no number difference noise, δN = 0,
but has an indeterminate phase. The output state is a coherent spin-state with
Poissonian fluctuations in both number (δN ′) and phase (δΦ′) difference.

Next, the phase difference noise is measured by the Mach-Zehnder interferometer, in
which the two partial waves propagating along the path 3 and 4 are recombined with a
second 50-50% beam splitter after π/2 relative phase difference (Fig. 5.8 (b)). The average
reservoir currents and fluctuations are found to be mathematically identical to the simple
beam splitter values due to the π/2 phase bias. To conserve current, the fluctuations of
electron number in reservoirs 3 and 4 are again anticorrelated. Moreover, the statistics of
the experiment are again Poissonian. The phase noise is determined by the prescription
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given in (5.38), yielding

〈δΦ′2〉|〈N〉| = 〈(δN3 − δN4)2〉/|〈N1〉| = 1 . (5.46)

Clearly the number and phase difference noise yield the minimum uncertainty product.
Moreover, they satisfy this product symmetrically, both producing Poissonian fluctuations.
The ballistic electron noise properties do in fact correspond to the coherent spin-state[21]
depicted in Fig. 5.9 on the standard Bloch sphere diagram.

5.3.3 Reservoir Currents

In a mesoscopic device, the reservoirs connected to the device ports are sources for many
electrons distributed according to the equilibrium Fermi-Dirac distribution. In practice,
some energy relaxation mechanism within the reservoirs must exist in order to maintain
this distribution in the presence of transport. However, provided there is no reflection
from the reservoirs back into the device, the details are unimportant.

To treat all the electrons, many-body scattering states must be defined. Returning now
to the general case, the incident states can be superimposed with complex amplitudes to
form a general scattering state, from which a field operator can be constructed,

Ψ̂(x, y, t) =
P∑

α=1

Jα∑

j=1

∫ dEαj

[hvαj(Eαj)]
1/2

ψ+αj(Eαj , x, y)â+αj(Eαj)e−iEαjt/h̄ . (5.47)

A quantum mechanical current operator can be defined to describe the total flux of
particles through a reservoir α at some arbitrary longitudinal position xα,

Iα(t) =
eh̄

2mi

∫
dyα

[
Ψ̂†∇Ψ̂− (∇Ψ̂†)Ψ̂

]
xα

. (5.48)

To compute this, it helps to decompose Ψ̂ into a more convenient form which explicitly
contains both the incident and outgoing states of α. This is done with the help of (5.35);
Ψ̂(x, y, t) can be written for each reservoir α when (x, y) ∈ (xα, yα) as

Ψ̂(x, y, t) = Ψ̂(xα, yα, t) =
Jα∑

j=1

∫ dEαj

[hvαj(Eαj)]
1/2

ζαj(yα)
[
eikαjxα â+αj(Eαj) + e−ikαjxα â−αj(Eαj)

]
e−iEαjt/h̄ .

(5.49)

In the low frequency limit, Büttiker shows that (5.48) can now be rewritten in the sug-
gestive form[17],

Iα(t) =
e

h

∫
dEdE′

[
â†+α(E)â+α(E′)− â†−α(E)â−α(E′)

]
exp

[
i(E − E′)t/h̄

]
, (5.50)

where â+α, â−α are vector operators extending over all transverse modes of reservoir α.
This emphasizes that the total current in a reservoir is the difference between the incident
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currents generated from that reservoir and the outgoing currents induced by the scattering
from other reservoirs. In terms of only incident states, this equation can be written as

Iα(t) =
e

h

∫
dEdE′

P∑

β=1

P∑

γ=1

× â†+β(E)
[
1αδαβδαγ − s†αβ(E)sαγ(E′)

]

× â+γ(E′) exp
[
i(E − E′)t/h̄

]
, (5.51)

where 1α is the Jα × Jα identity matrix, and sαβ is a Jβ × Jα matrix representing the
scattering from the transverse modes of reservoir β to the transverse modes of reservoir α.
This is one of the principle formulas of the coherent scattering theory since it relates the
macroscopically measured net current to the microscopic scattering matrix of the electrons.

To determine the current averaged over the reservoir Fermi-Dirac distributions in the
presence of different chemical potentials, (5.51) can be used to give

〈Iα〉 =
e

h

P∑

β=1

∫
dETr

[
1αδαβ − s†αβ(E)sαβ(E)

]
fβ(E)

=
e

h

∫
dE


(Jα − Tαα) fα(E)−

P∑

β 6=α=1

Tαβfβ(E)


 . (5.52)

In this expression, Tαβ = Tr
[
s†αβsαβ

]
is the transmission probability between reservoirs

β and α, and Jα =
∑P

β=1 Tαβ by unitarity. It is important to emphasize that according
to (5.51), only the distribution of electrons incident on the device from each reservoir is
needed; the distribution of outgoing electrons is determined by the scattering.

The Fourier transform of (5.51) can be used to determine the low frequency current fluc-
tuations δIα(ω) = Iα(ω)−〈Iα(ω)〉, and the unilateral current spectral density, SδIαδIβ

(ω),
measured in a frequency interval δν, is

SδIαδIβ
(ω)δν = 〈δIα(ω)δIβ(−ω) + δIβ(−ω)δIα(ω)〉δν . (5.53)

This is the generalization of the variance of the occupation of a single state, discussed
earlier. It is a second order expression in the current, but fourth order in the wavefunction
amplitude. In this sense, it is directly analogous to optical intensity-intensity correlations,
such as was measured in the experiment by Hanbury Brown and Twiss[23]. A spectral
density is now given by

SδIαδIβ
(ω) =

e2

h

∫
dE

P∑

γ=1

P∑

ε=1

× Tr
[
(1αδαγδαε − s†αγ(E)sαε(E + h̄ω))(1βδβγδβε − s†βγ(E + h̄ω)sβε(E))

]

× {fγ(E) [1− fε(E + h̄ω)] + fε(E + h̄ω) [1− fγ(E)]} (5.54)

Note that at zero temperature and zero frequency, the product of the distributions in
SδIαδIα suggests the same vacuum fluctuation interpretation given earlier. That is, a
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contribution is made to the noise in reservoir α when one reservoir γ has an occupied state
(fγ(E) = 1) while another reservoir ε with which it couples into α has a vacuum state
(fε(E) = 0). This contribution is just the partition noise of that single state. Moreover,
since each electron at a different energy is considered independent, (5.54) implies that the
total noise is simply a sum over the independent partition noise contributions.

Example: a mesoscopic conductor with a single scatterer.

Now, we introduce a single scatterer into a mesoscopic conductor. The scatterer acts
as a second partitioning event, i.e., a second binomiallydistributed process. (The first
binomial process is caused by the Fermi-Dirac distribution of the reservoir.) This means
that the Fermi-Dirac distribution gives the probability that an electron is injected into
the conductor. Conditioned on the event that the electron is successfully injected into the
conductor, it is transmitted at the scatterer with probability T . Assume T is independent
of an electron energy for a small applied bias voltage.

The average currents become:

〈I1〉 =
2e

h

∫ ∞

0
(dE)

1
e(E−µ1)/kBθ + 1

T ,

〈I2〉 =
2e

h

∫ ∞

0
(dE)

1
e(E−µ2)/kBθ + 1

T .

Therefore we have
〈Itot〉 = 〈I1 − I2〉 = 2GQV T . (5.55)

We consider the zero-frequency current noise PSD in a two-port mesoscopic conductor
with a single scatterer. Then, (5.54) has a very simple interpretation. There are two
binomial processes in series as mentioned above. To calculate the variance, one would
in principle use the Burgess variance theorem. However, the Pauli Exclusion Principle
is an additional constraint that must be included in calculating the variance; it adds a
complication to the standard Burgess variance theorem.

The standard Burgess variance theorem states that if we have a source (with variance
σ(N) and average N) which goes through a partition process with probability T , the noise
of the resulting stream is:

σtot = T 2 · σ(N) + N · T (1− T )

Since the Pauli Exclusion Principle forbids two electrons from sharing the same state,the
noise due to the scatterer (binomial partitioning) is seen when only one electron arrives
at the scatterer at a time.

In calculating the noise of electrons at electrode 1, we must consider thecontributions
from electrons originating at electrode 1 and those originating at electrode 2. Also note
that since each mode carriers at most one electron, we are really considering a Bernoulli
trial for each electron entry event (i.e., a binomial process of N=1), and later, we integrate
over all modes.

i) Noise at electrode 1 due to electrons from electrode 1
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An electron is injected into a mode with energy E with a probability of f1(E). This
electron has a finite chance of being reflected, R = (1− T ). The contribution to the
modified Burgess variance theorem is:

σtot = T 2 · f1(E)
(
1− f1(E)

)
+ f1(E) · T (1− T )

(
1− f2(E)

)
. (5.56)

ii) Noise at electrode 1 due to electrons from electrode 2

An electron is injected into a mode with energy E with a probability of f2(E). This
electron has a finite chance of being transmitted to electrode 1. The contribution to
the modified Burgess variance theorem is:

σtot = T 2 · f2(E)
(
1− f2(E)

)
+ f2(E) · T (1− T )

(
1− f1(E)

)
. (5.57)

The total noise is given by:

SI1(ω) = 2
2e2

h
·
∫ ∞

0
(dE)

[
T 2

[
f1(E)

(
1− f1(E)

)
+ f2(E)

(
1− f2(E)

)]

+T (1− T )
[
f1(E)

(
1− f2(E)

)
+ f2(E)

(
1− f1(E)

)]]

= 4GQ

[
2kBθT + 2kBθT (1− T )

[
eV

2kBθ
coth

eV

2kBθ
− 1

] ]

= 4kBθGT + 2kBθGT (1− T )
[

eV

2kBθ
coth

eV

2kBθ
− 1

]
(5.58)

Here G = 2GQ is the total conductance. The following are some limiting cases:

i) Near zero bias kBθ À eV

Since
[

eV

2kBθ
coth

eV

2kBθ
− 1

]
→ eV

2kBθ
· 2kBθ

eV
− 1 = 0 ,

is satisfied, we have

SI1(ω = 0) → 4kBθGT .

This is the equilibrium thermal noise corresponding to an effective conductance GT .

ii) At high bias, kBθ ¿ eV

Since

coth
eV

2kBθ
→ 1,

[
eV

2kBθ
coth

eV

2kBθ
− 1

]
→ eV

2kBθ
,

is satisfied, we have

SI1(ω = 0) → 4kBθGQT + 2eItot(1− T ) .

This approaches a full shot noise as T approaches 0.
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5.3.4 Quantum Point Contact Noise

The previous section discussed in depth the theoretical foundation for noise in coherent
mesoscopic devices, with particular attention to the phenomemon of partition noise. In
this section, the discussion returns to the mesoscopic regime and shifts to focus on the
measurement of partition noise in the simplest mesoscopic device – a quantum point
contact (QPC), such as in Fig. 5.10.

Although classical statistics can be used to derive the noise power, as is done in the
previous section for a mesoscopic conductor with a single scatterer, the coherent scat-
tering theory can directly give the result including the temperature dependence. This
is expressed (assuming an energy independent scattering matrix) by (5.54). At low fre-
quencies compared to kBΘ, this reduces in the case of the QPC to an equilibrium and
non-equilibrium current noise in lead 1 of

Seq
δI1δI1

(ω = 0) = 4kBΘ
2e2

h
[J − T11] (5.59)

Str
δI1δI1(ω = 0) = 2kBΘ

2e2

h





2∑

γ=1

2∑

ε=1

Tr
[
s†1γs1εs

†
1εs1γ

] (
µ̃γε

2
coth

µ̃γε

2

)
− J



(5.60)

where J is the number of transverse modes in the QPC, µ̃γε = (µγ − µε)/kBΘ is a nor-
malized bias voltage and spin degeneracy has been included to double the conductance.
Assuming the confinement potential varies adiabatically so that there is no scattering
between transverse modes, it can be shown that

Tr
[
s†1γs1εs

†
1εs1γ

]
=

J∑

j=1

T1γjT1εj (5.61)

T11 =
J∑

j=1

T11j (5.62)

where T1γj is the transmission probability from γ to 1 for the jth mode, and T11j +T12j = 1
for each j. Then the noise reduces to

Seq
δI1δI1

= 4kBΘ
2e2

h

J∑

j=1

T12j (5.63)

Str
δI1δI1 = 4kBΘ

2e2

h

J∑

j=1

T12j(1− T12j)
[

eV

2kBΘ
coth

eV

2kBΘ
− 1

]
. (5.64)

These are the basic equation for the partition noise of a QPC. At zero temperature, it
gives[19],

Seq
δI1δI1

= 0 (5.65)

Str
δI1δI1 = 2eV

2e2

h

J∑

j=1

T12j(1− T12j) (5.66)

which is the same as what would be derived from classical statistics. One of the key
features is that as a function of the QPC width, the noise power peaks exactly between
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the conductance plateaux where the transmission of the highest mode is T12j = 1/2. At
the plateaux, all the transmission probabilities are unity, so that the non-equilibrium noise
is completely suppressed.

Figure 5.10: SEM photograph of one of the fabricated quantum point contacts (QPC).

The first attempt to observe the noise from a QPC was performed at low frequencies
(below 100 kHz) at 4.2 K[24]. The spectrum exhibited primarily a 1/f dependence with
frequency f , leveling off at higher frequencies. While an oscillatory behavior with gate
voltage was observed for the 1/f component, it scaled quadratically (not linear) with
current. The white noise background at higher frequencies was suppressed from the full
shot noise value corresponding to their current biases (0 - 600 nA), but no firm quantitative
conclusions were made concerning its origin. Other early attempts to observe the noise
spectrum were also restricted to low frequencies, and were sensitive mainly to Random
Telegraph Signals (RTS), or switching events in the conductance[25].

More sensitive measurements techniques have since been developed, allowing experi-
ments to truly probe the partition noise regime. Reznikov et al . first used an ac modulation
technique to measure the noise in a 10 GHz bandwidth[26]. This allowed a discrimina-
tion between the device noise, which is modulated, and the background noise due to
the amplifier. Clear oscillatory behavior in the noise was observed, but deviations from
the theoretical predictions occured below the first plateau. Kumar et al . used a cross-
correlation technique with two independent amplifiers to reduce the background noise[27].
At low frequencies at dilution refrigerator temperatures, they achieved extremely sensitive
noise measurements around the first mode that quantitatively verified the theory.

The results of Liu et al.[28] are shown in Fig. 5.11. Clear peaks in the data are observed
in the step regions, while the noise appears to be fully suppressed at the plateux, at least
for the first fewtransverse modes. The peak magnitudes against the bias current shows
reasonably linear behavior, suggesting that the noise is not due to switching events.

If the data is plotted in the form of Fano factor, the good agreement with theory is
obtained. In this case, the assumption is made that the temperature is zero, that the
lower modes are fully transmitting, and that only the transmission of the highest mode
is changing during a step. This result suggests that little mode mixing – which may add
more noise – occurs in the QPC between steps.
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Figure 5.11: The noise power normalized by the noise power at T = 1/2 vs.
the gate voltage. When renormalized in this fashion, the experimental curves
show reasonable agreement with theory.

It is interesting to note that there appears to be a shoulder in the conductance below the
first plateau which is associated with a noise reduction far below what would be expected
from the transmission. It has been suggested that this shoulder may be a signature of a
zero-bias spin splitting in a one-dimensional electron gas[29].

In order to measure the Fano factor of a quantum point contact,the Hanbury-Brown
and Twiss interferometer can be employed[23]. In Fig. 5.12(a), we consider the partition-
ing of particles from a source with Fano factor F1 at a beam splitter with transmission
probability T . The average number of particles transmitted to output 3 is 〈N3〉 = T 〈N1〉.
The variance in particle number at output 3 is given by the Burgess variance theorem,〈
∆N2

3

〉
=

〈
∆N2

1

〉
T 2 + 〈N1〉T (1 − T ) at θ = 0. It follows that the Fano factor at out-

put 3 is F3 = TF1 + (1 − T ). Between the (n − 1) and n’th conductance plateau, there
are (n − 1) channels transmitting with unity probability, and the n’th channel transmit-
ting with probability Tn. In this case, it can be shown that the overall Fano factor is
F (n) = Tn(1− Tn)/[Tn + (n− 1)] at the output of the n-channel QPC.

In principle, one can measure the current noise of a particle source by placing a noise
detector immediately after it. This is usually done in mesoscopic systems using a square-
law device followed by an averager to get a quantity proportional to the time average
of the squared current[26]-[28]. However, a careful calibration is needed to interpret the
resulting value, because the transfer function accounting for the noise detection circuit
is usually not known a priori. One possibility is to put a known noise source in parallel
with one’s device, but this may hamper the operation of the device. Another possibility is
to characterize the detection system without the device, but then adding the device later
may change the transfer function.

Another approach is to physically place a beamsplitter after the noise source and
calculate the cross-covariance of the output fluxes as shown in Fig. 5.12(a). The normalized
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cross-covariance is defined as

ρ(τ) =
〈∆N2(t)∆N3(t + τ)〉

〈
∆N2

2

〉 1
2

〈
∆N2

3

〉 1
2

, (5.67)

where τ is the relative delay time between the beamsplitter outputs. By definition, this
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Figure 5.12: a) Cross-covariance schematic. The Fano factor of the source,
F1, can be determined from the cross-covariance, ρ(τ). b) Device used for
the HBT-type intensity interferometer for electrons. Arrows indicate electron
entry and partitioning at the electron beamsplitter. c) Probability model for
HBT-type intensity interferometer. q is the QPC transmission probability, η
accounts for device non-idealities, and T is the beamsplitter transmission prob-
ability. d) Cross-covariance vs. input Fano factor with T ≈ 0.5 and η ≈ 0.83.
The cross-covariance decreases towards −1 as the Fano factor is reduced to-
wards zero, indicating a quiet source. The solid line is a theoretical trace using
equation 5.68. e) Cross-covariance vs. delay time at F = 0.23. The cross-
covariance features a sinc-like behavior due to the finite detection bandwidth
(2-10 MHz). A simulation yields the solid line for the actual 2-10 MHz band-
width, while the dotted line represents a 0-10 MHz lowpass configuration for
comparison.

is the cross-correlation of the output fluctuations ∆N2 and ∆N3. One can uniquely de-
termine the Fano factor of a source from the cross-covariance for a T = 0.5 beamsplitter
with zero delay, ρ(τ = 0) = (F1− 1)/(F1 +1). In this case, the cross-covariance is positive
for F1 > 1 (super-Poisson distributed noise), negative for 0 ≤ F1 < 1 (sub-Poisson dis-
tributed noise), and zero for F1 = 1 (classical, Poisson distributed noise). The advantage
of this approach is that, for matched electronics between the two outputs, the transfer
function of the experimental detection system is normalized out of the expression. The
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positive cross-covariance for photons from a thermal photon reservoir was demonstrated
by Hanbury Brown and Twiss[23].

An intensity interferometry with electrons in a 2DEG system is shown in Fig. 5.12(b) [30].
Schottky gates and an etched trench define a four-port device with a narrow, tunable elec-
tron beamsplitter. An equivalent transmission probability model is shown in Fig. 5.12(c).
The QPC serves as the Fermi-degenerate, single-mode, electron source. In this model,
the QPC is ideal with transmission probability q ∈ [0, 1]. Non-idealities, such as coherent
back-reflection from the electron beamsplitter, are characterized by the conditional trans-
mission probability, η, which can be experimentally determined. Using this probability
model, one can derive an analytic expression for the cross-covariance,

ρ(τ = 0) =
F − 1√

F + T
1−T

√
F + 1−T

T

= −
[

qηT · qηT̄

(1− qηT )(1− qηT̄ )

] 1
2

(5.68)

where F = (1− qη) is the Fano factor of the source (including the reservoir, QPC trans-
mission probability, and losses) as seen from the beamsplitter, and T̄ ≡ (1 − T ). Exper-
imentally, one can vary the Fano factor of the source, F , by tuning the QPC transmis-
sion probability, q. The cross-covariance as a function of the Fano factor is plotted in
Fig. 5.12(d). As the transmission, q, through the QPC is increased, the Fano factor, F , is
decreased, and the input electron flux to the beam splitter carries less (current-normalized)
noise. The experimental cross-covariance coefficient approaches −1 as F decreases, in close
agreement with the analytical trace calculated using Eq. (5.68). Figure 5.12(e) shows the
cross-covariance as a function of the relative delay time, τ , between the two output arms
for F = 0.23. The sinc-like oscillatory behavior and side-lobe dc-offset are due to the
detection bandwidth of the measurement system, 2-10 MHz. The solid line is a zero-
parameter fit from a simulation which accounts for the actual detection system including
this bandwidth. For comparison, the dashed line is from a simulation using a low pass
bandwidth 0-10 MHz which removes the side-lobe dc-offset. A similar result was observed
in the edge channel of a GaAs 2DEG in the quantum Hall regime[31].

5.3.5 Electron vs. Photon Noise

Although this section has focused on applying the coherent scattering formalism to an
electronic device, it can also be used for a photonic device[17]. In the case of elastic scat-
tering, Büttliker found that the total nonequilibrium noise can depend on the symmetry of
the particle’s wavefunction. Yet it should be clear from the general discussion above that
partition noise is the same regardless of whether electrons or photons are treated since
ultimately its quantum mechanical origin is the Heisenberg uncertainty relation, indepen-
dent of the quantum statistics. To understand whether these statements are consistent or
contradictory, it is therefore worthwhile to include a discussion about when and how the
symmetry properties of the wavefunction affect the noise.

According to some of the mesoscopic literature, the fermionic nature manifests in the
T (1 − T ) dependence of the partition noise power; the f(1 − f) dependence is occasion-
ally confused with the T (1 − T ) dependence since both T and f enter into the average
occupation of an outgoing state. In fact, the Pauli exclusion principle is not a fundmental
requirement for observing a (1− T ) dependence of the Fano factor, as is suggested by the
fact that it can be derived simply from classical arguments (see Chap. 1).
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Consider the beam splitter of (Fig. 5.8) as the prototypical branching circuit for ei-
ther electrons or photons, and return to the case of single states (rather than reservoirs)
incident. It should be clear that if the incident state in port 1 is a fermionic or bosonic
number state, |1〉+1 (with all others being vacuum states), then there are no fluctuations
in its number. In other words, the source is quiet. On the other hand, as discussed earlier,
the output exhibits partition noise regardless of the symmetry of the wavefunction. For
photons, this arguement can be extended to arbitrary definite numbers of photons. A
number state is naturally generated by the zero temperature Fermi-Dirac reservoir for a
degenerate gas of electrons, so electron partition noise is easily expected.

A practical situation for photons would be to connect the device to a laser or a thermal
source. A laser produces light in a coherent state – a superposition over many number
states. It exhibits Poissonian fluctuations in intensity. The fluctuations induced on the
output by the beam splitting of such a state include contributions from the attenuated
Poisson variance and from the partition noise, adding up to again yield the full Poissonian
fluctuations. Thus, direct binomial statistics cannot be observed for a laser due to the
noise present on the source.

A single state of a reservoir is not necessarily described by a pure number state. It can
have occupation fluctuations that are different for fermions and bosons. This is because,
unlike Fermi-Dirac statistics, Bose-Einstein statistics has no limitations on the number
of particles per state. A straightforward statistical mechanics calculation yields from the
distribution function the number fluctuations δNk = Nk − 〈Nk〉 of a single state k due to
thermal energy[32]:

〈δN2
k 〉 = −kBΘ

∂〈Nk〉
∂Ek

, (5.69)

where 〈Nk〉 = f(Ek) for either the Fermi-Dirac orBose-Einstein distributions. Thus, the
fluctuations are given by

〈δN2
k 〉FD = fFD(Ek) [1− fFD(Ek)] for Fermi−Dirac statistics

〈δN2
k 〉BE = fBE(Ek) [1 + fBE(Ek)] for Bose− Einstein statistics

〈δN2
k 〉MB = fMB(Ek) for Maxwell− Boltzmann statistics ,

(5.70)

where a zero chemical potential for photons is assumed. It is clear that classical statistics
results in Poissonian fluctuations for the occupation of each state, whereas the fermionic
statistics result in sub-Poissonian fluctuations (anti-bunching), and bosonic statistics re-
sult in super-Poissonian fluctuations (bunching). Obviously, if the state is far below the
Fermi energy so that it is fully occupied, it exhibits no fluctuations. But, unless a state is
completely unoccupied, all photon states exhibit thermal fluctuations. Thus, the symme-
try of the wavefunction clearly plays an important role for the equilibrium fluctuations of
the individual reservoir, even before it is connected to a device.

Once connected, quantum statistics continues to play a role in the equilibrium fluctu-
ations. First, the contribution of these equilibrium single state fluctuations to the current
noise in any one fermion reservoir α is found from the γ = ε terms in (5.54). The fluctua-
tions are attenuated by the transmission probability from γ to α. For the photon reservoir,
a similar equation can be derived for the current fluctuations to show the contribution from
the attenuated source.
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But (5.54) also indicates that there is a contribution to the noise in α at equilibrium
from the interference of two different reservoirs, γ 6= ε. This contribution reflects the
quantum statistics in a different way, as can be illustrated again in the case of the 50-50
beam splitter. When one electron is incident along each input port, the antisymmetry
of the wavefunction, as it manifests in the Pauli exclusion principle, always forces one
electron into each output port, so that there are never any contributions to the fluctuations
(fγ(1− fε) = 1(1− 1) = 0 in (5.54). But, if one photon is incident along each input port,
then the probability for one photon at each output is exactly zero due to the destructive
quantum interference of the bosonic wavefunction. Hence, two photons are always emitted
together at one of the output ports or the other, and the number of photons in each output
fluctuates.

The main point then is that the equilibrium-like fluctuations can be very different for
fermions and bosons because of the quantum statistics. When the reservoirs have differ-
ent distributions, the transport-like contribution must be added to this to give the total
nonequilibrium fluctutations. Whether these transport-like fluctuations depend on the
quantum statistics depends on the situation. For fermion partition (at zero temperature),
only a single reservoir is biased, and it is clear from the discussion in this section that
a T (1 − T ) transport contribution arises just from the vacuum fluctuations. This is the
same contribution that would arise for single photons, and therefore it is not dependent
on the quantum statistics.

The same contribution must also arise for the partitioning of thermal boson reservoirs,
although the interpretation is more complicated. Consider the case when one reservoir
is set so that the average occupation of all of its states are considerably larger than the
occupation at the same energy of the states in the other reservoirs (so that they essentially
approximate the vacuum). This would occur if one reservoir is a stellar object and the other
reservoir is a cold photodetector. Then there will again be a contribution from partition
noise, which has a T (1 − T ) dependence. However, it will actually tend to decrease the
total fluctuations from the equilibrium fluctuations. The reason is that, as noted above,
the equilibrium fluctuations are super-Poissonian due to a bunching of photons into the
same state. The partitioning tends to split up these bunches, driving the noise more
towards the Poissonian limit.

5.4 Suppression of Mesoscopic Partition Noise

From the previous section, it can be concluded that the nonequilibrium,ballistic division
of electrons at a branching circuit such as beam splitter results in intrinsic quantum fluc-
tuations for the number and phase difference operators, and binomial partition noise in
a single output current. If a macroscopic conductor is naively considered to consist of
many such random scattering events in series, then a natural question arises: Why is par-
tition noise not observed in macroscopic conductors? Indeed, as photons are increasingly
scattered, the intensity fluctuations do in fact approach full shot noise.

Previous work on two-port mesoscopic conductors has indicated thatinelastic scattering
is important for reaching the macroscopic regime[33]-[35]. In explaining the suppression of
electronic shot noise, the literature thus far has emphasized the need for energy dissipation
to another system. In this section, the fermionic nature and the role of the Pauli exclusion
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principle is strongly emphasized as a key ingredient for explaining why the noise can be
suppressed for electrons and not photon[36].

To account for the stochastic nature of inelastic and elastic scatterings, semiclassical
Monte Carlosimulations of the noise are presented here[37].

While the scattering of each electron is probabilistic, the scattering outcome is not
independent of other electrons. In fact, a correlation is established between individual
electrons because of the Pauli exclusion principle. As a result, independent partitioning
no longer occurs, and the fluctuations from the scattering can be suppressed. This result
is somewhat suggested by the occupation factors in the collision integral E(5.54). The
average rate of scattering is reduced by the average occupation of final states. The Monte
Carlo simulations allow a dynamic demonstration of this. Moreover, they clarify the
feeback mechanism which translates this modulated scattering rate into a suppression of
the noise.

Using this algorithm, the predicted one third suppression in the diffusive scattering
regime can be recovered. Its origin is attributed to a long time correlation between right
and left moving electrons at each position in the channel established by a Pauli exclusion
feedback mechanism. Clearly, inelastic scattering is not a necessary ingredient for noise
suppression. Second, the initial introduction of distributed inelastic scattering increases
the noise, a result which cannot be predicted by the simple scaling argument[33]-[35].
Increased inelastic scattering eventually suppresses the noise by reducing the randomness
of the electron distribution in energy. It is this redistribution and not just the energy loss
that leads to the further suppression of the partition noise.

5.4.1 Semiclassical Algorithm for Monte-Carlo Simulation

The physical system simulated is a one dimensional conducting channel connected to zero
temperature reservoirs at the left and right ends which steadily inject electrons up to their
chemical potentials, µL and µR. A chemical potential bias, ∆µ = eV , leads to a net
electron flux flowing from the left to the right.

For this semiclassical model, individual electrons are represented by wave packets with
definite center position and wave number. As shown inFig. 5.13, the full phase space is
partitioned into a uniform grid of discrete cells representing distinct single electron states,
with each cell (x, k) having a constant width ∆x along the position axis and width ∆k
along the momentum axis. The widths must be chosen so as to give the correct total
number of states in the channel, thereby satisfying ∆x∆k = 1, which is consistent with
the Nyquist sampling theorem for the arrival rate of the degree of freedom and the channel
bandwidth. Note that if the total number of states in the channel remains constant, the
results should be insensitive to the precise way in which the phase space is divided.

Assuming a free electron dispersion relation in the single transverse mode channel, and
given the length of the channel and the applied bias, the total number of cells for right and
left moving electrons can be determined. In accordance with the Pauli exclusion principle,
each cell can contain only a single electron per spin at any given time. This results in a
conductance in the absence of scattering of 2GQ = 2e2/h, where GQ is the quantum unit
of conductance and spin degeneracy is included.

The following assumptions are now made. First, left and right moving cells in the
reservoirs whose energies are outside the range µL to µR are irrelevant to the posed prob-
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Figure 5.13: Electron phase space in the conductor. The phase space is par-
titioned into right and left moving electron cells of width ∆x by ∆k. Elastic
scattering reverses the momentum while inelastic scattering also causes a loss
in energy.

lem, and are not included in the simulation. Second, the chemical potential bias, ∆µ, is
assumed to be much less than either reservoir chemical potential, allowing the approxi-
mation that all electrons move with the same velocity.

In each time step of the simulation, every electron in the channel either moves forward
by a single step from (x, k) to (x + 1, k) if k > 0, or to (x − 1, k) if k < 0, or scatters
elastically or inelastically. It is assumed that the simulation time step is short enough that
only one scattering event per electron is likely during each time step. At the same time,
new electrons are injected into the channel from the biased left reservoir, while electrons
at the edges are ejected from the channel.

Distributed elastic scattering induced by the channel boundaries or by a series of
tunnel barriers results in a change of state for the electron from cell (x, k) to (x,−k), and
is parameterized by a probability r per time step for an electron to intend to elastically
scatter, regardless of its position or momentum. In accordance with the Pauli exclusion
principle, if another electron moves into the destination state during the same time interval,
the scattering will not occur.

The model for inelastic scattering includes only acoustic phonon emission since zero
temperature is assumed. Recall that such phonons have a linear dispersion relation, ωq =
csq, where ωq is the frequency of the phonon, cs is the phonon speed in the material,
and q is the phonon wavevector. Requiring that momentum and energy be conserved by
the scattering event, it can be shown that the electron momentum reverses direction and
decreases by a fixed amount upon scattering |ki − kf | = |q| = 2(|ki| −mcs/h̄), where ki

(kf ) is the initial (final) electron wavevector. Thus, the electron at (x, ki) has a unique
state into which it can scatter by this inelastic mechanism. Moreover, the event only
occurs if the destination cell (x, kf ) is unoccupied. This process is parameterized by a
conditional probability s that the electron intends to inelastically scatter, provided an
elastic scattering event is not already likely for that electron. This results in an effective
inelastic scattering probability of s(1− r). The simulation is reasonably insensitive to the
order of implementation of the elastic and inelastic scattering.
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After each time step, the current Iα can be recorded at any position α in the conductor.
To obtain the current induced in the leads, the Ramo Theorem can be used and amounts
to integrating the current along the entire conductor. However, the dc current at every
position is the same since this only depends on whether each electron eventually exits at the
right (transmitted) or at the left (reflected). The current fluctuation at high frequencies
though is not necessarily the same due to local instantaneous scattering. Nevertheless,
for near-dc fluctuations, it is sufficient to consider only the current at one position (which
allows for faster simulations).

At the conclusion of the simulation, the spectral density of current fluctuations and
correlations between Iα and Iβ (where Iα and Iβ represent either the net currents at
positions α and β, or right and left moving fluxes at the same position) can be calculated
according to the formula

SIαIβ
(ω) =

2
τ
Re 〈I∗α(ω)Iβ(ω)〉 , (5.71)

where τ is the total time of the simulation, Iα(ω) and Iβ(ω) are the Fast Fourier Trans-
forms of the currents, and the angle brackets indicate an ensemble averaging over many
runs of the simulation.

The lowest nonzero frequency that is considered in this discrete simulation is ω =
2/τ ≈ 0, for large τ . The fluctuations SII measured at this frequency are compared with
the full shot noise, 2e〈I〉, in the calculation of the Fano factor, F . In practice, these
fluctuations typically vary by less than 10% (usually less than 4% for elastic scattering
only) between different positions in the conductor, an indication that the integration time
τ is not quite long enough.

Note that the model used here differs from traditional time-of-flight Monte Carlo trans-
port simulations in that it includes the effect of the Pauli exclusion principle on the instan-
taneous occupation of electron states. Also, it should be remarked that phase coherence
between multiple scattering events and Coulomb interactions are ignored.

The values for the adjustable parameters in the simulations have been chosen based on a
one dimensional electron gas in GaAs of length L = 100µm, a Fermi level of EF = µ2 = 10
meV, and with a bias of ∆µ = 1 meV applied between the ends. These yield approximately
210 cells in the channel for both left and right moving electrons. In most simulations, this
is divided into 21 wave number levels and 10 positions.

5.4.2 Numerical Results

In Fig. 5.14, the Fano factor is plotted as a function of the conductance of the channel
for the various scattering cases. Not only for small elastic scattering but also for small
inelastic scattering probabilities, the noise initially increases, a result not predicted using
a completely thermalized electron distribution function for the scattered electrons[33]-
[35]. An increase would also be expected for photons; it is a consequence of the random
scattering process when very few events occur during each time step. Its suppression as
compared to the lumped elastic scattering result of (1−T ), however, represents the effect
of the Pauli exclusion principle.

At higher (distributed) elastic scattering probabilities, the noise is clearly further sup-
pressed. The simulation points can be compared to de Jong and Beenakker’s semiclassical
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Figure 5.14: The Fano factor for the two-port conductor with distributed elas-
tic and/or inelastic scattering vs. the conductance. The Fano factor is reduced
to a level of approximately one third of full shot noise in the case of increas-
ing probability for distributed elastic scattering, r (filled diamonds). This
is clearly suppressed as compared to lumped elastic scattering (dashed line).
When phonon emissions of energy 50µeV are allowed for r = 0 (open diamond),
.1 (open square), and .4 (open triangle), the noise is further suppressed.

theory[38] and are found to agree quite well. Inherent in the semiclassical approach is
the assumption that the local electron occupation along the conductor is a well defined
quantity, even in the case of elastic scattering. It is the fluctuations of this occupation
which suppresses the partition noise through a feedback process. The average occupations
of the right and left moving cells can be determined from the simulations, and are found
to decrease linearly as a function of position along the channel. Consider any position, x,
where the current is measured. At some moment in time, due to the random scattering,
more electrons are backscattered than on average, resulting in a larger than average num-
ber of electrons in the left moving cells at x. The net current therefore decreases. However,
because the Pauli exclusion principle restricts the scattering, this excess population will
prevent the backscattering of electrons at position x − 1. Instead, more electrons will
tend to be transmitted to position x. Hence, the net current increases. This is a natural
feedback mechanism which suppresses the fluctuations away from the average. Moreover,
it should be emphasized that this mechanism is separate from the often quoted one third
suppression found from an ensemble average of the T (1− T ) partition noise factor over a
bimodal distribution of transmissions. Unlike that coherent scattering result, this mech-
anism is very sensitive to the distribution of electrons which is consistent with the Pauli
exclusion principle.
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As shown in Fig. 5.15, evidence for the negative feedback process is provided by the
low frequency correlation between the right and left moving fluxes at a position x, g(ω) =
SIRIL

(ω)/
√

SIRIR(ω)SILIL(ω), where α is now taken to be the right moving flux, and β to
be the left moving flux at x in (5.71). For small scattering probabilities, the two fluxes
are nearly uncorrelated since backscattering into the nearly unoccupied left moving cells
is random. However, as the scattering probability increases, the average left moving flux
increases so that regulation of scattering by the Pauli exclusion principle becomes more
effective. In this limit, the two fluxes tend towards full correlation, resulting in reduced
net current fluctuations.

Figure 5.15: The correlation between right and left moving electrons vs. the
conductance. The correlation is taken near the two-port conductor’s center,
and it approaches unity as elastic scattering increases.

The noise is not fully suppressed by elastic scattering alone since the different momen-
tum states are independent. For example, if there is an increase in the total number of
right moving electrons at a position, these excess electrons will be distributed randomly
among the different momentum states, and will not be able to block an increase of the
electron number in other momentum levels. This randomness in energy distribution, as
depicted in Fig. 5.16 for the s = 0 case, therefore limits the effectiveness of the feedback.

When inelastic scattering is introduced, the different momentum states are coupled,
and the energy distribution is driven towards one which exhibits nearly fully occupied
low energy states and fully unoccupied high energy states, as is also shown in Fig. 5.16.
When s is increased to .9, nearly every electron which does not scatter elastically, will try
to scatter inelastically to a lower energy cell if it is available. As a consequence of the
Pauli exclusion principle, the result approaches a step-like distribution where the electrons
primarily occupy the lower levels.
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(a) (b) (c)

Figure 5.16: Electron energy vs. electron occupation at three different posi-
tions in the two-port conductor: (a) left, (b) center, (c) right. If the conditional
probability for inelastic scattering, s, is zero, then the electrons are equally dis-
tributed in energy in both the right moving (solid line) and left moving (dashed
line) directions. As s increases to .9, the lower energy states become more fully
occupied, while the high energy states become unoccupied.

From this distribution, it is evident that at a given position, the amount of scattering
depends on the electron momentum value. Because the occupation is nearly unity for
all lower states at the left end, scattering only occurs in the high momentum states. On
the other hand, at the right end, almost no scattering occurs at the higher states since
there are virtually no electrons. Thus, fluctuations in occupation at a given position are
limited only to a narrow range near the transition of the distribution from zero to unity
occupation.

The details of the feedback scheme are more complicated now due to the interplay
between scattering mechanisms and the coupling of different momentum states. In gen-
eral though, we expect that if, for example, over a long integration time, the average
occupation of a right moving momentum state near the transition increases, then inelastic
scattering should tend to “pack” these excess electrons into the lower, left moving cells.
If the transition is sharp, these electrons will be less likely to scatter again (elastically
or inelastically) to right moving states since these lower energy cells are more likely to
be occupied. Hence, the initial increase in right moving electrons is counteracted by an
increase in left moving electrons. In this process, inelastic scattering drives the electrons
towards a less random distribution. Thus, when occupation fluctuations do occur, inelastic
scattering redistributes the electrons into lower momentum states where “Pauli exclusion
blockade” is more effective.
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5.5 Recovery of Johonson-Nyquit Noise

In studying the nonequilibrium partition noise at zero temperature and frequency in the
last three sections, several important points have emerged. First, in the ballistic division
regime, partition noise arises as a consequence of the scattering matrix of the device which
couples in vacuum fluctuations as the single electron wavefunction is divided into multiple
output ports.

In the transition to diffusive and then dissipative transport, the fermionic nature, as
manifested by the Pauli exclusion principle, plays an essential role in generating correla-
tions between electrons which suppresses this noise. This is effective first when there is
only sparse, random scattering so that the Fano factor for the total nonequilibrium noise
increases with decreasing conductance. It is also effective when there is heavy elastic and
inelastic scattering, when the Fano factor no longer increases, and can even decrease with
decreasing conductance.

In those results, because of the zero temperature and frequency assumptions, there
is no contribution to the nonequilibrium noise from the equilibrium-like fluctuations of
the reservoirs themselves. In this section, the nonequilibrium noise at finite temperatures
and frequencies is considered, and it is shown that in this case, the reservoirs do con-
tribute their equilibrium fluctuations in some way to the total nonequilibrium noise. In
fact, as is suggested from the suppression of the zero frequency partition noise, the total
nonequilibrium noise in the presence of heavy dissipation is just given by the same gener-
alized Johnson-Nyquist formula, that is used for equilibrium fluctuations, with virtually
no contributions from the partition noise induced by the scattering. As mentioned in
Chap. 4, this fact has been routinely used in the analysis of noise in macroscopic circuits,
but it has not previously been theoretically justified. This section provides this justifi-
cation (within the independent electron approximation)[39]. Throughout the discussion,
an energy-independent scattering matrix and thus a frequency-independent conductance
are assumed. Dissipation is introduced by adding purely inelastic scattering reservoirs as
ideal voltage probes which are subject to local current conservation. Random inelastic
scattering approaches agree with this deterministic reservoir model in the limit of high
dissipation.

Recall that the full spectral density of mesoscopic current fluctuations can be derived
from the coherent scattering theory, (5.54). If the energy-independence simplification is
made, this can be rewritten for finite frequencies as

SδIαδIβ
(ω) = SδIβδIα(−ω) = GQ

∑
γ,ε

Tr
[
(1αδαεδαγ − s†αγsαε)(1βεβγδβε − s†βεsβγ)

]

×
∫

dE {fγ(E)(1− fε(E + h̄ω)) + fε(E + h̄ω)(1− fγ(E))} . (5.72)

These correlations can be conveniently broken into an equilibrium-like and a transport-
like noise contribution, SδIαδIβ

= Str
δIαδIβ

+ Seq
δIαδIβ

, each of which independently satisfies
a current conservation equation. For any general energy-independent scattering matrix,

Seq
δIαδIα

(ω) = 4kBΘGQ [Jα − Tαα]
ω̃

2
coth

ω̃

2
(5.73)

Str
δIαδIα

(ω) = 2kBΘGQ
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×




P∑

γ=1

P∑

ε=1

Tr
[
s†αγsαεs†αεsαγ

] (
µ̃γε + ω̃

2
coth

µ̃γε + ω̃

2

)
− Jα

ω̃

2
coth

ω̃

2





(5.74)

Seq
δIαδIβ

(ω) = −2kBΘGQ [Tαβ + Tβα]
ω̃

2
coth

ω̃

2
(5.75)

Str
δIαδIβ

(ω) = 2kBΘGQ

P∑

γ=1

P∑

ε=1

Tr
[
s†αγsαεs

†
βεsβγ

] (
µ̃γε + ω̃

2
coth

µ̃γε + ω̃

2

)
, (5.76)

where ω̃ = h̄ω/kBΘ and µ̃γε = (µγ − µε)/kBΘ.
The transition from these fluctuations in the coherent division limit to thedissipative

limit is modeled through the introduction of purely inelastic scattering reservoirs in the
two port device shown in Fig. 5.17. The current in any reservoir can be written in the
Langevin form,

Iα =
e

h
[Λµα −

∑

β 6=α

Tαβµβ] + δIα , (5.77)

where Λα = (Jα − Tαα) =
∑

γ 6=α Tαγ . Here, δIα represents the intrinsic noise (fluctuating
term)when all chemical potentials are held fixed, and it is characterized by the product of
the noise bandwidth ∆ν and the spectral density, (5.54). In the zero temperature, zero
frequency limit, this can be written as

〈δIαδIβ〉 =
2e2∆ν

h

∑
γε

∫ ∞

0
dE

× Tr
[
(1αδγαδεα − s†αγsαε)(1βδγβδεβ − s†βγsβε)

]
fγ(E) [1− fε(E)] .(5.78)

For the scattering reservoirs to behave realistically as distributed inelastic scatterers, they
must not source or sink any current; thermalization cannot result in any gain or loss of
electrons. This requirement of local charge conservation is implemented by assuming the
scattering reservoirs are connected to the external circuit via infinite impedance leads,
essentially becoming voltage probes. Mathematically, this is realized by imposing

Iscat ≡ 0 . (5.79)

That is, the instantaneous current of the scattering reservoir must vanish so that total
current conservation between the input and output reservoirs is preserved.

This results in two sets of linear equations. The set of homogeneous equations,




h

e
〈Iγ〉 = Λγµγ −

∑

β 6=γ

Tγβµβ = 0 : γ = scat1, . . . , scatM



 , (5.80)

determines the average chemical potentials that zero the average current.
In addition, since the intrinsic current fluctuations also have to be compensated, the

chemical potentials of the scattering reservoirs must also fluctuate. Qualitatively, excess
electrons are absorbed by the scattering reservoir and are scattered inelastically. But
because they cannot be sunk to ground, they must be reemitted. By assumption, the
distribution for reemitted electrons is simply an equilibrium distribution characterized
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by a chemical potential. Thus the thermalized electrons can only fill up states near the
chemical potential, because of the Pauli exclusion principle. This implies the chemical
potential has to fluctuate by an amount δµscat determined from the solution to a set of
inhomogeneous linear equations,





h

e
∆Iγ = Λγδµγ −

∑

β 6=γ

Tγβδµβ +
h

e
δIγ = 0 : γ = scat1, . . . , scatM



 . (5.81)

Clearly, δµγ is a function of the intrinsic current fluctuations in the M scattering reser-
voirs (δIscat1 , . . . , δIscatM ) which exist when instantaneous local charge conservation is not
enforced.

As is shown below, this procedure has two effects. The first is attenuate the average
current, as expected for inelastic scattering. The second is to reduce the total current
fluctuations associated with the partition due to a correlated, compensating chemical
potential fluctuation in the scattering reservoir.

Figure 5.17: A two-port conductor with an elastic scatterer having a finite
transmission probability, T . M purely inelastic scattering voltage probes are
added after the scatterer.

In the case of finite temperature and frequency, however, the intrinsic fluctuations,
δIscatγ are not identically zero, but are rather given by (5.73) and (5.74). Thus, the total
current fluctuations, ∆I3, in the receiving reservoir of a two-terminal device with elastic
transmission T are

∆I3 = δI3 − T3scatM GQδµscatM

= δI3 +
1

TM + 1

M∑

γ=1

(1 + (γ − 1)T )δIscatM (5.82)

where T3scatM is the transmission probability to receiving reservoir 3 from the adjacent
scattering reservoir scatM which has a chemical potential fluctuation δµscatM .

To determine S∆I3∆I3 , note that the intrinsic current noise of each scattering reservoir
is correlated only with the noise of adjacent reservoirs, and that the only nonzero intrinsic
transport noise is Str

δIscat1δIscat1
. Using (5.73) and (5.75) in (5.77) and performing the

summations results in

S∆I3∆I3(ω) =
1

(TM + 1)2
Str

δIscat1δIscat1
(ω) + 4kBΘ

TGQ

TM + 1
ω̃

2
coth

ω̃

2
(5.83)
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where

Str
δIscat1δIscat1

(ω) = 2kBΘTGQ(1− T )

×
[
ω̃ + µ̃M

2
coth

ω̃ + µ̃M

2
+

ω̃ − µ̃M

2
coth

ω̃ − µ̃M

2
− 2

ω̃

2
coth

ω̃

2

]
,

(5.84)

and µ̃M = µ̃/(TM + 1).
The physical content of these equations can be understood as follows. Because of dis-

sipation in the inelastic scattering reservoirs, each additional ideal voltage probe decreases
the channel’s conductance. For general M , the two-port device has an output conductance
of GTT = TGQ/(TM + 1).

Because of the local current conservation restriction, the total noise contributed by this
dissipation to the receiving reservoir noise is represented by −T3scatM GQδµscatM . Appar-
ently, (5.82) suggests that the contribution of the earliest inelastic scattering, δIscat1 , to
the current noise, ∆I3, is reduced by roughly a factor of 1/M for large M . The contribu-
tion from each following reservoir to δµscatM is increased until the last scattering reservoir
is virtually unsuppressed. Consequently, the high frequency noise stems from the vacuum
fluctuations and the low frequency noise stems from the thermal Fermi-Dirac fluctuations
contributed by all the scattering reservoirs. That is, it originates from channel dissipation
rather than from the input and output reservoirs, as in the case of ballistic transport.

This coherent scattering formalism yields the generalized Johnson-Nyquist noise for
the nonequilibrium case in the heavily dissipative limit. This is the desired result. To
characterize this noise, the spectral densities can be normalized by the dc thermal noise
4kBΘG where G is either 2GBS or GTT. The suppression of nonequilibrium noise is shown
in Fig. 5.18 for the beam splitter geometry for a frequency of 1 kHz, and a temperature
of about 50 mK. For small biases, below the thermal voltage, the total noise is dominated
by the thermal noise. For M = 0, and voltages larger than the thermal voltage, partition
noise dominates. As is depicted, the above equations indicate that this partition noise is
suppressed by a factor of 1/(M +1) for the beam splitter, and 1/(TM +1) for the two-port
device, as M increases. As in the zero frequency case, this suppression occurs because
any initial elastic scattering near the biased input reservoir is irrelevant for the output
reservoir noise if sufficient inelastic scattering occurs to force the electron to the Fermi
surface. In other words, the chemical potential fluctuations near the elastic scattering
may be large due to the excess noise, but are reduced by the time they reach the output
reservoir because of a smoothing effect from the inelastic scattering.

The noise spectrum is plotted in Fig. 5.19 for the two port device (with T = R = 1/2).
A temperature of 50 mK and a bias of 2.5 mV (eV/kBΘ = 602, giving a 100 nA current
across GQ) are assumed.

It should be noted that there is a transition from the partition noise at finite but
low frequency to the quantum noise at high frequency. Both regions, though, can be
understood as arising from vacuum fluctuations. At low frequencies, the energies of the
occupied electron states which interfere with the vacuum generally lie only within eV of
the lowest Fermi level. This is partition noise. At high frequencies, the energy range can
extend further, and is limited by hν rather than eV . This is the quantum noise region,
and it has contributions not only from the electron states and vacuum states of the same
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Figure 5.18: The current noise at 1 kHz (normalized to the generalized
Johnson-Nyquist noise with a conductance of GQ/(M + 1)) vs. the voltage
bias normalized by the thermal voltage, kBΘ/e. As inelastic scattering in-
creases (increasing M), the transport noise is suppressed to the generalized
Johnson-Nyquist noise limit.

reservoir, but also from different reservoirs. This transition between partition noise and
quantum noise has been observed in a diffusive, metallic conductor at high frequencies[40].

To conclude this theoretical discussion of the nonequilibrium noise in the mesoscopic
to macroscopic transition, it is useful to review the basic results. Table 5.1 summarizes the
low frequency limits of the noise for a two-port conductor in various cases. It divides this
into two regimes – the left column corresponds to the case when the applied voltage is much
less than the thermal voltage (equilibrium limit), and the right column to the opposite
extreme (nonequilibrium limit). It is not surprising that the noise can be different in
these two cases since as has been repeatedly stressed, there are fundamentally two kinds
of noise. The first stems from the fluctuations of the reservoirs themselves, and the second
is associated with the scattering due to the device.

When the transport is completely ballistic, with T = 1, the noise in both regimes
is just given by 4kBΘG, where G = 2GQ. There is no noise due to the scattering, so
partition noise is absent. However, if there is a non-unity transmission due to finite elastic
scattering, then partition noise, 2eV GT (1 − T ) appears, and can be much larger than
the equilibrium fluctuation. In this limit of T → 0, this partition noise approaches a full
shot noise. At equilibrium limit, the current noise is given by the thermal noise with the
conductance GT .

In the limit of diffusive transport with heavy distributed elastic scattering, the con-
ductance is further reduced. Close to equilibrium, the total noise is still given by the
thermal noise formula, with the reduced conductance G. However, under nonequilibrium
conditions, the noise is dominated by the scattering, but its magnitude can be suppressed
to one-third of full shot noise noise. The origin of this suppression is associated with the
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Figure 5.19: The current noise (normalized to the Johnson thermal noise with
a conductance of TGQ/(TM +1)) for a two-terminal device with elastic trans-
mission T = 0.5 vs. the frequency normalized by the thermal frequency. The
transport noise is again suppressed to the genealized Johnson-Nyquist noise
limit by increasing M .

Pauli exclusion principle. If electron-electron scattering is taken into account, the noise
suppression factor is no more universal 1/3 but depends on the microscopic details of the
scatterings and dimensionality of the system. The Fano factor is roughly

F =





0.7 d = 1
1/2 d = 2
1/3 d = 3

. (5.85)

The comprehensive review of such a non-degenerate diffusive conductor is given by Blanter
and Büttliker[41].

In the limit of dissipative transport with heavy distributed inelastic scattering, the
noise due to scattering can be completely suppressed. In the case of large applied biases,
only the thermal noise corresponding to the dissipative conductance, G is observed. This is
the regime of macroscopic transport. In this case, the Pauli exclusion feedback mechanism
to suppress the partition noise is made further effective through the energy dissipation to
another system, allowing for a reduction of the randomness of the electron distribution.
Clearly, correlations associated with the quantum statistical nature of the electron are at
the heart of the noise behavior in the transition from ballistic to dissipative partitioning.
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Equilibrium Non-equilibrium
V ¿ VT V À VT

Ballistic no scattering 4kBθG 4kBθG
finite elastic scattering 4kBθTG 2eV GT (1− T ) = 2eI(1− T )

Diffusive (distributed elastic) 4kBθG 2
3eV G = 1

3 × 2eI

Diffusive (distributed elastic, 4kBθG 0.7× 2eI
Coulomb interaction)

Dissipative (distributed inelastic) 4kBθG 4kBθG

Table 5.1: Summary of the nonequilibrium noise in various scattering regimes.
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