
Chapter 3

Classical and Quantum Circuit
Theory

A noisy electrical network can be represented by a noise-free network with external noise
generators. The magnitude of the external noise generator is expressed either by an equiv-
alent noise resistance or an equivalent noise temperature. When a network is dominated
by the granular property of changed carriers, the noise generator is more conveniently
described by a shot noise suppression factor. If such a network has four terminals or two
(input and output) ports, the noise figure is often used as a figure of merit expressing the
inherent noisiness of the circuit. The technique is particularly useful to analyze a cascaded
amplifier system. The linear or linearized network technique is also useful to express the
quantum noise properties of complicated quantum systems. Most of the arguments in this
chapter follow the excellent text on the circuit model of noise by H.A. Haus [1].

3.1 Two-Terminal Networks –Thevenin Equivalent Circuit–

A noisy two-terminal network with impedance Z(ω) = R(ω) + iX(ω) generates the open
circuit voltage fluctuation v(t) as shown in Fig. 3.2 (a). The two equivalent circuits based
on Thevenin’s theorem[2] are shown in Fig. 3.2 (b) and (c). One is the noise-free network
with impedance Z(ω) in series with a voltage generator v(t). The other is the noise-free
network with admittance Y (ω) = G(ω) + i B(ω) in parallel with a current generator i(t).

Consider the parallel RC circuit shown in Fig. 3.1 (a) as an example of such a two
terminal network. The noise of the register is represented by the parallel current source
i(t) with the spectral density of Si(ω). The series voltage source v(t) in the Thevenin
equivalent circuit shown in Fig. 3.1 (b) has then the spectral density of

Sv(ω) =
R2

1 + ω2(CR)2
Si(ω) . (3.1)

The frequency dependent (Lorentzian) power spectral density Eq. (3.1) is due to the
impedance of the capacitor. We assume the spectrum Si(ω) is constant and flat in a
frequency range of interest. Using the Wiener-Khintchine theorem, or more specifically
Parseval theorem of Chapter 1, we obtain the mean-square value of the voltage noise

〈v2〉 =
1
2π

∫ ∞

0
Sv(ω)dω =

R

4C
Si(ω) . (3.2)
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Figure 3.1: (a) A parallel RC circuit with thermal noise current source. (b)
The Thevenin equivalent circuit with thermal noise voltage source.

The energy stored in the capacitor is thus equal to

1
2
C〈v2〉 =

1
8
RSi(ω) . (3.3)

According to the equipartition theorem[3], if the system energy is of the form of quadratic
dependence on generalized coordinate (the voltage in this case), the average energy of the
system under thermal equilibrium condition is equal to 1

2kBθ per degree of freedom. This
means current spectral density must be given by

Si(ω) =
4kBθ

R
. (3.4)

This is Johnson-Nyguist thermal noise of a simple register which we will discuss in the
next section. Notice that the noise energy 1

2kBθ is independent of the resistance R while
the magnitude and the bandwidth of the noise spectrum are dependent on R.

In a more general content, the single-sided power spectral density of v(t) in Fig. 3.2(b)
is often expressed by

Sv(ω) = 4kbθRn , (3.5)

where θ is the absolute temperature and Rn is the equivalent noise resistance.
The spectral density of i(t) is in Fig. 3.2(c) expressed by

Si(ω) = 4kbθGn , (3.6)

where Gn is the equivalent noise conductance.
If the network is linear and passive, and there is no net energy flow, i.e. the circuit is at

thermal equilibrium condition, then Rn = R(ω) and Gn = G(ω) = R(ω)/[R(ω)2 +X(ω)2].
The noise in this case is reduced to Johnson-Nyquist thermal noise, as mentioned above.
However, in nonlinear active circuits, or in non-equilibrium condition with a net energy
flow, these equalities generally do not hold. This is due to the fact that equipartition
theorem of statistical mechanics, on which Johnson-Nyquist thermal noise is based, does
not hold for a non-equilibrium system.
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Figure 3.2: (a) A noisy two-terminal network. (b) Thevenin equivalent cir-
cuit with an external voltage source. (c) Thevenin equivalent circuit with an
external current source.

When the electron temperature is different from the lattice temperature, which is
the case for hot electron devices, it is convenient to express Eqs. (3.5) and (3.6) in the
alternative forms:

Sv(ω) = 4kBθnR , (3.7)

Si(ω) = 4kBθnG , (3.8)

where θn is the equivalent noise temperature. In circuits containing shot noise sources as
primary noise sources, it is convenient to use the expression

Si(ω) = 2qξI , (3.9)

where I is the terminal current and ξ is the shot noise suppression factor. If some smooth-
ing mechanisms are dominant, for instance due to space charge effect, ξ becomes smaller
than unity. If there is no smoothing mechanism in the system, the power spectral density
is full-shot noise (ξ = 1).

Next let us consider a parallel LCR circuit shown in Fig. 3.3. The open circuit voltage
υ(t) has the spectral density of

Sυ(ω) =
[

1
R2

+
(
ωC − 1

ωL

)2
]−1

Si(ω) . (3.10)

Sυ(ω) now concentrates on the resonant frequency ω0 = 1√
LC

of a LC circuit and decays
toward ω = 0 and ω = ∞. Using the Parseval theorem, we obtain the mean-square value
of the voltage generator

〈v2〉 =
1
2π

∫ ∞

0
Sυ(ω)dω =

kBθ

C
, (3.11)
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which is identical to Eq. (3.2), even though the spectral shape Eq. (3.10) is very different
from Eq. (3.1). The energy stored in the system is now given by

1
2
C〈υ(t)2〉+

1
2
L〈i(t)2〉 =

1
2
kBθ +

1
2
L

[
〈υ(t)2〉
ω2

0L
2

]

= kBθ . (3.12)

We have two degrees of freedom in this system (the voltage across the capacitor and the
current through the inductor), so the average thermal energy is doubled.

Figure 3.3: A parallel LCR circuit with thermal noise current source.

3.2 Four-Terminal Networks (Two Ports)

A network with two pairs of terminals, input and output ports, is known as a four-terminal
or two-port network. For a noiseless four-terminal network, the currents and voltages at the
terminals are related to each other in terms of the impedance matrix Z or the admittance
matrix Y as follows: (

V1

V2

)
=

(
Z11 Z12

Z21 Z22

) (
I1

I2

)
, (3.13)

(
I1

I2

)
=

(
Y11 Y12

Y21 Y22

) (
V1

V2

)
. (3.14)

The subscripts 1 and 2 refer to the input and output ports, respectively, and the sign
convention is that currents flowing into the network are positive, as shown in Fig. 3.4.
The upper case letters I and V indicate the Fourier transforms of the time dependent
current and voltage, which are in general dependent on frequency.

A noisy four-terminal network is represented by an extension of Thevenin’s theorem[2].
In Fig. 3.5 (a), a series noise voltage generator appears at each port. Some degree of cor-
relation may exist between these two generators since the same internal noise mechanism
may be responsible, at least in part, for the open circuit voltage fluctuations at the two
terminals. The dual of Fig. 3.5 (a) is shown in Fig. 3.5 (b), in which the internal noise is
represented by external parallel current generators.

The current-voltage relation of a noisy four-terminal network becomes
(

V1 + Vn1

V2 + Vn2

)
=

(
Z11 Z12

Z21 Z22

) (
I1

I2

)
, (3.15)
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Figure 3.4: A noiseless four-terminal network.

Figure 3.5: (a) Thevenin equivalent circuit with two external series voltage
generators. (b) Thevenin equivalent circuit with two external parallel current
generators.

(
I1 + In1

I2 + In2

)
=

(
Y11 Y12

Y21 Y22

) (
V1

V2

)
. (3.16)

It is often more convenient to refer both external generators to the input port. The
equivalent circuit shown in Fig. 3.6 has a series voltage generator and a parallel current
generator at the input, for which the current-voltage characteristic is expressed by the
relation (

I1 + Ina

I2

)
=

(
Y11 Y12

Y21 Y22

) (
V1 + Vna

V2

)
. (3.17)

Comparing Eqs. (3.16) and (3.17), the Fourier transform of the new voltage generator
vna(t) should be related to that of the current generator in2(t) is similarly given by:

Vna = − In2

Y21
. (3.18)

The Fourier transform of the new current generator ina(t) is similarly given by

Ina = In1 − Y11

Y21
In2 . (3.19)

The arrangement of Fig. 3.6 is particularly convenient for calculating the noise figure
of the two-port network. However, this equivalent circuit is valid only for calculating the
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Figure 3.6: The equivalent circuit of a noisy two-port with external current
and voltage generators in the input port.

noise in the output port. It does not give the correct description of the noise in the input
port. This can be easily seen by the fact that Ina is not equal to In1. That is, if the
input and output ports are shorted in the circuits shown in Fig. 3.5 (b) and Fig. 3.6, the
short-circuit current is in1 in the former case, while it is ina in the latter case.

3.3 Noise Figure of a Linear Two-Port

When a weak signal is amplified, the noise associated with the signal is also amplified. If
the amplifier is free from internal noise, the signal-to-noise (S/N) ratio is preserved. In
many cases, an amplifier has internal noise that is added to the output signal, so the S/N
ratio is usually degraded. The noisiness of a linear amplifier is evaluated by a noise figure:

F = (S/N)in/(S/N)out

where (S/N)in and (S/N)out are the input and output S/N ratios.
The noise figure of a linear two-port is generally defined by

F =
total output noise power per unit bandwidth

output noise power per unit bandwidth due to input noise

at a specific frequency and temperature. A signal input is(t) is transferred to the output
through an input admittance Ys and noisy two-port network, as shown in Fig. 3.7. The
noise ins(t) generated in the input admittance Ys and the noise ina(t) and vna(t) in the
two-port are independent, and so the noise figure of the whole system can be expressed as

F =
|Ins + Ina + YsVna|2

|Ins|2

= 1 +
Sia(ω)
Sis(ω)

+ |Ys|2 Sva(ω)
Sis(ω)

+ 2Re(ΓivY
∗
s )

[Sia(ω) · Sva(ω)]1/2

Sis(ω)
, (3.20)

where Sia(ω), Sva(ω) and Sis(ω) are the power spectra of ina(t), vna(t) and ins(t), respec-
tively, and Γiv is the normalized cross-correlation spectral density (coherence function)
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Figure 3.7: A circuit for calculating the noise figure of a two-port network.

between ina(t) and vna(t),

Γ∗iv(ω) =
I∗naVna

[
|Ina|2 · |Vna|2

] 1
2

=
Siva(ω)

[Sia(ω)Sva(ω)]
1
2

. (3.21)

The power spectral densities can be expressed as

Sia(ω) = 4kBθGni , (3.22)

Sva(ω) = 4kBθ/Gnv , (3.23)

Sis(ω) = 4kBθGs . (3.24)

Here Gni and Gnv are the equivalent noise conductances, which are not necessarily actual
conductances of the two-port network. On the other hand, Gs = Re(Ys) is the actual
source conductance. In the spirit of Eqs. (3.18) and (3.19), the current generator ina(t)
is split into two parts, one part of which is uncorrelated with vna(t) and the other part is
fully correlated with vna(t). Therefore we obtain

Ina = Inb + YcVna , (3.25)

where Yc is called the correlation admittance of ina(t) and vna(t). Since InbV ∗
na = 0, we

have

Γiv ≡ InaV ∗
na[

|Ina|2 |Vna|2
]1/2

= Yc

[
|Vna|2
|Ina|2

]1/2

=
Yc√

GniGnv
. (3.26)

The noise figure of Eq. (3.20) is now rewritten as

F = 1 +
Gni

Gs
+

(Gs + Gc)2 + (Bs + Bc)2 − (G2
c + B2

c )
GnvGs

, (3.27)

where Gc and Bc are the real and imaginary parts of the correlation admittance Yc. The
optimum source admittance to minimize the noise figure and the minimum noise figure
are obtained by the conditions:

∂F

∂Bs
= 0 and

∂F

∂Gs
= 0 .
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Using this technique, Eq. (3.27) is easily transformed into the form

F = F0 +
(Gs −Gso)2 + (Bs −Bso)2

GnvGs
. (3.28)

Here, F0 = 1 + 2
Gnv

(Gso + Gc) is the minimum noise figure achieved when the source
admittance satisfies the following matching condition:

Gs = Gso = (GnvGni −B2
c )1/2 , (3.29)

Bs = Bso = −Bc . (3.30)

The conditions Eqs. (3.29) and (3.30) for the source conductance and susceptance are
referred to as noise tuning or noise matching. The noise figure increases quadratically
when Gs and Bs are deviated from the optimum values. The four parameters Fo, Gso,
Bso and Gnv completely characterize the noise of the two-port network.

The measurement of these four parameters and full characterization for a given linear
two-port runs as follows:

1. Adjust the source conductance Gs and susceptance Bs to achieve the minimum noise
figure F0. The three parameters F0, Gs0 and Bs0 can be directly obtained in this
noise matching process.

2. Make a measurement of the noise figure at some non-optimum source admittance
(Gs 6= Gs0 and/or Bs 6= Bs0). The remaining parameter Gnυ can be obtained from
F − F0.

3. Three other parameters Bc, Gni and Gc to fully characterize Eq. (3.27) are obtained
from Eqs. (3.29), (3.30) and Gc = Gnυ

2 (F0 − 1)−Gs0 .

4. Calculate the power spectral densities Sia(ω) and Sυa(ω) from Eqs. (3.22) and (3.23)
and Γiυ from Eq. (3.26).

If an amplifier is noise-free, the noise figure takes a lower bound, F0 = 1.

3.4 Noise Figure of Amplifiers in Cascade

One of the important applications of the equivalent circuit discussed in the previous section
is the overall noise figure of the system when several amplifiers are connected in cascade as
shown in Fig. 3.8. Suppose each amplifier in the cascade is connected to a matched load,
i.e. the output and input admittances of adjoining amplifiers are equal: Y1,out = Y2,in =
Y1 , Y2,out = Y3,in = Y2, and so on. The noise figure of the whole system in such a case
can be written as

F =
|Isn + Ina1 + YsVna1|2

|Ins|2
+
|Ina2 + Y1Vna2|2

η1|Ins|2
+
|Ina3 + Y2Vna3|2

η1η2|Ins|2
+ · · · . (3.31)

Here Yi and ηi are the output admittance and power gain of the i-th amplifier. The power
gain η is defined by Pout/Pin, where Pout is the output power delivered to a matched load

8



Figure 3.8: The equivalent circuit of a cascade amplifier system.

to the output admittance, YL = Yout, and Pin is the input power delivered from a matched
source to the input admittance, Ys = Yin. If Fi is the noise figure of the i-th amplifier
defined by Eq. (3.20), the overall noise figure is

F = F1 + (F2 − 1)/η1 + (F3 − 1)/η1η2 + · · · . (3.32)

Equation (3.32) is known as Friiss’s formula[4]. The expression indicates that the noise
figure of the cascade amplifier system is essentially determined by the noise figure of the
first stage if the power gain of the first stage is sufficiently high. It is important to use a
low-noise amplifier in the first stage in order to realize a small overall noise figure.

3.5 Thermal Noise of a Linear n-port Network

Classical noise at thermal equilibrium assigns 1
2kBθ to each degree of freedom. As shown

in the previous argument, every resistor R at the thermal equilibrium with the circuit
equation (see Fig. 3.9).

υ = Ri + e (3.33)

must be assigned mean square voltage fluctuations Se(ω) = 4kBθR. From now on, υ
and i are the terminal voltage and current, and e is a noise source. Twiss[5] generalized
this formula to an n-port with impedance matrix Z, showing that the correlation spectral
density matrix of the voltage sources is (see Fig. 3.10)

See†(ω) = 2(Z + Z†)kBθ (3.34)

where the superscript † indicates complex conjugate transposition of a matrix. We do not
distinguish matrices from scalars by a change of typeface. Whether a quantity is a matrix
or scalar will be apparent from the context.

The expression (3.34) can be adapted into, often more convenient, scattering matrix
formalism, using the linear (matrix) equation (see Fig. 3.11)

b = Sa + β (3.35)

and the correlation spectral density matrix for the noise source is

Sββ†(ω) = (1− SS†)kBθ . (3.36)
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Figure 3.9: Equivalent circuit of linear noisy resistor.

Figure 3.10: The impedance representation of a linear n-port network.

The terminal voltage and current column vectors υ and i are related to input and
output waves, a and b, by

√
1

4Z0
(υ + Z0i) = a (3.37)

√
1

4Z0
(υ − Z0i) = b (3.38)

where Z0 is the normalization impedance. The inverse relations are

υ =
√

Z0(a + b) (3.39)

i =
1√
Z0

(a− b) . (3.40)

The scattering matrix formalism is cast into the impedance matrix formalism by manip-
ulation of Eq. (3.35).

1
2
(1− S)(b + a) =

1
2
(1 + S)(a− b) + β . (3.41)
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Figure 3.11: Scattering matrix representation of a n-port network.

Comparison of Eq. (3.41) with the impedance formulation

υ = Zi + e (3.42)

gives

Z = (1− S)−1(1 + S)Z0 (3.43)
e = 2

√
Z0(1− S)−1β . (3.44)

The correlation spectral density matrix of e is

See†(ω) = 4Z0(1− S)−1Sββ†(ω)(1− S†)−1

= 4Z0(1− S)−1(1− SS†)(1− S†)−1kBθ . (3.45)

Let us check the expression for

Z + Z† = Z0

[
(1− S)−1(1− S) + (1 + S†)(1− S†)−1

]
. (3.46)

Multiplying by (1− S) from the left and by (1− S†) from the right we obtain

(1− S)(Z + Z†)(1− S†) = Z0

[
(1 + S)(1− S†) + (1− S)(1 + S†)

]

= 2Z0[1− SS†] . (3.47)

Thus, we have proven that

2Z0(1− S)−1(1− SS†)(1− S†)−1 = Z + Z† . (3.48)

Using this fact, we have for Eq. (3.45)

See†(ω) = 2(Z + Z†)kBθ . (3.49)
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3.6 Quantum Circuit Theory

If an optical wave propagates in a complicated noisy system, a noise equivalent circuit
model introduced in sec.(3.5) also provides a convenient tool. However, since h̄ω À kBθ
at optical frequencies, quantum mechanical zero-point fluctuation dominates over thermal
noise. We need to establish a new rule to handle such a quantum system.

Linear quantum systems with loss must contain noise sources in order to provide for
conservation of commutator brackets, which would decay to zero in the absence of such
sources[6]. This property is analogous to that of lossy systems at thermal equilibrium
which would lose their thermal excitation were it not for the thermal noise sources in
the lossy element, which was first introduced by Langevin[7]. The noise sources associ-
ated with loss are simply a manifestation of the fluctuation-dissipation theorem[8]. Linear
phase-insensitive systems with gain contain noise sources as well[1] because, if noise were
not present, classical measurements could be performed on the amplified output, per-
forming simultaneous measurements on two noncommuting observables (say in-phase and
quadrature field components) with no increase in uncertainty, in violation of the dou-
bling of uncertainty associated with a simultaneous measurement of two noncommuting
observables[9]. Phase-sensitive systems with gain do not necessarily permit a simultaneous
measurement, and thus do not necessarily contain noise sources[10].

The Langevin noise sources are particularly well adapted to a circuit theoretical treat-
ment of linear systems. Much work has been done in classical systems, such as oscillators
and amplifiers, using the terminology of electrical circuit theory[11]. Therefore, it is ad-
vantageous to express the terminology of quantum electrodynamics in circuit “language.”

3.6.1 Analogy of Thermal Noise with Commutator Bracket Conserva-
tion

A quantum-mechanical linear circuit has to obey commutator bracket conservation. The
input and output wave amplitudes, a and b in Fig. 3.11 are now considered as the photon
annihilation operators. The standard commutator of a single-mode field operator a is

[a, a+] = 1 (3.50)

where the normalization is such that < a+a > gives the expectation of photon number.
We can renormalize the photon annihilation and creation operators in such a way,

[a, a+] = h̄ω (3.51)

is satisfied, where the normalization of < a+a > is to energy. Here, the superscript +
indicates the Hermitian adjoint of the operator. If a quantum system is characterized by
the scattering coefficient Γ for a single (scalar) incident wave a and reflected wave b, a
noise source β has to be assigned to conserve commutators:

b = Γa + β . (3.52)

because the output wave must satisfy the same commutator bracket as (3.51):

[b, b+] = |Γ|2[a, a+] + [β, β+] = h̄ω . (3.53)
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One then finds for the commutator of the noise source

[β, β+] = (1− |Γ|2)h̄ω . (3.54)

Note that [β, β+] is negative, when the system has gain (|Γ|2 > 1). In this case β
must be interpreted as a creation operator, β+ as an annihilation operator. The noise
components can be separated into in-phase and quadrature components

β1 =
1
2
(β + β+) and β2 =

i

2
(β+ − β) . (3.55)

The mean square fluctuations of β1 are

〈∆β2
1〉 =

1
4
〈(β + β+)2〉 − 1

4
〈(β + β+)〉2

=
1
4
〈(β + β+)2〉 (3.56)

because the expectation value of the noise β + β+ is zero. Thus

〈∆β2
1〉 =

1
4
〈β+β+ + ββ + ββ+ + β+β〉

=
1
4
〈β+β+ + ββ + 2ββ+〉 − 1

4
[β, β+]

=
1
4
〈β+β+ + ββ + 2β+β〉+

1
4
[β, β+] . (3.57)

Suppose that the reservoir responsible for the noise source is in the ground state. This
assumption corresponds to an ideal attenuator and amplifier which impose a minimum
allowable noise on the signal. The expectation values of β+β+ and ββ are then zero.
Further, 〈β+β〉 is zero when β is an annihilation operator (|Γ|2 < 1). Then

〈∆β2
1〉 = (1− |Γ|2)1

4
h̄ω . (3.58)

When |Γ|2 > 1 and β is interpreted as a creation operator, then 〈ββ+〉 is zero, and

〈∆β2
1〉 = (|Γ|2 − 1)

1
4
h̄ω . (3.59)

An analogous derivation for 〈∆β2
2〉 shows that

〈∆β2
2〉 = 〈∆β2

1〉 (3.60)

for the present case of phase-insensitive quantum systems.
The generalization of the scattering relation (3.54) to passive n-ports is easy. Classi-

cally, Eq. (3.36) expresses the self- and cross-correlation spectra by the formula

Sβiβ∗j (ω) = (1− SS†)ijkBθ (3.61)

Quantum mechanically we ask for the commutator

[βi , β+
j ] = βiβ

+
j − β+

j βi (3.62)
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which has no classical analog, because classically the expression is zero. From Eq. (3.35),
one has

bib
+
j = Sikaka

+
l S∗jl + βiβ

+
i . (3.63)

Similarly,
b+
j bi = Sika

+
l akS

∗
jl + β+

i βi . (3.64)

Note that only the operators have been reversed in order, not the matrix multipliers.
Therefore,

[bi , b+
j ] = h̄ωSikS

∗
jk + [βi , β+

j ] = h̄ω . (3.65)

We denote by the dagger the Hermitian adjoint of an operator as well as the conjugate
transpose of the matrix, whose elements are the operators. Then, one may write Eq. (3.65)
in matrix form

[β , β+] = [1− SS†]h̄ω . (3.66)

This is the generalization of (3.54) for a single port circuit.

3.6.2 The Characteristic Noise Matrix

To see more clearly what is involved in the transition from a system with loss to a system
with gain, consider the case of uncoupled resistors, or reflectors. Then (1−SS†) is diagonal
and Sββ†(ω) is also diagonal. The characteristic noise matrix[12] defined by

N ≡ Sββ†(ω)(SS† − 1)−1 (3.67)

is diagonal and has all diagonal elements (eigenvalues) equal to −kBθ for a classical case.
If one or more reflections have gain, an equivalent noise temperature can be assigned to
the noise source associated with each of the reflections. The noise temperature should be
considered negative[13]. Then,

Sβi(ω) ≡ (1− |Sii|2)kBθi (3.68)

is a positive quantity, as it must be. Negative temperatures have been assigned to inverted
media[14].

A lossless (noise-free) imbedding of the network (Fig. 3.12) is represented by a unitary
transformation and therefore, leaves the eigenvalues of the characteristic noise matrix
invariant.

In the quantum-mechanical case one may define two different characteristic “noise
matrices.” One is more properly called characteristic commutator matrix NC and can be
defined by

NC ≡ [β , β†](SS† − 1)−1 = −Ih̄ω . (3.69)

Here I is an identity matrix. This matrix has all identical eigenvalues of −h̄ω and thus
is proportional to the identity matrix. The transformation of NC by a lossless imbed-
ding network follows the same laws as those of N , and thus is unitary. Therefore the
commutator matrix remains diagonal after such an imbedding.

In analogy with Eq. (3.67) one may define a characteristic noise matrix for the quantum-
mechanical system. The commutators fix the minimum amount of noise that must be as-
sociated with a particular reflection, or resistor. Indeed, since for the uncoupled network

[βi , β†i ] = [1− |Sii|2]h̄ω (3.70)
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Figure 3.12: A lossless “imbedding.”

then, with the states of the operators βi’s in the ground states, one finds

〈β2
i 〉 ≡ 1

2
〈βiβ

+
i + β+

i βi〉

= (1− |Sii|2)12 h̄ω (3.71)

when |Sii| < 1 and

〈β2
i 〉 =

1
2
〈βiβ

+
i + β+

i βi〉

= (|Sii|2 − 1)
1
2
h̄ω (3.72)

for |Sii| > 1. The characteristic noise matrix of the uncoupled network is diagonal and
has eigenvalues ±1

2 h̄ω; the plus sign corresponds to the terminations that exhibit gain,
the minus sign to the terminations exhibiting loss.

Again, a lossless noise-free imbedding may cast N into nondiagonal form, but leaves
the eigenvalues unchanged. The importance of the eigenvalues rests on the fact that they
determine the optimum noise performance as expressed by the “noise measure.”

3.6.3 Noise Measure

Let us review briefly the concept of noise measure M of a two-port defined by

M =
F − 1
1− 1

η

=
η(F − 1)

η − 1
. (3.73)

Here, F is the conventional noise figure and η is the exchangeable gain, both of which are
defined in sec. (3.5). The exchangeable gain, in turn is the ratio of exchangeable output
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power to input power. Finally, exchangeable power is defined for a one-port as

exchangeable power ≡ |e|2
4R

(3.74)

where e is the amplitude of the internal source (Fig. 3.9) and R is the resistance. The ex-
changeable power reduces to the well-known “available” power, when R > 0, and becomes
negative for R < 0. When R is negative, the exchangeable power is the maximum amount
of power “exchangeable” with another negative resistor. In scattering matrix notation,
the exchangeable power of a one-port is

exchangeable power ≡ |β|2
1− |Γ|2 . (3.75)

The excess noise figure F − 1 times Γ is the exchangeable noise power at the ampli-
fier output due to the amplifier noise sources normalized to kBθ0, the thermal power at
standard temperature. The gain must be defined as exchangeable gain when either the
source resistance is negative and/or the output resistance (looking back into the amplifier)
is negative. In applications to quantum phenomena it is best to drop the normalization
to standard temperature, i.e., the division by kBθ0.

These results have profound implications for linear, phase-insensitive, quantum ampli-
fiers. Fig. 3.13 shows schematically a passive environment connected to an active linear
system, with one output port. The characteristic noise matrix of the active “network” has
eigenvalues 1

2(h̄ω) (analogous to kBθ). The exchangeable output power at the output port
with gain η due to the internal noise is η(F − 1) ≥ 1

2 h̄ω(η − 1). The passive environment
causes an additional noise of ≥ 1

2 h̄ωη.

Figure 3.13: Active network with output excited by noise from passive network.

Consider first the case when the impedance as seen from the output port has a positive
real part (the reflection coefficient is less that unity). Then the exchangeable power is equal
to available power and the total noise output is

available output power ≥ h̄ω(η − 1
2
) . (3.76)
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When the gain is unity, the output noise power is equal to that of the zero-point fluctu-
ations. When the gain is much larger than unity, the output noise power referred to the
input by division by the gain η is h̄ω. This is in agreement with the results of Arthurs
and Kelly[9]. A large gain allows a simulataneous measurement of the noncommuting
observables a1 and a2 and, thus, must at least double the uncertainty product, i.e., at
least double the noise.

3.6.4 Phase sensitive system

If a quantum system is characterized by the phase sensitive scattering coefficients:

b1 = Γ1a1 + β1 , (3.77)
b2 = Γ2a1 + β2 ,

the commutator bracket of the output wave is given by

[b1, b2] = Γ1Γ2 [a1, a2] + [β1, β2] . (3.78)

Since [a1, a2] = [b1, b2] = i
2 h̄ω, we obtain the new commutator bracket for the noise:

[β1, β2] = (1− Γ1Γ2)
1
2
h̄ω . (3.79)

One then immediately note that if Γ1 = 1/Γ2 is satisfied, the commutator bracket (3.79)
disppears and such a system does not need to add the quantum noise on the ampli-
fied/deamplified signal. When Γ1 = 1/Γ2 > 1, the in-phase amplitude a1 is amplified
while the quadrature amplitude a2 is deamplified. The noise figure F for such a phase
sentive amplifier is 1(0dB), in contrast to the minimum noise figure of 2 (3dB) of a phase
insensitive amplifier [15]. We will see in chapter 10 and chapter 11 that a laser amplifier
and degenerate parametric amplifier as a respective example of such phase insensitive and
phase sensitive amplifiers.
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