
Chapter 11

Parametric Amplifiers and
Oscillator

A device exhibiting a negative conductance, such as a tunnel diode, can be utilized to
construct an amplifier and oscillator. A laser is also categorized as a negative conductance
oscillator as we have seen in the previous chapter. There is another class of amplifier
and oscillator, which is based on non-linear susceptances and known as a parametric
amplifier/oscillator.

For instance, a reverse-biased pn junction has the non-linear charge-voltage charac-
teristic due to the voltage-dependent capacitance. The mixing occurs between the three
frequency components of signal, idler and pump waves in such a nonlinear element and
the energy flows from a strong pump wave to weak signal and idler waves. This flow of the
power from the pump to the signal introduces the negative conductance into the signal
circuit. In optical spectral domain, the atomic dipole moment, driven by an intense pump
laser, features a similar non-linearity and is capable of amplifying weak signal and idler
waves.

11.1 Non-Degenerate Parametric Amplifier

11.1.1 Principle of Operation

An equivalent circuit for a non-degenerate parametric amplifier is shown in Fig. 11.1.
A nonlinear capacitor is surrounded by three parallel LCR circuits, which represent the
signal, idler and pump circuits, respectively.

The charge q on the nonlinear capacitance is a function of the voltage across its ter-
minals. Using the Taylor series expansion, the charge may be expressed in the form:

q(t) = a1v(t) + a2v
2(t) + a3v

3(t) + · · · . (11.1)

When all the coefficients except the first and second terms are zero, the charge varies
quadratically with the voltage,

q(t) = Cv(t) + a2v
2(t) , (11.2)
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Figure 11.1: An equivalent circuit of a non-degenerate parametric amplifier.

where a1 is just replaced by the linear capacitance C. The current flowing in the nonlinear
capacitance is

i(t) =
dq(t)
dt

= C
dv(t)
dt

+ 2a2v(t)
dv(t)
dt

, (11.3)

where the voltage across the nonlinear capacitance consists of the signal, idler and pump
waves at angular frequencies ω1, ω2, and ω3, respectively,

v(t) = v1(t) + v2(t) + v3(t)
= V1 cos(ω1t + φ1) + V2 cos(ω2t + φ2) + V3 cos(ω3t + φ3) . (11.4)

The angular frequencies in Eq. (11.4) satisfy

ω3 = ω1 + ω2 , (11.5)

ωi = 1/
√

Li(Ci + C) . (11.6)

Using Eq. (11.4) in Eq. (11.3), we obtain the expression for the current,

i(t) = i1(t) + i2(t) + i3(t) , (11.7)

where
i1(t) = −ω1CV1 sin(ω1t + φ1)− ω1a2V2V3 sin(ω1t + φ3 − φ2) , (11.8)

i2(t) = −ω2CV2 sin(ω2t + φ2)− ω2a2V1V3 sin(ω2t + φ3 − φ1) , (11.9)

i3(t) = −ω3CV3 sin(ω3t + φ3)− ω3a2V1V2 sin(ω3t + φ1 + φ2) . (11.10)

Equations (11.8)-(11.10) can be rewritten as

i1(t) = C
dv1(t)

dt
+

a2V2V3

V1

{
cos(φ3 − φ2 − φ1)

dv1(t)
dt

− ω1v1(t) sin(φ3 − φ2 − φ1)
}

,

(11.11)
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i2(t) = C
dv2(t)

dt
+

a2V1V3

V2

{
cos(φ3 − φ2 − φ1)

dv2(t)
dt

− ω2v2(t) sin(φ3 − φ2 − φ1)
}

,

(11.12)

i3(t) = C
dv3(t)

dt
+

a2V1V2

V3

{
cos(φ3 − φ2 − φt1)

dv3(t)
dt

+ ω3v3(t) sin(φ3 − φ2 − φ1)
}

.

(11.13)
Taking the Fourier transform of Eqs. (11.11)-(11.13), we obtain the admittances Yi(i =
1, 2, 3) seen by the signal, idler and pump circuits:

Y1 =
I1(jω)
V1(jω)

= jω1C + jω1a2
V2V3

V1
exp [j(φ3 − φ2 − φ1)] , (11.14)

Y2 =
I2(jω)
V2(jω)

= jω2C + jω2a2
V1V3

V2
exp [j(φ3 − φ2 − φ1)] , (11.15)

Y3 =
I3(jω)
V3(jω)

= jω3C + jω3a2
V1V2

V3
exp [−j(φ3 − φ2 − φ1)] . (11.16)

The current-voltage relations for the three circuits are given by

Is(jω) =
{

GT + jω1a2
V2V3

V1
exp [j(φ3 − φ2 − φ1)]

}
V1(jω) , (11.17)

O =
{

G2 + jω2a2
V1V3

V2
exp [j(φ3 − φ2 − φ1)]

}
V2(jω) , (11.18)

IP (jω) =
{

G3 + jω3a2
V1V2

V3
exp [−j(φ3 − φ2 − φ1)]

}
V3(jω) . (11.19)

Here Is(jω) and IP (jω) are the Fourier transforms of the input signal and pump currents,
respectively, and GT = Gs + GL + G1. The LC circuit resonant condition Eq. (11.6) is
used.

By eliminating V2 and V3 from Eq. (11.17) using Eqs. (11.18) and (11.19), we obtain
the admittance of the signal circuit,

Ys = GT −G = GT − ω1ω2a
2
2

G2G2
3

|IP (jω)|2[
1 + ω2ω3

G2G3
a2

2V
2
1

]2 . (11.20)

There emerges a negative conductance due to the nonlinear capacitance driven by the
pump wave at ω3. If V1 satisfies the condition,

ω2ω3

G2G3
a2

2V
2
1 ¿ 1 , (11.21)

the negative conductance is independent of the signal input and the linear parametric
amplification is realized.
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11.1.2 Power Gain

The power gain G of the non-degenerate parametric amplifier is given by the ratio of the
power delivered to the load GL to the input power to the source Gs:

G =
GLV 2

1

(|Is|2/4Gs)

=
4GsGL

|Ys|2 . (11.22)

When there is no pump (|IP (jω)| = 0), the amplifier has no gain (Ys = GT ). When the
pump current reaches the threshold:

|IP (jω)|2 =
GT G2G

2
3

ω1ω2a2
2

, (11.23)

the system becomes unstable (|Ys| → 0) and the amplifier starts to oscillate. Between
these two extreme conditions, linear amplification of the input signal is provided as far as
the signal is not too strong, i.e. Eq. (11.21) is satisfied.

11.1.3 Noise Figure

The noise in a parametric amplifier is generated by the circuit conductance Gs, G1 and
G2. The noise generated by the pump circuit conductance G3 can be normally neglected
because the pump current iP (t) is usually very large and well approximated as a noise-free
sinusoidal wave. The noise from the load conductance GL is ignored, because it is usually
taken into account in the following state.

Equation (11.17) suggests that a voltage fluctuation ∆V2 across the idler circuit at
frequency ω2 results in a current fluctuation ∆Is in the signal circuit at frequency ω1. The
spectral density of the voltage fluctuation ∆V2 is given by

SV2(ω) =

{
4kBT/G2 (thermal limit)
2h̄ω2/G2 (quantum limit)

. (11.24)

The spectral density of the induced current fluctuation ∆Is is given by

SIs2(ω) = ω2
1|C ′|2SV2(ω) , (11.25)

where
|C ′| = a2V3 ' a2 |IP (jω)| /G3 . (11.26)

The second equality is obtained by neglecting the gain saturation effect Eq. (11.21).
The spectral densities of the current generators associated with Gs and G1 are

SIss(ω) =

{
4kBTGs

2h̄ω1Gs
, (11.27)

SIs1(ω) =

{
4kBTG1

2h̄ω1G1
. (11.28)
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Since there is no correlation between these three noise sources, the noise figure of the
amplifier in the thermal limit can be written as

F =
SIss(ω) + SIs1(ω) + SIs2(ω)

SIss(ω)

= 1 +
G1

Gs
+

ω2
1|C ′|2
G2Gs

. (11.29)

From Eqs. (11.20) and (11.26), we can express |C ′|2 in terms of the negative conductance
G,

|C ′|2 =
G2G

ω1ω2
. (11.30)

Using Eq. (11.30) in Eq. (11.29), the noise figure is expressed as

F = 1 +
G1

Gs
+

ω1

ω2

G

Gs
. (11.31)

The noise figure can be reduced to one (ideal amplification) by achieving the negligible
internal loss in the signal circuit (G1 ¿ Gs) and the large ratio of ω1/ω2 ¿ 1.

The noise figure of the amplifier in the quantum limit is, on the other hand, given by

F = 1 +
G1

Gs
+

G

Gs
. (11.32)

In a high gain amplifier G ' Gs(G1, GL ¿ Gs) at the quantum limit, the minimum noise
figure is Fmin = 2(3 dB) instead of Fmin = 1(0 dB) at the thermal limit.

11.2 Degenerate Parametric Aamplifier

11.2.1 Principle of Operation

When the signal and idler waves have identical frequencies, such a parametric amplifier is
called a degenerate parametric amplifier and has a unique characteristic. Consider a swing
driven by a person (Fig. 11.2(a)). During one-half cycle (left to right) of the swing, the
person makes a full one cycle (up-down-up). The frequency of the driving person (pump)
and that of the driven swing (signal) satisfy ωP = 2ωs. Figure 11.2(b) is an equivalent
LCR circuit of the swing, in which the driving action of the person is represented by the
nonlinear capacitor.

The circuit equations are given by

−I =
d

dt
Q =

d

dt
CV

V = RI + L
d

dt
I (11.33)

Eliminating the current I from Eq. (11.33), we obtain
[

d2

dt2
+

R

L

d

dt
+

1
LC

]
V = 0 (11.34)
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Figure 11.2: A swing driven by a person and an equivalent circuit.

The solution of a damped harmonic oscillator expressed by Eq. (11.34) is

V = V0 exp
(
−Rt

2L

)
exp


±j

√
ω2

0 −
R2

4L2
t


 . (11.35)

If the capacitance is modulated at the pump frequency ωP as

C = C0 [1−∆C sin(ωP t + φ)] , (11.36)

Equation (11.34) is modified to
{

d

dt2
+

R

L

d

dt
+ ω2

0

[
1 +

∆C

C0
sin(ωP t + φ)

]}
V ' 0 , (11.37)

where ω0 = 1/
√

LC0 and it is assumed ∆C ¿ C0. If we assume the solution of Eq. (11.37)
has the form,

V = Re {2V0 exp(αt) exp(jωt)} , (11.38)

we obtain

2V0 exp(αt)
[(

α2 − ω2 +
R

L
α + ω2

0

)
cos(ωt)−

(
2ωα +

R

L
ω

)
sin(ωt)

]

= −2V0 exp(αt)
ω2

0∆C

2C0
[sinωt cosφ + cos ωt sinφ] . (11.39)

By comparing the cosωt and sinωt terms in both sides of Eq. (11.39), we have the equations
which determine the new oscillation frequency ω and amplification/attenuation coefficient
α:

ω2 = ω2
0 + α2 +

R

L
α +

ω2
0∆C

2C0
sinφ , (11.40)

2α =
ω0∆C

2C0
cos φ− R

L
. (11.41)

If φ = 0 and ∆C > 2RC0
ω0L , we have a growing solution (α > 0). The energy is provided

to the signal from the pump. If φ = π
2 or 3π

2 , there is no energy exchange between the
pump and signal waves. If φ = π, we have an attenuating solution

(
α < −R

L

)
. The energy

is extracted from the signal and transferred to the pump.
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11.2.2 Phase Sensitive Amplifier

Changing the pump phase from φ = 0 to φ = π in Eq. (11.36) corresponds to shifting
the capacitance modulation by half a pump period, which is equivalent to one-quarter
signal period. That is, one quadrature amplitude of the signal wave corresponding to the
φ = 0 solution is amplified by a gain coefficient 2α = ω0∆C

2C0
− R

L but the other quadrature
amplitude corresponding to the φ = π solution is deamplified by an attenuation coefficient
2α′ = −ω0∆C

2C0
− R

L . This type of operation is called a phase sensitive amplifier. If the
signal wave is expressed by the two quadrature amplitudes a1 and a2 as

Es = a1 cosωst + a2 sinωst , (11.42)

and the pump phase is set to amplify the cosωst component and deamplify the sinωst
component, the two-kinds of input signals with isotropic (phase insensitive) noise are
transformed to the squeezed state as shown in Fig. 11.3. When the input noise is dominated
by thermal noise, the process is called thermal noise squeezing or classical squeezing. When
the input noise is dominated by quantum mechanical zero-point noise, the process is called
quantum noise squeezing.

Figure 11.3: The input and output signals of a degenerate parametric amplifier.

11.3 Quantum Limit of a Linear Amplifier

The simplified input-output relations for a degenerate parametric amplifier are given by

bs1 =
√

Gas1 , (11.43)

bs2 =
1√
G

as2 , (11.44)

where as1(bs1) and as2(bs2) are the cosωst and sinωst components of the input (output)
signal waves. Equation (11.43) indicates that the amplification of one quadrature compo-
nent does not introduce any additional noise. The noise figure of this amplifier is

F =
〈∆b2

s1〉
G〈∆a2

s1〉
= 1 (0dB) . (11.45)
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The sacrifice of the noise-free amplification is the loss of the signal information stored in
the other quadrature as2 since that quadrature component is deamplified.

The input-output relations for a nondegenerate parametric amplifier are given by

bs1 =
√

Gas1 +
√

G− 1ai1 , (11.46)

bs2 =
√

Gas2 −
√

G− 1ai2 , (11.47)

where ai1 and ai2 are the cosωit and sinωit components of the input idler wave. The
nondegenerate parametric amplifier allows the extraction of the two quadrature informa-
tion simultaneously, but the amplifier introduces the additional noise. The minimum noise
figure in this case is

F =
〈∆b2

s1〉
G〈∆a2

s1〉
= 2 (3 dB) , (11.48)

where it is assumed that the signal and idler carries the identical noise, i.e. 〈∆a2
s1〉 =

〈∆a2
i1〉. This typical situation corresponds to the case that the input signal wave is in a

coherent state and the input idler wave is in a vacuum state (no input), where 〈∆a2
s1〉 =

〈∆a2
i1〉 = 1

4 .
A microwave nondegenerate parametric amplifier is dominated by thermal noise rather

than quantum noise. In such a case, cooling the idler input port to below the noise
equivalent temperature of the signal channel is effective to reduce the noise figure. Indeed,
the noise figure of close to 0 dB is achieved in a microwave nondegenerate parametric
amplifier by this technique.

11.4 Quantum Correlation between Signal and Idler Waves
from Nondegenerate Parametric Amplifiers

See ”Phys. Rev. A38, 3556 (1988)”.
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