Chapter 11

Parametric Amplifiers and
Oscillator

A device exhibiting a negative conductance, such as a tunnel diode, can be utilized to
construct an amplifier and oscillator. A laser is also categorized as a negative conductance
oscillator as we have seen in the previous chapter. There is another class of amplifier
and oscillator, which is based on non-linear susceptances and known as a parametric
amplifier /oscillator.

For instance, a reverse-biased pn junction has the non-linear charge-voltage charac-
teristic due to the voltage-dependent capacitance. The mixing occurs between the three
frequency components of signal, idler and pump waves in such a nonlinear element and
the energy flows from a strong pump wave to weak signal and idler waves. This flow of the
power from the pump to the signal introduces the negative conductance into the signal
circuit. In optical spectral domain, the atomic dipole moment, driven by an intense pump
laser, features a similar non-linearity and is capable of amplifying weak signal and idler
waves.

11.1 Non-Degenerate Parametric Amplifier

11.1.1 Principle of Operation

An equivalent circuit for a non-degenerate parametric amplifier is shown in Fig. 11.1.
A nonlinear capacitor is surrounded by three parallel LCR circuits, which represent the
signal, idler and pump circuits, respectively.

The charge g on the nonlinear capacitance is a function of the voltage across its ter-
minals. Using the Taylor series expansion, the charge may be expressed in the form:

q(t) = a1o(t) + agv®(t) + azv3(t) +--- . (11.1)

When all the coefficients except the first and second terms are zero, the charge varies
quadratically with the voltage,

q(t) = Co(t) + av?(t) (11.2)
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Figure 11.1: An equivalent circuit of a non-degenerate parametric amplifier.

where a1 is just replaced by the linear capacitance C. The current flowing in the nonlinear
capacitance is
i(t) dq(t) _ Cdv(t) du(t) ’
dt dt dt
where the voltage across the nonlinear capacitance consists of the signal, idler and pump
waves at angular frequencies w1, ws, and ws, respectively,

(11.3)

+ 2a9v(t)

U(t) = V1 (t) + Ug(t) + Ug(t)
= Vicos(wit + ¢1) + Vo cos(wat + ¢2) + Vs cos(wst + ¢3) . (11.4)

The angular frequencies in Eq. (11.4) satisfy
w3 =w1 +wy |, (11.5)

wi = 1/\/Li(Ci + C) . (11.6)

Using Eq. (11.4) in Eq. (11.3), we obtain the expression for the current,

i(t) = i (t) + in(t) +is(t) (11.7)
where
i1(t) = —w1CVysin(wit + ¢1) — wraxVoVssin(wit + ¢d3 — ¢a) (11.8)
i9(t) = —woCVasin(wat 4+ ¢2) — waas Vi Vasin(wat + ¢3 — ¢1) (11.9)
i3(t) = —w3CVzsin(wst + ¢3) — wza2 Vi Vo sin(wst + ¢1 + ¢2) . (11.10)

Equations (11.8)-(11.10) can be rewritten as

d’Ul (t) + a2V2V3
dt %

dU1 (t)

.
n)=¢ di

—wv1(t) sin(¢s — ¢ — ¢1)} ;
(11.11)

{COS(¢3 — ¢2 — ¢1)



d’l)g(t) + a2V1V3 dvg (t)

i2(t) =C 7t i {cos(qbg — o — P1) i wova(t) sin(ps — 2 — ¢1) }
(11.12)
i (t) = cd”;t(t) + “22‘/2 {cos(¢3 oy — )2 ol () sin(és — és — 1)

(11 13)
Taking the Fourier transform of Eqgs. (11.11)-(11.13), we obtain the admittances Y;(i =
1,2,3) seen by the signal, idler and pump circuits:

_ L(jw) _ oW
Y= ViGe) = jurC + juwiaz ;= exp (g3 — b2 —91)] (11.14)
I(jw) ViV3 .
Yy = = — ¢ — 11.1
2= Vo) = jwaC + jwaaz P [i(¢3 — 2 —91)] (11.15)
I3(jw) _ , ViV .
_ _ (s — by — . 11.1
V(o) Jw3C + jwsas Vi exp [—j(¢3 — ¢2 — ¢1)] (11.16)
The current-voltage relations for the three circuits are given by
. . VaoVs .
I;(jw) = {GT + jwraso Vi exp [j(¢3 — p2 — gbl)]} Vi(jw) (11.17)
. Vs .
0= {Gg + jwoas ‘1/2 exp [j (¢3—¢2—¢1)]}V2(jw) , (11.18)
. : ViVa . .
Ip(jw) = | Gs + jwsaz— ;= exp [=j(¢3 — b2 = ¢1)] f Va(jw) (11.19)

Here I(jw) and Ip(jw) are the Fourier transforms of the input signal and pump currents,
respectively, and Gy = Gs + G + G1. The LC circuit resonant condition Eq. (11.6) is
used.

By eliminating V2 and V3 from Eq. (11.17) using Egs. (11.18) and (11.19), we obtain
the admittance of the signal circuit,

wiwsad  |Ip(jw)[?

2 2
G e o]

Y. =Gr—G=Gr — (11.20)

There emerges a negative conductance due to the nonlinear capacitance driven by the
pump wave at ws. If V; satisfies the condition,

Waws3 a2

G2Gs

Wil o, (11.21)

the negative conductance is independent of the signal input and the linear parametric
amplification is realized.



11.1.2 Power Gain

The power gain G of the non-degenerate parametric amplifier is given by the ratio of the
power delivered to the load GG, to the input power to the source Gj:

GV}
(112 /4G5)
4G,Gy,

- Wp (11.22)

G:

When there is no pump (|/p(jw)| = 0), the amplifier has no gain (Y; = G7). When the
pump current reaches the threshold:

pRerene:

Ip(jw)|?
‘ p(jw)| wlwga%

(11.23)
the system becomes unstable (|Y;| — 0) and the amplifier starts to oscillate. Between

these two extreme conditions, linear amplification of the input signal is provided as far as
the signal is not too strong, i.e. Eq. (11.21) is satisfied.

11.1.3 Noise Figure

The noise in a parametric amplifier is generated by the circuit conductance Gg, G1 and
G9. The noise generated by the pump circuit conductance G can be normally neglected
because the pump current ip(t) is usually very large and well approximated as a noise-free
sinusoidal wave. The noise from the load conductance G, is ignored, because it is usually
taken into account in the following state.

Equation (11.17) suggests that a voltage fluctuation AV, across the idler circuit at
frequency ws results in a current fluctuation Al in the signal circuit at frequency wy. The
spectral density of the voltage fluctuation AV, is given by

S = { e e (11.21)
The spectral density of the induced current fluctuation Al is given by
S1,(W) = wi|C'PSy (W) (11.25)
where
|IC'| = aaVs =~ as |Ip(jw)| /G5 . (11.26)

The second equality is obtained by neglecting the gain saturation effect Eq. (11.21).
The spectral densities of the current generators associated with G5 and G are

— 4kpTG,q

sts (Cd) = { 2715)1(;3 ’ (1127)
4kpTG

Sr. (W) = { 2hi1G11 . (11.28)



Since there is no correlation between these three noise sources, the noise figure of the
amplifier in the thermal limit can be written as

S1,, (W) + 81, (W) + S, (W)

F = s 7
Sr,, (W)
G1 w%\C’P
= 14+ =4+ —=— 11.2
+ . + eNeR ( 9)

From Egs. (11.20) and (11.26), we can express |C’|? in terms of the negative conductance
G,

GG
)2 = =2 (11.30)
wiw2
Using Eq. (11.30) in Eq. (11.29), the noise figure is expressed as
Gl w1 G
F=14—+—+4+——+ . 11.31
"G T ma, (1131)

The noise figure can be reduced to one (ideal amplification) by achieving the negligible
internal loss in the signal circuit (G < G5) and the large ratio of wy/we < 1.
The noise figure of the amplifier in the quantum limit is, on the other hand, given by
Gy G
F=14+—+— . 11.32
+ a. + a. ( )
In a high gain amplifier G ~ G4(G1, G < Gs) at the quantum limit, the minimum noise
figure is Fiuin = 2(3 dB) instead of F,;, = 1(0 dB) at the thermal limit.

11.2 Degenerate Parametric Aamplifier

11.2.1 Principle of Operation

When the signal and idler waves have identical frequencies, such a parametric amplifier is
called a degenerate parametric amplifier and has a unique characteristic. Consider a swing
driven by a person (Fig. 11.2(a)). During one-half cycle (left to right) of the swing, the
person makes a full one cycle (up-down-up). The frequency of the driving person (pump)
and that of the driven swing (signal) satisfy wp = 2ws. Figure 11.2(b) is an equivalent
LCR circuit of the swing, in which the driving action of the person is represented by the
nonlinear capacitor.
The circuit equations are given by

d d
I = SQ=-CV

w9 @
Vo= RI+L%I (11.33)

Eliminating the current I from Eq. (11.33), we obtain

2 Rd 1
ldtQ Tt Io V=0 (11.34)
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Figure 11.2: A swing driven by a person and an equivalent circuit.

The solution of a damped harmonic oscillator expressed by Eq. (11.34) is

Rt / R2
V =Vyexp (_2L> exp (:I:j wd — 4L2t) . (11.35)

If the capacitance is modulated at the pump frequency wp as

C=Cy[l — ACsin(wpt + ¢)] (11.36)
Equation (11.34) is modified to
d Rd 9 AC .

where wy = 1/4/LCy and it is assumed AC' < Cjy. If we assume the solution of Eq. (11.37)
has the form,

V = Re {2Vj exp(at) exp(jwt)} (11.38)
we obtain
2 o I 2 R\ .
2Vpexp(at) || o —w” + T + wg ) cos(wt) — | 2wa + S sin(wt)
IAC
= =2V exp(at)wgc [sinwt cos ¢ + coswtsing] . (11.39)
0

By comparing the cos wt and sin wt terms in both sides of Eq. (11.39), we have the equations
which determine the new oscillation frequency w and amplification/attenuation coefficient
o

2A
w?=wd+ao®+ %a + “’3000 sing (11.40)
A
200 = WSCOC cos ¢ — % . (11.41)
If g =0 and AC > 2&%0, we have a growing solution (« > 0). The energy is provided

to the signal from the pump. If ¢ = 5 or 37”, there is no energy exchange between the

pump and signal waves. If ¢ = 7w, we have an attenuating solution (a < —%). The energy
is extracted from the signal and transferred to the pump.

6



11.2.2 Phase Sensitive Amplifier

Changing the pump phase from ¢ = 0 to ¢ = 7 in Eq. (11.36) corresponds to shifting
the capacitance modulation by half a pump period, which is equivalent to one-quarter
signal period. That is, one quadrature amplitude of the signal wave corresponding to the
¢ = 0 solution is amplified by a gain coefficient 2a = “’5@00 — % but the other quadrature
amplitude corresponding to the ¢ = 7 solution is deamplified by an attenuation coeflicient
20/ = —“’3@00 — % This type of operation is called a phase sensitive amplifier. If the
signal wave is expressed by the two quadrature amplitudes a; and as as

E, = a1 coswst + ag sinwst (11.42)

and the pump phase is set to amplify the coswst component and deamplify the sinwgt
component, the two-kinds of input signals with isotropic (phase insensitive) noise are
transformed to the squeezed state as shown in Fig. 11.3. When the input noise is dominated
by thermal noise, the process is called thermal noise squeezing or classical squeezing. When
the input noise is dominated by quantum mechanical zero-point noise, the process is called
quantum noise squeezing.

az
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Figure 11.3: The input and output signals of a degenerate parametric amplifier.

11.3 Quantum Limit of a Linear Amplifier
The simplified input-output relations for a degenerate parametric amplifier are given by

ba = VGag (11.43)

(11.44)

where a1 (bs1) and ag(bsa) are the coswst and sinwyt components of the input (output)
signal waves. Equation (11.43) indicates that the amplification of one quadrature compo-
nent does not introduce any additional noise. The noise figure of this amplifier is

(AbZ,)

F= e 1 (0dB) . (11.45)



The sacrifice of the noise-free amplification is the loss of the signal information stored in
the other quadrature ass since that quadrature component is deamplified.
The input-output relations for a nondegenerate parametric amplifier are given by

bs1 = \/aasl + VG —1la;y (11.46)
bsg = \/aasg - \/G — 1(Li2 N (11.47)

where a;7 and a;o are the cosw;t and sinw;t components of the input idler wave. The
nondegenerate parametric amplifier allows the extraction of the two quadrature informa-
tion simultaneously, but the amplifier introduces the additional noise. The minimum noise

figure in this case is ,
<Ab51>
F= Gladd) ~ 2 (3dB) (11.48)
where it is assumed that the signal and idler carries the identical noise, i.e. (Aa%) =
(Aa?). This typical situation corresponds to the case that the input signal wave is in a
coherent state and the input idler wave is in a vacuum state (no input), where (Aa?,) =
(Adf) = % :

A microwave nondegenerate parametric amplifier is dominated by thermal noise rather
than quantum noise. In such a case, cooling the idler input port to below the noise
equivalent temperature of the signal channel is effective to reduce the noise figure. Indeed,
the noise figure of close to 0 dB is achieved in a microwave nondegenerate parametric
amplifier by this technique.

11.4 Quantum Correlation between Signal and Idler Waves
from Nondegenerate Parametric Amplifiers

See "Phys. Rev. A38, 3556 (1988)”.
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Signal and idler waves produced by a nondegenerate parametric amplifier feature strong positive
correlation between their photon numbers, or in-phase amplitudes. They feature equally strong
negative correlation between their phases, or quadrature-phase amplitudes. These photon twins can
produce arbitrarily squeezed states via state reduction by appropriate measurements of an idler
wave. When the quadrature amplitude of an idler wave is measured, the signal wave is collapsed to
a quadrature-amplitude squeezed state. When the two-quadrature amplitudes of an idler wave are
measured simultaneously, the signal wave becomes a coherent state.

I. INTRODUCTION

Nonclassical light is usually generated by one of two
schemes. The first is a phase-sensitive amplification-
deamplification in a four-wave mixer! or a degenerate
parametric amplifier.? The second is amplitude satura-
tion and phase diffusion in a pump-noise-suppressed
laser.’ This paper discusses a completely different ap-
proach using nonunitarity state reduction by quantum
measurement.

Arthurs and Kelly demonstrated that the system wave
function can be reduced to a new state after the simul-
taneous measurement of two conjugate observables. This
reduction realizes the arbitrary distribution of quantum
noise determined by the measurement resolution of the
two observables.* However, these authors have not
shown any physically realizable Hamiltonian for such
measurement. At optical frequencies, the photon number
fl, the quadrature amplitude @, and the two-quadrature
amplitudes @, and @, are physically measured by a pho-
ton counter, homodyne detector, and heterodyne detec-
tor, respectively.® Von Neumann’s projection postulate
has been generalized to characterize these measurements
quantum mechanically.®’ The generalized projectors, or
operation-valued measures for these measurements, are
given by |n){n |, |a;){a,|,and |a){a|. However,
the measurements themselves are not considered as pro-
cesses for generating number states |n), quadrature-
amplitude eigenstates | a, ), and coherent states | a ), be-
cause the electromagnetic fields are completely absorbed
after these measurements are made.

To produce quantum light via state reduction by quan-
tum measurement, quantum correlation between a signal
and probe waves must first be established. Destructive
measurement can be then performed on the probe wave.
An example is the quantum nondemolition measurement
of photon number, in which the signal waves is collapsed
into a number-phase squeezed state after the signal pho-
ton number is nondestructively measured via destructive
measurement of the probe phase.®

When a signal and idler waves are amplified in a non-

38

degenerate parametric amplifier, the outputs are correlat-
ed both in photon number and phase.’~!! Measurement
of the idler output wave provides information on the sig-
nal output. This suggests the generation of quantum
light is possible via nonlinear parametric amplification of
idler and signal waves, and subsequent measurement of
the idler output.

This paper is organized as follows. In Sec. II we briefly
review the evolution of a combined signal-and-idler densi-
ty operator in a nondegenerate parametric amplifier. The
reduced density operator of a signal wave is discussed,
which corresponds to the signal quantum state without
measurement. State reduction resulting from measure-
ment of idler quadrature amplitude is treated in Sec. III.
State reduction resulting from simultaneous measurement
of the two idler quadrature amplitudes is studied in Sec.
IV. A projection operator that maps a coherent state
onto a number-phase squeezed state, quadrature-
amplitude squeezed state, and coherent state is derived in
Sec. V using the results of Secs. III and IV. In Sec. VI
feedfoward manipulation of a signal wave according to
the measurement results to continuously generate non-
classical light with a fixed eigenvalue is determined. Fi-
nally, in Sec. VII, quantum correlations of signal and
idler waves are studied using a Heisenberg picture. We
present a physical interpretation of the results in Secs. III
and IV.

II. STATE EVOLUTION IN A
NONDEGENERATE PARAMETRIC AMPLIFIER

In this section we briefly review the evolution operator
0 and the density operator p; for signal and idler waves
for the nondegenerate parametric amplifier.!? The in-
teraction Hamiltonian is

B, =#lka 2] +x*a,,], ()
and thus the differential equation for Uis

%:-mo[e“’aIa,T+e-""aSa,.]t7, 2)

3556 ©1988 The American Physical Society
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where k=kqe'?, k, is a real constant, k is a parametric in-  tor, the output density operator with number state |n)
teraction coefficient, and @, and @; are signal and idler an-  as the input-signal state and the output density operator
nihilation operators. with coherent state | ) as the input-signal state:

From Refs. 12 and 13, we obtain the evolution opera-
J

0 =exp[ —In cosh(kyt) Jexp[ —ie “®tanh(kyt)a [@ [ Jexp{ —In[cosh(xy1)a [2,]}

X exp{ —In[cosh(kyt)@ ;'Zis 1lexp[ —ie _ietanh(Kot)aiaS] R 3)
,{7},-7,,0=N2cosh_2(n°+1)(xot) 12 (—ie*®tanhkyt)’
h
— Th 172
i n
X(ie—'etanhxot)" (:10 Ono |n0+1)5|1)“(h |s{no+h |, 4)

172 (—ietanhk,t)/(ie ~*’tanhkt)"

~ a2~ lagl? k+l][h+n]
psi=N""e > H k h
k,l,h,n

cosh’kyt
k h
a ag 1

Vk!

1
= kD D) b | (5)

coshyt coshkt

where N and N' are normalization constants and

[k k!
m

(k —m)m! ’
When we simply want to know the signal state after parametric amplification,the reduced density operator can be cal-
culated. No measurement process is involved. The reduced density operator for a number-state input signal is calculat-
ed by taking the trace of (4) with respect to idler variables, '2

2(n+1)

! 3 tanh?'kt
1

coshkyt

A(red 2

R no+!
p s,no)ETripsi,nozN 0

|ng+1) {no+11 . (6)

The quasiprobability density ;{a | ﬁ(sff,‘(‘)) | @), is schematically shown in Fig. 1 for n,=0 and n,0. The reduced densi-

ty operator for a coherent-state input signal is calculated by taking the trace of (5), 12

h
Alred) __ are2 _‘ao\zz [[k+1][h+l]
PN KL k h

1/2 tanh?it a, ad 11

VE! V!

|k +1)s (1] . ™

cosh?cyt | coshkgt | | coshiot

The quasiprobability density ;{a |5 {"® | a); is schematically shown in Fig. 2.

III. STATE REDUCTION BY MEASUREMENT OF IDLER QUADRATURE AMPLITUDE

In this section and Sec. IV and Appendix A, we discuss the effect of idler output measurement on signal output. The
conditional density operator is calculated by the well-defined generalized projection®’ (operator-valued measure).
A measurement of idler quadrature amplitude with readout «] is described by

lay); i{ai] . (8)

Since a, is defined over all real values of a;, | a,);;{a, | means continuous projection. The operation-valued measure

is introduced and removes the difficulty in the continuous spectrum.'* The density operator of a signal wave after
readout aj is

(meas,a}) A(read,a})
s =T1'1P i Psi

1
=N"? e
k,l,zh,m ‘/m ‘l‘

172
exp( —2a’?)

H, (V2a)) H,(V2a)) 172
/21 ! 1/2lexP(_|alz)Hh-;mHkl_cHH
2™ 2

3 |&

[ —i tanh(kyt)e * ][ +i tanh(kot)e ~01™ o a%f
cosh?kt V! Vh!

|k +1); {h+m ]|, 9)



3558

where a coherent-state input signal is assumed and

’
Alread,a;

) ’ ’
pi =1,® |a}); {ai] .
In deriving (9), we used the following equation:’
, . 1/4 , Hm(\/ia’l)
(m|a1>=7:—-!‘ — exp( —aj )‘7"/2—‘
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(10)

1y

Next the quasiprobability density of the conditional density operator is calculated. Without loss of generality, we as-

sume 8=m/2. Then the quasiprobability density is

Q

(meas,a'l ) (meas, a'l )

(@)=(a|p, [a)s

=Ngexp[ —(1 +tanh’kyt)(a; —(a,) )*]exp

where
172
1+tanh%(xk,t) 1 172
No= 2
T a cosh(kt)
, Ao, 1
2tanh(kpt)a) + ————
cosh(kt)
(al ) = 2 ’
1+ tanh*(kt)

(a,) =ay,cosh(kot) .

The quasiprobability density is Gaussian, centered at
{a,) and {a,). The dispersion of the quadrature ampli-
tudes can be calculated by using (12) as

1

2y __ 2 [ N S
(Aa1>—<Aa1>Q r 4COSh(2K0t) ) (13)
cosh(2k,t)
(Aad)=(Aad)g—4="0 2 (14)

Here (Aa}), and (Aa}), are the variances of the
quasiprobability density (12) that are larger by 1 than the

e . . A (meas,a}) .
intrinsic variances or g . The output-signal wave

is reduced to a quadrature-amplitude squeezed state satis-
fying the minimum uncertainty product

asz a;

<aj 6:rad)'a>s

& .
<aip, (0)la>

and
<a|p (0) a>

<alp, (0)lax
<alp (0)la>
vacuum-state signal number-state signal

(a) (b)

FIG. 1. (a) Quasiprobability densities of the initial density
operators p,(0)= | 0),,{0| and 5,(0)=]0),,(0| and the re-
duced density operator 5{?. (b) Quasiprobability densities of
the initial density operators p,(0)=|ny),{ng|,p,(0)

=0),;,{0| and the reduced density operator p "¢,

_Eiz—’(;;(az—(a2>)z N (12)
{
(Aa?)(Aad) =1L . (15)

. . A (meas,a)) .
The quasiprobability density ,(a|p, " |a), is com-

pared with that of the reduced density operator in Fig. 3.

IV. STATE REDUCTION BY A MEASUREMENT
OF TWO IDLER QUADRATURE AMPLITUDES

A simultaneous measurement of two-quadrature ampli-
tudes is described by the operation-valued measure

1a'>ii<a'| . (16)

This corresponds to approximate simultaneous measure-
ment.* Following the idea of operation-valued measure, ®
measurement of a; by heterodynamic involves the prod-
uct spaces |a;); | 0),, where 1 stands for the idler band
and 2 stands for the image band that is in a vacuum state.
Measurement of |a;) couples unavoidingly to the zero-
point fluctuations of the image band. Thus a measure-
ment of | a;) must be interpreted as taking a trace of the
product density matrix

p1®10),,(0] ,
i.e., forming the expression
Try(51® [0),,(0] )y {a|) . a7

The conditional density operator after the readout o’ is

s<(.'” 6:“96) ) a>s

<a1f(0)l a>

>ﬂ1
<alp (0)la>
FIG. 2. Quasiprobability densities of the initial density

operators §,(0)= | ag); ;{a, | and p,(0)=|0),,{0| and the re-
duced density operator § \"¢.
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A(meas,a’) _ Tr. ~A(read,a’) ~
- 1

s i Psi
N:2 ( ’ 2) ( 2) am all
= k’hz,‘;)nexp —|a'|“)exp(— | a| Vavn
k *h
Ay Ay
Here
piratdi=1@ |a'); (a'| . (19)

The quasiprobability density is

Q(meas,a’)(a)ES<a |ﬁ§meas,a‘) l a>:
1
=—exp— |a
m

0

—[i tanh(kot)a'*e ~%—a (11%. (20)

If 6=m/2, the quasiprobability density is circular
centered at {a;)=tanh(kgt)a}+ag/cosh(kyt), (a)
= —tanh(kyt)ay+ag ,/cosh(xkgt). If the difference be-
tween the real dispersion and the dispersion of the
quasiprobability density is taken into account, the output
signal is reduced to a coherent state,

(Aa?) =1,
and

(Aa3)=1. 1)
The quasiprobability density ({(a|p (™%’ |a), is com-

pared with that of the reduced density operator in Fig. 4.

V. PROJECTION OPERATORS GENERATING
A NUMBER-PHASE SQUEEZED STATE,
QUADRATURE-AMPLITUDE SQUEEZED STATE,
AND COHERENT STATE

In Secs. IIT and IV we have shown that a nondegen-
erate parametric amplification process followed by a mea-
surement produces various quantum light. Such a

02/\ s<a|ps(red)|a>s

s<a|ps(meas.d.:)ia>s

aq

FIG. 3. Quasiprobability densities of the reduced density
operator and conditional density operator for and idler wave
quadrature-amplitude measurement. 5,(0)= | ay), ;{a,| -

k4l ] ] 172 [ —i tanh(k,t)e “®]'[i tanh(k,t)e ~6]"

frell:

cosh?(kt)

(18)

quantum-light-generation process based on state reduc-
tion resulting from measurement is characterized by a
projection operator!®

P=,(y|0|¢),. (22)

Here |¢), and |¢), are the initial (prepared) state and
final (measured) state of the probe system and 0 is the
evolution operator.

The projection operator P ™ that characterizes an
idler photon-number measurement scheme is written as

P™=.(m|0|0),
1 [——iez"etanh(;cot)]"'a tm
vVm! s
X exp{ —In[cosh(kyt)a (a1} . (23)

This projection operator generates a number state
| ng+m ), from a number state | ng),. It also generates
a number-phase squeezed state (41) in Appendix A from a
coherent state | @), (Ref. 11) (see also Appendixes A, B,
and C).

Lo (a}) .
The projection operator P “’ that characterizes an
idler quadrature-amplitude measurement scheme is given
by

= (a}| O ]0),

- cosh(kgt)

— IZ .
=N"e “Vexp |—2iajtanh(kyt)e'®a |

tanh?(« t)e 2? At
2 )
X exp[ —In(coshkt)a I&S] . (24)

Ta,
A ’
Laipimessla>

PAY
§al ps(red)la>s

a,

FIG. 4. Quasiprobability densities of the reduced density
operator and conditional density operator for a measurement of
the two idler wave quadrature amplitudes. 5,(0)= | ag); ;{aq ] .
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Here N'"=[1/cosh(kyt)](2/m)!/%. This projection opera-
tor generates a quadrature-amplitude squeezed state (9)
from a coherent state | a);.

The projection operator P'®) that characterizes a
simultaneous-measurement scheme of the two idler quad-
rature amplitude is written as

P@=(a'|O]0),

)

e—|a|2/2 * i0s T

- B h i
cosh(Kot)exP[ a’*tanh(kgt)e'“a ]
X exp{ —In[cosh(kyt)@ Ias]} . (25)

This projection operator generates a coherent state (18)
from a coherent state | a),.

VI. FEEDFORWARD

Even though an output signal wave is reduced to a
number-phase squeezed state or quadrature-amplitude
squeezed state for a specific readout m or a} as demon-
strated above, it is not considered to be a practical
quantum-light-generation scheme. This is because each
measurement produces a different readout and, if we
want to know the quantum-statistical properties of all
samples over all possible readouts, it is nothing but a
signal-reduced density operator, as shown in Fig. 5.

In this section, we propose a method to overcome the
preceding difficulty and produce a squeezed state con-
tinuously. Suppose a feedforward process operates on the
output signal such that all the conditional density opera-
tors are translated to the same mean values (a,) and
{a,) by using the measurement result as shown in Fig. 5.
If the readout a) is different from the most probable
value a}, then a translation operator

D(a})=exp[(a—a})a+a,)] (26)

acts on the conditional density operator p (™% Then
the result is

s<a|6;moas. cl.'1a>s

a, ~
$a'ps(meas,d.’)la>s

galas(red)laz/

l - 01
translation

FIG. 5. Quasiprobability densities of the conditional density
operator for different readouts a’ and a'’. Unitary translation

') ( )
as, ay A (meas,a;

(
operator D (a’') maps ﬁsme onto g,
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"
A(meas,al )

Sa|Da))p, D'a))|a),
172 1/2

14 tanh?(kyt) 1

7 cosh?(kyt)

™

X exp{ —[1+tanh?(kyt)](a;—{a,)?}

——1———(a2—(a2))2] . (27)

Xex
P cosh?(kyt)

It is seen from (27) that a signal wave is always reduced
to the same quadrature-amplitude squeezed state ir-
respective of the readout aj. The translation operator
D (a) is practically realized by a phase modulator. 1

VII. QUANTUM CORRELATION OF PHOTON TWINS
EXPRESSED BY A HEISENBERG PICTURE

In this section we study the quantum correlation of
photon twins in a Heisenberg picture and will come to
the same conclusions we have previously obtained using a
Schrodinger picture. If phase angle is appropriately
selected, the input-output operators in a Heisenberg pic-
ture are described by

b, =cosh(k1)a, +sinh(kyt)a |, (28)
and
b [ =sinh(ky)a, +cosh(kyt)a | . (29)

From (28) and (29), and taking account of the commu-
tation relation [&,,a }L] =0, the difference between the sig-
nal photon number and probe photon number satisfies
the following Manley-Rowe operator relation:

Ry — 1R, =R, — R, . (30)

Here 7, =b [b,, m,=b[b,, A, =a a,, and #,=a |a,. The
dispersion difference between the signal and probe pho-
ton number is

(A, —m;)?) = (AR, —A;)?)

[0 (number-state input)

- ] |ag|? (coherent-state input) . (31)

Here we use the fact that the number dispersion of the in-
put idler wave in a vacuum state is zero.

The complete photon-number correlation for an input
signal in a number state corresponds to the result of (40).
When an input signal is in a coherent state, on the other
hand, the photon-number correlation is partly degraded
by the photon-number variance { AA 2) = | a, | % of an in-
put signal. At first sight this result seems to contradict
the conclusion of (47) in Appendix A. But notice that
(47) represents a dispersion in photon number for a
readout m close to the most provable value
| ap | cosh?k,t and that (31) represents the ensemble
average of the photon-number correlation for all possible
m; values. In fact, the dispersion in photon number for a
readout m much smaller than | a, | *coshk,t is reduced to
zero, and that for a readout m much greater than
| &y | *coshkyt is greater than |[ag|2 When these
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different dispersions are integrated over all possible
readout values with a proper probability density, we find
a dispersion of not |a,|%/2, but |a,|? (see Appendix
D).

From (28) and (29), the output in-phase and phase-
quadrature operators are related to the input operators
by

~

b,y =cosh(kt)d@; ;+sinh(kt)a; | , (32)

b, ,=sinh(kyt)a, , +cosh(k,t)a; ; - (33)
The difference of output in-phase operators is

b, —b, =exp(—kot)@,,—8;,) , (34)
therefore its dispersion is

(A(b, | —b; )*=Lexp(—2kyt) . (35)

This result corresponds to the squeezed quadrature-
amplitude noise (13). On the other hand, the quadrature
component dispersion itself is

(Ab, ;)%= L[exp( —2Kqt)+exp(2kyt)] - (36)

This corresponds to the enhanced quadrature-amplitude
noise (14).

The dispersion of the sum of quadrature phase opera-
tors is similarly calculated as

(A(b,,+b,,)*) =Lexp( —2kyt) . (37)

They feature equally strong negative correlation.

VIII. CONCLUSION

Photon twins (signal and idler waves) produced by a
high-gain parametric amplifies feature strong positive
correlation for both their photon numbers and in-phase
amplitudes, and equally strong negative correlation for

their phases and quadrature-phase amplitudes. If the
J

ﬁ(smeas,m)=N122€xp(_ |(10|2) [ [h —}!—m ] [k —|I;m 1 ]
k,h

k

Ao ag

cosh(kgyt) cosh(kyt)

The photon-number probability density function is cal-
culated as

__—1__[ n J n—m 1
 F(l4+m, N ,) ln—m 74y gy “2)

where N, = | @, | 2/cosh’(kyt) and F(a,b;c) is Kummer
function given by

I'(l+4a)

F(a,b;c)= T(1+b)

(14a +j)c’
. 43
2F(1+b+j)j! “3)

The average photon number and its dispersion is ob-

h
1
hlk!

idler photon number, the single-quadrature amplitude,
and the two-quadrature amplitudes are measured by a
photon counter, homodyne detector, and heterodyne
detector, the signal wave is reduced to a number-phase
squeezed state, quadrature-amplitude squeezed state, and
coherent state, respectively. The projection operators
characterizing these nonunitary processes are given.
With a feedforward technique, these can be used to gen-
erate various quantum lights.
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APPENDIX A

We discuss the effect of a photon-number measurement
of idler output on signal output. A measurement of idler
photon number with count m is described by the projec-
tion operator

Im)Y, {m| . (38)

The density operator of a signal wave after the readout is
calculated by

p\(meas,m)____Tr ﬁ(read m)ﬁS‘ , (39)
where piradm™ —1 @ |m ), ,{m | and 1, is an identity
operator for a smg]e wave.

For a number state input case, we obtain

pimeesm = no+m); {ng+m | . (40)
From (4) the output signal wave is also in a number state
translated from the initial value n, by the exact number
of readout m.

For coherent-state input, we get the following from
(5):12

172 tanh?™(kt)

cosh?(it)
172

|k +m); (h+m| . (1)

f
tained using the probability P(n) as

L .(—N,)
= P : m+1 A _
(n)= J>2mj m+])—Lm(—NA> 1, (44)

(An*)y=3 (j— )PP ())

j>m
Ly =Ny)
L,(—N,)
J [ Ll =N ) )
L,(—N,)
L r(=Ny)

—(m +1)W . (45)

=(m +2)im +1)

—(m+1)
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— o
Derivation of (45) used the relation (An?)~ | 20 | 47)

F(14m, ;N )=L,(—N 4)exp(N 4),

where L, (x) is a Laggure polynomial. When the
parametric-amplifier gain is high enough, xyt >>1, and
the readout m is in the vicinity of the most probable
value, m ~ | ;| 2cosh’yt, the average photon number
and its dispersion derived in Appendix B are approxi-
mately given by

(ny~m+|a|?, (46)

and

P(cosy) = {cosyy | p\mea™ | cosy)
=3 Zsintk +m + Dusinth +m + D | |
kh ™

P (siny) = (sing | p ™2™ | siny) ) |

h+n

Note that the input signal has the photon-number disper-
sion (An(0)*)=|ay|% It is reduced by a factor of 2
after the parametric amplification and photon-counting

measurement. This result was first discovered by Yuen'¢
and was later confirmed numerically by Kitagawa and
Yamamoto.'? Since m is much greater than |a,|?in a
high-gain parametric amplifier, the signal wave features a
strong sub-Poissonian distribution.

Next the phase dispersion is calculated. The sine and
cosine probability density functions are calculated in a
manner similar to the photon-number probability density
function,

(48)

k+m 1/2aA ay
)

1 ; i - i —i D(gp—m)
— 2 [ez(k+m+l)¢_e itk +m+1)¢ ﬂ)][el(h+m+l)1l/_e ith+m+ 1)y 17]
n 2T

JERIERIET

h

V! VR’

where a ,=og/cos(kyt).
leads to

(cosy) = foﬂcosg[:P(coszp)dtﬁ
=NY [F(14m, ;N )] '¥, (N, Jcosdy,

Straightforward calculation

(50)
(sing) = [ ™ sing P(sing)d ¢
—7/2
=N F(14+m, N )], (N ,)sing, ,

(51)
(cos’y) = f "cos?y P (cosy)d

0

4= 22 FUtm, KN O]

N, .
+T[F(1+m, I,NA)] wz,m(NA)

Xcos(2¢ao) , (52)

(sing) = [ n/z/zsin2¢P(sin¢)d¢

m

8 m,0 _
=1_ L LF(+m, LN ]!

N, .
—“Z—[F(I—Hn, LN 17, (N g)cos(26, )

(53)

(49)

where ch%:arctanoz0 and cosqﬂa0 and sin¢>a0 are the aver-
age sine and cosine operator values of an input signal.
8; j is Kronecker’s 8,

N

(k +m)! 1
kWk +1

kim!

k+m+1
k+1

qll,m(NA )= 2
k

(54)

and

k+m)!
k!'m!

(
'\ =
2m(Na) % (k+2)(k +1)

172
(k+m +2)(k +m +1) ]

X ——Nﬁ
KW (k +2)k +1)

(55)

Note that W, o(N )=V (N ) and ¥, (N )=W,(N ,),
where ¥, (N ,) and W,(N ,) are shown in Ref. 17.

When the parametric-amplifier gain is high enough,
Kot >>1, and the readout m is in the vicinity of the most
provable value,

m ~ | ay | 2cosh?(kyt) ,

the average sine and cosine operator values and the nor-
malized dispersion are approximately calculated (see Ap-
pendix C) as

(cosyy) ~ [1— cosdg, » (56)

_ 1
4'|C‘0|2
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Sulﬁ(rad)laz
<alfree la>,
as Waz
s<a‘ ﬁ;meas.m)lu>s

s<ulﬁs(meas:m)lc'>s
a, ’01

number-state coherent-state
input signal input signal
(a) (b)

FIG. 6. Quasiprobability densities of the reduced density
operator and conditional density operator for an idler photon-

number measurement. (a) p,(0)= |ng),{ny| and (b)
ﬁr(o)z |a0>: s<a0t'
(sin) ~ |1 ————— |sing, , (57)
i dlag|? |
and
)
(Asin’y) 1 . (58)
(cosyp)  2|ay|?

Note that the normalized sine operator dispersion of an
input-signal wave is 1/4 | a | 2. It is enhanced by a factor
of 2 after parametric amplification. This doubling of
quantum noise is a manifestation of a general quantum
limit of linear amplifiers and simultaneous measurement
of the two conjugate observables. '3
From (47) and (58) we see that the signal wave after
measurement of idler photon number is reduced to a
number-phase squeezed state, satisfying the minimum un-
certainty product of photon number and sine operators,
(An2){Asin’*yp) |
~4. (59)
(cosy)? ¢
The quasiprobability density {a |5 ™*™ |a), of thus
generated number states and number-phase squeezed
states are compared with those for the reduced density
operator in Fig. 6.

APPENDIX B

We derive the approximate value of photon-number
dispersion (47). Suppose the readout m of the output
idler photon number is in the vicinity of the most prov-
able, | a, | 2cosh’kyt. The relations

L, (—z)=e ?F(l14m, 1;z) (60)

m

and

(a,b;x)+£F(a+1,b+l;x) (61)

Fla+1,b;x)=F b

from (45) give us

3563
(An?)=2(m +2)(m +l)z%
+(m +2)(m +1)272§'§—:1%;_
—(m +1)%2? —%’:—i%ﬁ;r
—2(m +1)z %
(m+“%?_?% (62)

where z = | ay | ?/cosh(xyt). Further applying the rela-
tions,

F a,c;% —T(e)x"'=9721_(2Vx) asa— (63)
and
2c
Ic+,(x)=Ic_,(x)—?Ic(x) , (64)
and taking the limit as z—0 and zm —z,, we obtain
1,2Vz)
(An?) >z —_— , (65)
" 0 1,2Vz)

where I'(x) is the y function and I, (x) is the modified
Bessel function.

If the input average photon number is much greater
than one, z, >> 1,

02V zg)=e Y °F (1,1, —4V/7,) . (66)
By using (66) and the expansion
F(a,b,—x)~x_“r(r%—[l+a l+a—b)]x ! (67)
in (65), we obtain
1,(2Vz)
11erz ~1—iz51? (68)
10(2‘/2 )
and
(An?) ~1z2~1]ay|?. (69)
APPENDIX C
We derive the normalized sine dispersion (58). Equa-
tion (54) can be rewritten as
(k +m)! k1 |72k
m z
\I/l’m(z)— 1/2 2 k+1 '(m ) F .
(70)

Since m is sufficiently large, there is always an N, such
that k +1/m for k < N,. Since the terms for kK >N do
not contribute to the sum, we can set

(k+m)  z*
'/22 (k+Dlm —1) k!

V) m(2)~

=m'?F(14+m,2;z) . (71)
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From (50), (51), and (63), we obtain

. 1 2\/20
1,2v/7) (sin%y) ~ 5 1— Ve c052¢a0 ) (74)
(cospp) ~—————=—cosd, ~ |1 — cosg, zo)
1,2V zy) 0 4|
(72)  From (64) and (68), we get
(siny) 112V/2) ——————sing L sing (sin’y)
-~ a - 2 a, * _ 2 1,—172
2‘/20 0 4| ay 0 (cosy)? tan“, + 1z, . (75)
By a similar approximation, we get Since | (siny) /{cosy) | >~tan’4, , the normalized sine
v e E (k +m)! zk uncertainty is given by
2,m (k+2)Mm —1) k! (Asin’y) it 1 ) (76)
(cosyp)?  *7° 2| ay|?
ﬂF(1+m 3;2)
APPENDIX D
~mz5'1(2V/z,) . (73) We calculate (A(m;—m;)*) using the Schrédinger
picture. First we calculate {m;—m;). From (2), we ob-
Here (63) was used. By (53), (63), and (73), we obtain tain
J
—lay|? [tanh2 Kot) L
—m; ) =Tr. p.(A.®1l.—1.®# )= 0 _— — ]——__
<mS ml> rs,lpsl( S® ] S® l) - COSh 2(.] 1) _l '_~.
2 i
_ —layl? [tanh (Kot I' dF(1+i, 1;2)
—¢ ; cosh(ket) dz ' an
z is defined below (62). By using
dF ;
——M’x—)ziF(cz +1,b+1;x), F(a,b;z)=e’F(b—ab,—2z),
dx b
from (77) and
Fb+1a+1),,
F(—a, 14+b,x)= L ,
(—a, 14+b, x) T +atl) 2(x) (78)
we obtain
ze ool
(mg—m;)=———=— tanh?kytL}(—2) 2 79
cosh’kyt ; 0 2=l a| 79
In deriving last the equality of (79), we use
2L,f(z)xk=(l—x)_a_le"z”"_”. (80)
K
Next we derive ((m; —m;)?) with a similar procedure,
((mg—m;)*) =Tr, ;p;(A,®1,— 1,84,
o el [tanh(kyt) ]’ L2 d?F L+, 1;z) L, 9F (1t 1;2)
= cosh(kyt) dz? dz
=lag|*+ | an|?. (81)

In deriving of last equality of (81), we use (78) and (79). Therefore we obtain

<A(ms—m,-)2>=|a0{2. (82)
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