Chapter 10

Negative Conductance Oscillators
(Lasers)

Negative conductance oscillators are employed for amplifying and generating coherent
electromagnetic fields in various frequency regions. The essential components of a nega-
tive conductance oscillator are a frequency-selective circuit, a device showing a negative
differential conductance (gain), and a device with a nonlinear gain-saturation or amplitude-
limiting function. Various frequency-selective circuits are used to form a high-Q cavity
depending on an operation frequency, i.e., an LC circuit, delayed feedback loop, Fabry-
Perot cavity, ring cavity, distributed feedback cavity, and many others. Usually, the neg-
ative differential conductance and the nonlinear characteristics are provided by the same
device. Solid-state devices such as tunnel (Esaki) diodes, IMPATT diodes, Gunn diodes,
and Josephson junctions are employed for a radio wave and microwave oscillators. Accel-
erated electron beams and inverted media are used as a negative differential conductance
and nonlinear element for higher-frequency regions, including millimeter, sub-millimeter,
infrared, optical, and XUV spectra.

In a typical coherent communication system, a transmitter consists of an oscilla-
tor, modulator, and post-amplifier. An oscillator generates a low-noise and frequency-
stabilized electromagnetic wave. Information is encoded onto either the amplitude, fre-
quency, or phase of the coherent carrier wave emitted from the oscillator. A post-amplifier
compensates for the loss of the modulator and/or to boost the transmitted signal power.
If frequency or phase modulation is employed, an injection-locked oscillator can be used
as a post-amplifier. For example, a low-noise Gunn diode is used as an oscillator and a
high-power IMPATT diode is used as an injection-locked oscillator (post-amplifier). The
received signal is fed into a mixer with a coherent local oscillator wave in order to trans-
late the carrier wave into an intermediate frequency (IF) signal or directly into a baseband
signal. This mixing process has a frequency and mode filtering function and rejects back-
ground noise and cross-talk from other channels. A local oscillator is frequency stabilized
and often phase-locked to the received signal. A phase-locked-loop (PLL) oscillator is
employed for homodyne detection. Negative conductance oscillators can be used as free-
running oscillators, injection-locked oscillators, and phase-locked-loop local oscillators in
such a coherent communication system.

A negative conductance oscillator is described by the circuit shown in Fig. 10.1. An LC
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Figure 10.1: An electrical circuit model of a negative conductance oscillator.

series circuit represents a frequency-selective element. An active element with a negative
differential conductance (gain) and a nonlinear gain saturation characteristic is represented
by a complex impedance —R, + jX,, where the negative resistance —R, represents a
saturable gain and the reactance X, represents an associated dispersion. The active
element should have an internal noise source represented by the noise voltage v,. A positive
resistance Ry, represents a load resistance, which accounts for the output coupling loss from
the oscillator. An external noise is fed into the oscillator through this load resistance and
is represented by the noise voltage vy. Finally, the oscillation field is represented by an
internal AC' current i(w). van der Pol was the first to study the noise properties of such a
negative conductance oscillator; thus, it is often referred to as the van der Pol oscillator.[1]
Note that the circuit representation of the negative conductance oscillator in Fig. 10.1 is
quite general. This simple model covers the fundamental performance and noise property
of almost all negative conductance oscillators, including a laser oscillator.

10.1 Master Equation of a Laser Oscillator

Figure 10.2 shows a typical laser oscillator. Two high reflection mirrors constitute a Fabry-
Perot cavity. The photon decay rate is expressed by % =57 In ﬁ, where @) is a cavity
Q-value, L is a cavity length and R;, Ry are the mirror reflectivities. An oscillation field
and inverted medium are represented by the electric field E(z,t) and the ensemble of
atomic polarizations P(z,t) :

E(zt) = % ST B, (1)t () + C.C. (10.1)

Plot) = % S Po(t)el @t () + C.C. (10.2)

where n designates a longitudinal mode with a spatial mode function u,(z). We assume
a single transverse mode operation. The Maxwell equation with a driving term is given
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Figure 10.2: A laser oscillator with a Fabry-Perot cavity.
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Using Egs. (10.1) and (10.2) in Eq. (10.3), we have the equations of motion for the am-
plitude and phase of the oscillation field:

(10.3)

T I
b = (U — wp) — % (Z‘) ;nRe(Pn) , (10.5)

where %L = % is the photon decay rate, €1, is an empty cavity resonant frequency, and

wp, is an actual oscillation frequency. Equations (10.4) and (10.5) show that the in-phase
component Re(P,) of the induced atomic dipole causes a dispersion and the quadrature-
phase component Im(FP,) of the dipole provides a gain. It is convenient to introduce an
electric susceptibility x5, = Xnr + iXni to represent a dipole,

P, = eoxnkn = EO(XTL’/‘ + ij)En . (106)

Using Eq. (10.6) in Eq. (10.4) and Eq. (10.5), we have the laser master equation:

. 1 /wy, 1
En:_* =y En_*nm'En ; 10.
2 (Q) g X (107)
: 1

The steady state solutions of Egs. (10.7) and (10.8) provide the threshold condition (gain
= loss) and the oscillation frequency,

Wn

6 = WnXni (10.9)
1
wy, = Q, — §wanr . (10.10)
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Figure 10.3: A complex electric susceptibility x = x, + ¢ x; of an inverted system.

The representative functions of x; and x, are shown in Fig. 10.3. Equation (10.10)
indicates that the actual oscillation frequency w, is always pulled toward the gain center
from an empty cavity frequency £2,, due to the presence of the dispersion.

If the cavity internal electric field amplitude is normalized to represent a “photon
amplitude”, the stored energy is given by

E = hwA} = %LAQ : (10.11)

where Ag is the photon field amplitude, n = A3 is the photon number and A is the
equivalent oscillation current amplitude in the LC circuit (Fig. 10.1), i.e. I = Acos(wt).
From Eq. (10.11), the photon field amplitude Ay and the equivalent current amplitude A

are related by
L

Ag=1/=—A . 10.12
0=\ 575 (10.12)

The output optical power from the laser oscillator is given by

1
Pyt = hwA32 ( d ) = _Rp A% | (10.13)
Qex 2
from which the photon decay rate is expressed as
w Ry,
=—= . 10.14
0 L (1014
The internally generated optical power is given by
1
P = hwA3wyi(Ag) = 5Ra(A)A2 : (10.15)
from which the photon amplification rate is expressed as
Rq,(A
wxi(Ao) = # (10.16)



The actual oscillation frequency is given by

1

57 Xa(A) (10.17)

1
W:Q—§er(AO) =0 -

from which the dispersion is expressed by

Xa(A)

wWXr (AO) = I

(10.18)

Table 10.1 summarizes the one-to-one correspondence between the electrical circuit lan-
guage and the quantum electronics language.

Table 10.1: Comparison of the electrical circuit language and quantum elec-
tronics language for a laser oscillator.

Electrical circuit Quantum electronics
s L
Oscillation field §A vVhwAg
amplitude
Ry, w
Photon decay rate —
Y L Qex
A
Photon amplification Ral(/ ) wxi(A)
rate
X (A
Dispersion aé ) wxr(A)

10.2 Free-Running Van der Pol Oscillators

When the active element is pumped by an external energy source and a negative differential
conductance is realized, the internal and external noise voltages, v, and vy, are amplified
and the fluctuation frequency component of the current i(w) near the LC circuit resonant
frequency, wg = \/%, grows. This process is called “regenerative amplification.” Once the
negative resistance of the active element balances the positive load resistance, i.e. R, =
Ry, the circuit becomes unstable and the noise grows exponentially, purifying its spectral
shape. The circuit starts to oscillate and the steady-state coherent field amplitude is
established in the circuit. This steady-state condition is established by the gain-saturation
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of the active element. In this way, the broadband noise, v, and vy, are transformed into a
coherent wave with stabilized amplitude and a well-defined frequency. Frequency-selective
amplification which purifies the spectral profile and gain saturation which stabilizes the
amplitude are the two basic ingredients for a negative conductance oscillator.

The circuit equation (in complex representation) for the current i(w) is given byl[4],[5]

{RL +1 (wL - wlC> — Ry + iXa] i(w) =ve(w) +vp(w) . (10.19)

A time-dependent real current i(t), which is a real part of i(w), is expressed as

i(t) = Re(i(w)) = Re [( A+ A A)evs<wt+A¢>>]
= [A+ AA(t)]cos(wt + Ag(t)) (10.20)

where A and w are the average amplitude and frequency of the oscillating current and
AA(t) and A¢(t) are slowly varying amplitude and phase fluctuations. The gain saturation
of the active element is represented by

_RO

e =114

(10.21)
where — Ry is the unsaturated negative differential resistance, which is proportional to the
pump rate, and [ is the saturation parameter.

If one assumes ‘%‘ < 1, one can linearlize R, and X, as follows:

OR,

Ry = Ro(A) + S AA (10.22)
X,

Xo=Xo(4) + 57AA (10.23)

Since an actual oscillation frequency w is close to the LC' circuit resonant frequency, one
obtains

1 L 1 L
wl— =" <w2 - LC’> = 2w+ wo)(w — wo) = 2w — wo) - (10.24)

Substituting Eqgs. (10.20), (10.22), (10.23), and (10.24) into Eq. (10.19) and taking the
real part of both sides of Eq. (10.19), one obtains

Re { [RL — Ry (A) — 88]1%4(1 AA+i2L(w — wp)

0X,
0A

+i (Xa(A) + AA)} (A+ AA)e“wHM)} = v(t) +vp(t) . (10.25)

Replacing i€2 = i(w — wp) by % and taking the time derivative (A 4+ AA(t))e'Wi+Ae®),
Eq. (10.25) is reduced to

. X, (t) 1dAA 1 OR,
Re{[RL—Ra(A)+z2L<w—wo+ 5T >+2L<A o _2L8AAA)
dAd 1 9X,

Y3 oA AA)} Aei(“’t+A¢)} =wa(t) +vr(t) . (10.26)

+12L (
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If one ignores all fluctuation terms, i.e. AA(t) = A¢p(t) = v, (t) = vr(t) = 0, in Eq. (10.26),
one has the following steady-state solutions:

Ry

Ry = Ry(A) = —2 _ 10.27
L= Rud) = 50 (10.27)
Xa(A)
w=wo— — (10.28)
From Eq. (10.27), the squared, steady-state oscillation amplitude is given by
1 /Ry
A% == ( - 1) : 10.29
5 \&, (10.29)
As shown in Fig. 10.4(a), the squared coherent oscillation amplitude builds up at an
A2 A
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Figure 10.4: The oscillator power and saturated gain of a laser oscillator.

oscillation threshold, Ry = Ry, and increases linearly with the pump rate (the unsatu-
rated negative differential resistance Ry is proportional to the pump rate). The negative
differential resistance R, linearly increases with the pump rate below the threshold and is
clumped at the load resistance Ry, above the threshold, as shown in Fig. 10.4(b). When the
oscillation field increases above the steady-state value given by Eq. (10.29), the saturated
gain decreases to below Ry and the circuit has a net loss. This results in the decrease
in the oscillation field. On the other hand, when the oscillation field decreases below the
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steady-state value, the saturated gain increases to above Ry . In this case, the circuit has
a net gain and the oscillation field is amplified. In this way, the oscillation field amplitude
and the saturated gain are simultaneously stabilized to their steady-state values. This
nonlinear process is due to mutual coupling between the oscillation field and the active
element and is termed “relaxation oscillation.”

10.3 Amplitude and Phase Noise of an Internal Field

The small fluctuating parts in Eq. (10.26) are

d OR,
<2LthA —A 9A

d 0X,
AA) cos(wt + A¢) — (QLAthqﬁ + A 5

= va(t) +op(t) . (10.30)

AA) sin(wt + A¢)

Multiplying Eq. (10.30) by cos(wt + A¢) or sin(wt + A¢) and integrating over one period

of oscillation, T' = %’r, one has

ot aa— a%Bapy w/%( () +oL(t)) cos(wt + Ag)dt = vae + (10.31)
7 9A = = Vg v, cos = Uge + Ve .
t+g ’ !/ ! !
2LA£A<Z> + AaXa AA = —f/ (va(t) +or(t))sin(wt + Ag)dt = —(ves + vrLs)
dt 0A ™ t_g

(10.32)
Here, vg4c(vre) and ves(vps) are the cosine and sine components of the internal (external)
noise voltages,

Ve (t) = vge cos(wt + A@) + vgs sin(wt + Ag)

vr(t) = vic cos(wt + A¢p) + v sin(wt + A¢)

A resistive saturation parameter s and reactive saturation parameter r are introduced
and defined by

A OR,

= a (10.33)
A 0X,

= Rl 10.34

"= Ru(A) 04 (10-34)

If one uses Eq. (10.21) for saturated gain, the resistive saturation parameter is given
by

284> [0 :BA <1 (just above threshold) (10.35)
"T14p542 |2  :BAZ>1  (far above threshold) '
Equations (10.31) and (10.32) are rewritten using Eqgs. (10.33) and (10.34) as
d sRy, 1
aAA + ZAA = ﬁ(vac + 'ULC) ) (1036)
d TRL . 1
%A(ﬁ"' QLAAA_ _QLA(UGS—F’ULS) . (1037)
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The amplitude noise AA is caused by the cosine components of the internal and external

noise voltages and is suppressed with the decay rate %% =2 (é), where Q. is a Q)

factor due to output coupling loss and & is the associated photon decay rate. The gain
saturation represented by the resistive saturation parameter s operates as a restoring force
for the amplitude. On the other hand, there is no restoring force for the phase. The phase
noise A¢ is caused by the sine components of the internal and external noise voltages
and also driven by the amplitude noise via the reactive saturation parameter. Therefore,
the phase of a free-running oscillator diffuses via a random walk, while the amplitude is

stabilized to its steady-state value. This effect is shown schematically in Fig. 10.5.

A Im()) random-walk diffusion

amplitude restoring force
/__\\ @\ s L
/ -
[ /%H\ \Q*& 2 L

/////){{%,/ in-phase noise

(0] quadrature-phase noise

> Re(l

Figure 10.5: The noise driving forces of a laser oscillator.

Fourier analysis of Egs. (10.36) and (10.37) results in the power spectral densities of

AA and A¢:
1 Sac(Q) + S1(92)

Saa(2) = . 10.38
aa() $2RE 1+ (/) (10.38)
w 2 r\2 [ w 2
(&) (7 (8) Sucl®) + 519

Q) = — 20— [5,(Q s(2 . 10.

Sa0(®) 4A2R2 (2 [Sas(€2) + S1a(D)] + AA2RZQ2 1+ (Q/Q.)2 (10:39)
Here, the noise bandwidth €2, is given by
s /[ w Ow 1 BA% < 1 (just above threshold)

c=3 (Qe ) "\ o =1 (ar above threshold) (10.40)

Figure 10.6 shows the amplitude noise spectra for various pump rates. At far above
threshold, the amplitude noise spectrum is reduced to

1 Sac() + Spe()

Saa(f2) = ", (Q/Qi>2

(10.41)

Let us consider the two limiting cases:
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Figure 10.6: The amplitude noise spectra of a laser oscillator.

(1) Quantum Limit: S,.(Q) = Sr.(Q) = 4hwR|,

Both internal and external noise voltages are limited by a quantum mechanical zero-
point fluctuation. An ideal laser oscillator is such an example. The amplitude noise

spectrum for this case is
2hw

Saa(@) = — e (10.42)
1+ ()

(2) Thermal Limit: S,.(Q2) = S1.(?) = 8kpT Ry,

Both internal and external noise voltages are limited by Johnson-Nyquist thermal
noise. An ideal microwave oscillator is such an example. The amplitude noise spectrum

for this case is
4kpT

Saa(Q) = — . (10.43)
1+ (/)

The stored energy inside the LC circuit is given by

1
5LA2 = hwn (10.44)

where n is the number of oscillator photons. Therefore, the spectrum of the photon number
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is

~1
@) .
n.————— : Quantum limit
LA\? 1+ (9/§
0060 = (E2) 50 - (g)
‘ 2Ty (&)
4n ( hB ) < 5 Thermal limit
W w
1+ (9/4)
(10.45)
Therefore, the variance in the photon number (An?) is calculated by the Parseval theorem:
o0 ds2 n : Quantum limit
2y — sl
(an%) = /0 San(®) 27 { 2nns, @ Thermal limit (10-46)

The van der Pol oscillator in the quantum limit has a Poissonian photon number distri-
bution at far above threshold, for which the variance (An?) is equal to the mean n. On
the other hand, the variance of the photon number in the thermal limit is larger than
the Poisson limit by a factor of 2ny, = 2 (kpT/hw), where nyy, is the number of thermal
photons.

Figure 10.7 shows the phase noise spectra for various pump rates. The phase noise

4A2RZS,4(Q)
Sas(Q)+S5(Q) 4

Rg= R (just above threshold)

Ro>>R | (far above threshold)

-2 ~ Q/
10 10 1 10 Frequency Q&
e

Figure 10.7: The phase noise spectra of a laser oscillator.

spectral density diverges in the zero frequency limit, Sa4(2 — 0) — oo, which is the
characteristic of a Wiener-Lévy process and originates from the fact that there is no
restoring force for a phase. When r = 0 and at a quantum limit, the phase noise spectral
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density is

()
Sas(Q) = ~5=

A¢( ) A%QQ
A laser has a coherent photon field Ag inside a cavity, into which a random-phase sponta-
neous emission is coupled. The rate of spontaneous emission coupling into a laser mode
is equal to A = =+, because the stimulated emission rate B per photon must be equal to
the cavity decay rate -2 at above the threshold and the spontaneous emission rate A into
a laser mode must be ee()iual to the stimulated emission rate B for one photon (Einstein’s
relation). One-half of the spontaneous photons have a quadrature phase with respect to
the laser field and causes a phase diffusion. The phase jump per one spontaneous photon
with a quadrature phase is equal to A¢ = 1/A( and the rate of such a phase jump is given

(10.47)

by % (i) [1/s]. From this simple argument, we obtain the expression for a random walk
phase diffusion over a time interval ¢:

— 1 1
0 ex

from which we have the phase diffusion constant,

(65) 1

4A3 4

Dy = lim [92520(9)] (10.49)

If we define an instantaneous frequency by

Awl(t) = %Aw) , (10.50)

the frequency noise spectrum is given by

Saw(Q) = Q2Sx4(Q)

(7 (85) 1Sul®) + 51.0)]

2
(Qex) [Sas(Q) + Srs()] + 1A2R2 1+ (Q/9)?

4A?R?

(10.51)

In contrast to the phase noise, the frequency noise is a statistically stationary process and
has a finite spectral density at € = 0.
The frequency noise enhancement factor appeared in Eq. (10.51) is expressed by

g - (R;(lA) %ﬁa)/<_3i4) %{ZL)
N _(aa)iaw(%]jf)
a <gf1;> / (gﬁf)) : (10.52)

This parameter is often referred to as a linewidth enhancement factor or Henny's «
parameter.[3],[5]
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10.4 Spectral Linewidth

The oscillator circuit impedance is calculated from Eq. (10.19) as

1 /
Z(w)=2L | =2 +i(w—wy)| (10.53)
2Q
where wE) = wg — X;S:A) is the actual oscillation frequency, wg is the cold cavity resonant

frequency, and @ is the effective (or active) @ value defined by

—=— - —=—== 10.54
0 Q. QL I (1059

The spectral profile of the oscillating current i(w) is calculated by
li(w)[2 S () + S, (o) (10.55)

e [}1 (8) + (- %)2}

Since Sy, (W) and S, (wp) are slowly-varying functions of w, and can be considered con-
stant where the denominator is not very large, the spectral profile Eq. (10.55) is Lorentzian
with a full-width at half-maximum (FWHM)

w

(1) Below the Oscillation Threshold

In this case, gain saturation is negligible, R,(A) ~ Ry, and thus one obtains

Awyjp = Qi (1 - ﬁi) . (10.57)

The spectral linewidth decreases linearly with the difference (R — Ry) between the thresh-
old pump rate and the actual pump rate.

(2) Above the Oscillation Threshold

In the earlier discussion about the steady-state solution, the saturated gain R,(A)
was made equal to the loss Ry. This is not exactly the case because an actual oscillator
has internal and external noise sources. The saturated gain R,(A) is always slightly
smaller than the loss Ry ; that is, an actual oscillator has a small “net loss” even above
the threshold, as shown in Fig. 10.8. The steady-state oscillation field is maintained in
spite of a “net loss” because the internal and external noise powers are coupled into the
oscillator and compensate for the net loss. By increasing the noise powers coupled into
the oscillator, the “net loss,” Rj, — R,(A), increases and the spectral linewidth becomes
broader.
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Figure 10.8: The saturated gain R,(A) vs. pump rate Ry of a laser oscillator.

In order to evaluate the saturated gain and the linewidth, let us calculate the total

emitted power by

P, = RL/OOOW;Z::
R / /
= i (g) 50 Sl

Let us consider the two limiting cases:

(2-A) Quantum Limit: S,,(wy) = Sy, (wy) = 2hwyRL

"W \2
Y=o
If one uses Avy/p = %Awl/Q and Ay, = % (&), one obtains
2rhu, Av,)?
AV1/2 = (}g )

This is the Schawlow-Townes linewidth for a laser oscillator.[6]

(2-B) Thermal Limit: S,,(wy) = Sy, (wy) = 4kpT Ry,
2
2T ()
P, ’
4rkpT(Av,)?
Pe

This is the Shimoda-Takahashi-Townes linewidth for a maser oscillator.[7]

Aw1/2 =

AV1/2 =

14

(10.58)

(10.59)

(10.60)

(10.61)

(10.62)



10.5 Spontaneous Emission Coupling Efficiency

The spectral linewidth Aw; /o in the quantum limit is rewritten using Egs. (10.29) and
(10.13) as

I
hwg

Awy s = <5> (gfl) . (10.63)

The linewidth drops by a factor of 2ﬁhw6 /L at the threshold and decreases linearly with
the relative pump rate (Ro/Ry, — 1), as shown in Fig. 10.11. The physical meaning of the
factor 2Bhw/0 /L can be elucidated in the following way. According to the saturated gain
model Eq. (10.27), the gain is decreased to one-half at the saturation intensity:

AZ = 5 (10.64)

This saturation intensity A? is converted to the saturation photon number by Eq. (10.44)
L

Ng = —— 10.65

B 2hwy B ( )

The transition from the upper state to the lower state in an efficient laser oscillator
is achieved by the two processes: spontaneous emission with a rate A and stimulated
emission with a rate Bn, where A and B are Einstein’s spontaneous A and stimulated B
coefficients and n is the photon number of a laser mode. When A > Bn, R,(A) ~ Ry
(unsaturated gain), wherease if A < Bn, R,(A) < Ry (highly saturated gain). The gain
decreases to one-half of the unsaturated gain, R,(A) = %Ro, at n = ng, where we should
have

A=Bns . (10.66)

The total spontaneous emission rate A is equal to the product of the spontaneous emis-
sion rate into a single laser mode B and the total number of modes M within the gain
bandwidth,

A=BM . (10.67)

The spontaneous emission coupling efficiently £ is defined by the fractional rate of spon-
taneous emission coupled into a single laser mode out of the total spontaneous emission
rate. Based on this definition, we can express £ in terms of the effective mode number M
or the saturation photon number ng:

1 1 2hwf

(10.68)

éZM N L

Laser threshold

A laser threshold is defined as the condition that the average photon number of a
laser mode is equal to one, where the stimulated emission rate is equal to the spontaneous
emission rate into the same mode. The average photon number at a threshold is

n=EPurn=1 , (10.69)
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from which the threshold pump rate is given by

Py — g:ph - (CZ> . (10.70)

A minimum possible laser threshold is equal to &, which is achieved when £ = 1, and a

laser threshold increases with decreasing .

Photon number

The photon number at below threshold is
P

n =Py, = fT , (10.71)
(&)
while that at above threshold is
1
n=ns(P/Pyp—1)= g (P/Pp—1) . (10.72)

The photon number jumps from n =1 at P = Py, to n = 1/£ at P = 2P, as shown in
Fig. 10.9.

106
£=107
c 104 1 £=10"
2 NP4
S _ -2
> 2 £E=10
2 10 s 7
5 £=10
45 7
< £=05
a1
=09
13 .
E=1
1024
102 1 102 104 106

Normalized Pump Rate P/(éﬂ—e)

Figure 10.9: Average photon number n vs. normalized pump rate P/ (&)

Spectral linewidth

The spectral linewidth at below threshold is

Aw j = Qi (1-P/Py) . (10.73)
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while that at above threshold is

w

AwUQZ‘f)::§<£;>IVRi_1. (10.74)

The spectral linewidth abruptly drops from the cold cavity linewidth & to & (&) at

P/P;, = 2, as shown in Fig. 10.11. The abrupt change of the spectral linewidth is absent
for £ = 1.

Gain saturation

The total spontaneous emission rate A increases linearly with the pump rate at below
the threshold, but is saturated at above the threshold due to the onset of the stimulated
emission,

P : bellowsthreshold

A= (5) _ (10.75)
P, = ~—~% :above threshold

Figure 10.10 shows the normalized total spontaneous emission rate ~4~ vs. normalized

(32)
pump rate P/ (&)

)

0
Qe

100
104
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102 / g=10"
i £=10"
£=05
3
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1 102 104 106
. (O]
Normalized Pump Rate P/(Q_e)

Normalized Spontaneous Emission Rate A/(

Aw1/2

Figure 10.10: Normalized spectral linewidth =) vs. normalized pump rate P/ (Qﬂ)
@ e
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Figure 10.11: The spectral linewidth Aw; /5 vs. pump rate Ry of a laser oscillator.

10.6 Amplitude and Phase Noise of an Output Wave

The amplitude and phase noise studied thus far is those of the internal field of an oscillator.
In most practical cases, however, one needs to know the noise of an output wave rather
than that of an internal field, and these two are not identical.[4],[5]

Consider a negative conductance oscillator with a circulator as the output coupling
element, as shown in Fig. 10.12. The circulator separates the input and output ports and
simultaneously serves as the load resistance Ry, for an oscillator internal circuit as shown
in Fig. 10.1. Therefore, as far as the internal current I is concerned, this configuration is
identical to the oscillator model shown in Fig. 10.1.

Vi
2R,

L C

— G000}

R+ X,

circulator

transmission
line Z=R|

Figure 10.12: A negative conductance oscillator with an output coupling circuit.

The output current I, consists of the reflected noise current vy /2Ry, and the internal

current I:

vr
L=T— -2 | 10.76
R, (10.76)
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where

I =(A+ AA)cos(wt+ Ag) (10.77)
I = (Ac + AA.) cos(wt + Age) (10.78)
v, = vrecos(wt + AP) + vpgsin(wt + Ag) . (10.79)

From the above relations, the amplitude noise of the output wave is

AA(Q) = AA(Q)—UZSL))
_ ( LI >v @+ - (@) . (10.80)
~ \i2LQ+sR;, 2R;) * i2LQ + sRy, ¢ ' '

The power spectral density of AA, is thus given by

(2- 1)2 +(Q/Q)? 1 1

SAAE(Q) = 4R%[1 n (Q/Qc)2] SLC(Q) + SQR% : 1+ (Q/Qc)

59ac(§) . (10.81)

At just above the oscillation threshold (s < 1), the spectrum Eq. (10.81) is close to that
of the internal field Eq. (10.38) except for the white noise in the high-frequency regime,

Q> &, (Fig. 10.13). This white noise comes from the reflected external noise —vr./2Ry,
in Eq. (10.80).

2
4RLSAAQ(Q)
PPN 4
Ste Q)+ S, (Q) =
2 S
10
I
|
10 |
I
I
| 1
14 I / 2
I I
| I
y | |
10 L l > 0
-2 -1 2 /0J
10 10 1 10 10 Frequency /=_
Q

e

Figure 10.13: Normalized amplitude noise spectrum of an output field.

At far above threshold (s ~ 2), Eq. (10.81) is reduced to

1 [ (we) I
TR |, (Q/&)QSLC(Q) + . (Q/&)QSM(Q) : (10.82)
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Consider the following two cases. When both internal and external noise sources are
quantum limited, i.e., Sr.(2) = Sac(2) = 4hwRy, one has a white noise spectrum:

hw

S Q)= — 10.83
AA(S2) R, ( )
The output photon flux N is given by
1
N:§RLA§/hw , (10.84)
and its spectrum is
RLAe 2
SAn() = S Q
av(@® = (FE) san @)
 RA2
N hw
= 2N . (10.85)

If this photon flux fluctuation is converted to photocurrent fluctuation by a photodetector
with 100% quantum efficiency, the current spectrum is

SA1(Q) = ¢?San(Q) = 2¢°N = 2qI (10.86)

where I = ¢V is the average dc current. This is the full-shot noise. As shown in Fig. 10.14,
the origin of this (quantum) shot noise is the internal noise v, in the low-frequency regime,
Q< &, and the external noise v, in the high-frequency regime, 2 > & The (originally
white) internal noise vy, is transformed into a Lorentzian spectrum due to the storage
(averaging) function of the resonator. A rapid fluctuation component of v, is averaged by
the storage effect of the field inside the resonator. On the other hand, the (originally white)
external noise vy, is transformed into the opposite spectral shape because a fluctuation
component of vy, near the cavity resonance (Q < & is absorbed and suppressed by
the gain saturation of a laser oscillator. A fluctuation component of vr. far from the
cavity resonance (Q > &) is simply reflected. A highly saturated oscillator behaves as a
“matched load” near resonance and behaves as an “infinite impedance reflector” far from
resonance.
The phase noise of an output wave is given by

vrs(£2)
Ao () = Ad(Q) —
1 L rRy 1
~ Ti2LA [”‘“ * (1 - ZQRL) “LS] TNBLA WL sk Ve T VL)
(10.87)
The power spectral density of A¢, is
Sap () = — () [y L g, @)
Ao T T2 42027 ALPA20? T ARZA? )P0
(2)° 1
+ 5 : [Sac(Q) + SLC(Q)] . (10'88)

AL2A207 1+ (Q/Q)2
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Figure 10.14: Normalized amplitude noise spectrum of an output field at far
above threshold.

The phase noise spectrum Sa, (€2) is shown in Fig. 10.15 and is different from the internal
phase noise spectrum Sa4(€2) only in the high-frequency region, i.e. white-noise spectrum.
The internal phase noise due to vrs and the directly reflected noise wave vy are 90° out-
of-phase, as indicated in Eq. (10.87), so they are simply added. On the other hand, the
internal amplitude noise due to vr. and the directly reflected noise wave vr. are 180°
out-of-phase, as indicated in Eq. (10.80), and thus cancel each other out.

In the special case of no internal noise, Suc(€2) = Sus(2) = 0, and quantum-limited
external noise, Sp.(Q) = Sps(Q) = 4hwRy, the amplitude and phase noise spectra are

2
o (9g)
e (o)

9 hw1+(9/&)2
A%Spng. (Q2) = FLW
Qe

This is often referred to as the spectral Heisenberg uncertainty principle. A saturated
oscillator suppresses the amplitude noise to below the shot-noise value (standard quan-
tum limit: SQL) and enhances the phase noise to above the SQL within the resonator
bandwidth, Q < % Such a field with reduced amplitude noise and enhanced phase noise
is called an amplitude-squeezed state, which satisfies the minimum uncertainty product.
On the other hand, a field with the amplitude and phase noise equal to the SQL is
called a coherent state. An ideal saturated oscillator without internal noise produces an
amplitude-squeezed state in the low-frequency regime and a coherent state in the high-
frequency regime, as shown in Fig. 10.16. An example of such an ideal laser without an
internal noise (pump noise) is a constant-current-driven semiconductor laser.

N
2
SAAE(Q)~AQSA¢E(Q):(M> . (10.89)
/!

Saa. ()
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Figure 10.15: Normalized phase noise spectrum of an output field.

10.7 Injection-Locked Oscillators

Consider a negative conductance oscillator, which is injection-locked by an external co-
herent signal ve, as shown in Fig. 10.17. The circuit equation (in complex representation)
is[8]

{RL +i (wL - wlC) — R, + z'Xa] i(w) =v4(w) +vp(w) + ve(w) . (10.90)

Ve

Assume that the internal current (¢) is phase-locked by the injection signal i.(t) = 57—,

ic(t) = Re (%) = Re(A, ™) | (10.91)
i(t) = Re[i(w)] = Re [(A+ Ad)ei@i+ora0)] (10.92)

The amplitude and phase noise of the injection signal are attributed to the external noise
voltage vr. Using Egs. (10.91) and (10.92) in Eq. (10.90), one obtains

{RL ~ Ry(A) - 6(54“ AA + QL%%AA
. Xo(4) 10X, d
+i2L |w — wy + oL +2L(3AAA+th¢]}

x (A + AA)ei(Wt+¢+A¢) = vy + v, + 2R Ae™t
(10.93)
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Figure 10.16: The spectral uncertainty relation between the amplitude and
phase noise of an output field from an ideal laser.

The steady-state solution is obtained by neglecting all fluctuating terms:
[Rp — Ra(A) + i2L(w - wy)| A = 2R Ac(cos ¢ — ising) . (10.94)

Xa(A)
2L

/
Here, wy = wp —
is

is a free-running oscillation frequency. The real part of Eq. (10.88)

[Rr, — Ry(A)JA=2RpAccos¢p . (10.95)

We expand the oscillation amplitude A in terms of a free-running oscillation amplitude
Ap and small change of amplitude AA due to the injection signal:

A=Ag+AA | (10.96)

where Ag satisfies the gain clamping condition

Ry

= — 10.
Ry, 1+ pAZ (10.97)
Using Egs. (10.96) and (10.97) in Eq. (10.95), one obtains
1+ BAZ
AA= A, (ﬂA% cos¢p . (10.98)
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Figure 10.17: An electrical circuit model of an injection-locked laser oscillator.

This increase in the internal oscillation amplitude is converted to the change in the output
wave amplitude by using the boundary condition, AA, = AA — A.:
1 A2) cos ¢ — AR
A4, — L+ 845 2¢ B, (10.99)
BAG
When the oscillator is pumped just above threshold, 343 < 1, the conversion from the
input to output amplitude, a reflection coefficient, is given by

AA. cos¢
A, T pAR

>1 (amplification) . (10.100)

On the other hand, when the oscillator is pumped far above threshold, 343 > 1, the

reflection coefficient is
AA,

Ae

As will be shown later, if the injection signal frequency w and the free-running oscilla-
tion frequency wé) are identical, the phase shift ¢ is equal to zero. In such a case, the
injection-locked oscillator at far above threshold completely suppresses the amplitude sig-
nal and, therefore, the injection-locked oscillator operates as a matched load with complete
amplitude limiting function.

The imaginary part of Eq. (10.94) is

~cos¢ —1 (attenuation) . (10.101)

L(w—wy)A = —RpAcsing . (10.102)

In order to have a real value of the phase shift ¢ in Eq. (10.102), one has the constraint
for the allowed frequency detuning ‘w — wé’:
RL Ae . Ae

w
— - < — . = = . .
T A Slngf)‘ <0, A Awr, (10.103)

/
W — wy
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This gives the Adler’s equation for a locking bandwidth Awy. When the frequency de-
tuning w — w(l) is within this bandwidth, the oscillator frequency is locked to the injection
signal frequency w. The phase shift ¢ is now given by

sing = — 20 0% (10.104)

w ) Ae Aw
(&) 4% t
Figure 10.18 shows the oscillation frequency w,, phase shift ¢, internal amplitude modu-

lation AA, and output wave amplitude modulation AA, of the injection-locked oscillator
as a function of the frequency detuning w — wlo.
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Figure 10 18: The oscillation frequency w,, phase shift ¢, internal amplitude
change and reflection coefficient AA@ of an injection-locked oscillator.

Consider the amplitude and phase noise of an injection-locked oscillator. Assuming
w= wé and ¢ = 0 in Eq. (10.93), one obtains
( d OR,

2L£AA —A5a

> cos(wt) —2LA < A 21L %{i ) sin(wt)

= v, +vr, + 2R A A¢sin(wt) . (10.105)
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Multiplying coswt and sinwt and integrating over one period of oscillation, one has the
following equations for the amplitude noise AA(t) and phase noise A¢p(t):

d OR,
= Vqac c 10.1
T A Vae + VL (10.106)
1 90X,
The resistive saturation parameter s is now given by
s = 4 ORe
R,(A) 0A
A OR, 24\ !
= 1- 10.108
moaalm ) 10106

where Eq. (10.95) with ¢ = 0 is used to derive the second equality. Equation (10.106) is
rewritten as

d w 2A, 1
a3 () (o) ake Ay o

The Fourier-transformed internal and external amplitude noise are

5 [Vac(2) + vre(2)]

AA(Q) = 2L 0T Ao : (10.110)

AA(Q) = AAQ) - ”;g)
Q. — a0 o)y d Q 10.111
= om0+ By ) T 3R Gk Awg e - (10-11)

Here, Aw, = 3§ (&) ( 21’%) is the amplitude noise bandwidth. At far above threshold
and for a relatively small injection signal, & — Aw, ~ 2Awy,. Since & > Awp in a
practical situation, Aw, ~ & and one thus has the amplitude noise spectrum:

1| Q2+ 4A02 (%)2
T | o, (QSLSLC(Q) Sﬂf((g’fsacm) : (10.112)

When the internal noise voltage is negligible, S,.(2) = 0, the normalized amplitude noise
spectrum is shown schematically in Fig. 10.19.
On the other hand, Eq. (10.107) is rewritten as

Saa. () =

d (6) 0 1
—A AwpA¢ = “LAA— . 10.113
dt ¢+ AwrAg 94 QLA(UG,S—i_ULS) ( )
The Fourier-transformed internal and external phase noise for the negligible reactive sat-
uration parameter r = 0 are

- [Uas(Q) + ULS(Q)]

Ag(SY) = (iQ+ Aw,)2LA

(10.114)
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Figure 10.19: Normalized amplitude noise spectrum of an injection-locked oscillator.

’ULS<Q)
Ape(Ql) = Ap(Q
6 = Q)+ P
1 Q) + AwL
= - as (€ 1—-—- s(0 .(10.11
2LA(IQY + Awy,) {U (@) + (Qi) vLs( )} (10.115)
The phase noise spectrum is given by
2
2 w
Sag. () = Sas(2) Sis(9) (@ — AwL) (10.116)
NV ALZA2(O2 4+ Aw?) 41242 w)? '
( L) (QZ -+ Aw%) (@)

When the internal noise voltage is negligible, S;5(£2) = 0, the normalized phase noise
spectrum is shown schematically in Fig. 10.20.

If the internal noise is negligible, Su.(2) = Sus(2) = 0, and the external noise is
quantum-limited, Sr.(Q2) = Srs(2) = 4hwRy, the amplitude and phase noise spectra are
reduced to

:hiw QZ+4AM%
flos (&)

hw 0% + (&)2
Rp | 92+ Aw?

Saa. () , (10.117)

A%Sp g (Q) ~ (10.118)

When Aw; <« &, the product of the amplitude and phase noise spectra satisfies the
uncertainty relationship:

i 2
Saa(Q) - A2Sa4,(Q) =1 (R‘D , (10.119)
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Figure 10.20: Normalized phase noise spectrum of an injection-locked laser oscillator.

where n = 4 for Q < Awy, and 7 = 1 (minimum uncertainty product) for Q > Awy. As
shown in Fig. 10.21, an injection-locked oscillator has a localized phase distribution due
to a phase-restoring force, while a free-running oscillator has a completely random phase
distribution due to the absence of a phase-restoring force.

If an external injection signal has a phase diffusion noise Agey and excess amplitude
noise AAey, the equation of motion for the phase noise of an injection-locked oscillator is

d / AA ) AAcx
%Aqﬁ = —Awr, cos p(Ap — Apex) + (wy — W)T — Awpsing - i
(),
Qe B
+ o 1 AA QLA(UQS +urs) - (10.120)

When there is a frequency detuning between wé) and w, the amplitude noise of the external
injection signal, AAey, and that of the injection-locked laser, AA, contribute to the phase
noise. When wé) = w, those excess noise contributions are suppressed but the phase
diffusion noise Agey of the external injection signal is not suppressed, and we have

0?2 Aw?

SA¢E (Q) == msgd)e (Q) + mSA¢eX (Q) 5 (10121)
L L

where Sag. (2)? is the external phase noise spectrum of a free-running oscillator Eq. (10.88)
and Sag,, () is the phase diffusion noise spectrum of an external injection signal.

10.8 Frequency Modulation Feedback and Phase-Locked-
Loop Oscillators

The frequency and/or phase noise of a laser oscillator is suppressed alternatively by a
hybrid optoelectronic feedback control. Figures 10.22(a) and (b) show a frequency modu-
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Figure 10.21: Phase noise distributions of a free-running laser and injection-locked laser.

lation feedback (FMFB) and phase locked loop (PLL) oscillator. In the FMFB oscillator,
the output field from a slave laser is mixed with the output field of a (frequency standard)
master laser and the beat note at a difference frequency wrp = ws — wy, is fed into the
frequency discriminator. The discriminator output reports the instantaneous frequency
noise of the slave laser and is fedback to the slave laser to counter-modulate the oscil-
lation frequency of the slave laser via the dispersion term x, (or reactance X,) of the
active medium or the empty cavity resonant frequency wg. This negative feedback loop
can suppress the frequency noise spectrum of the slave laser within the loop bandwidth in
addition to the center frequency stabilization to the master laser frequency.

In the PLL oscillator, the output field from a slave laser is mixed with the output field
of a (phase standard) master laser with an identical frequency w,, = ws. This optical
homodyne detection output reports the instantaneous phase noise of the slave laser and
is fedback to the slave laser to counter-modulate the oscillation phase of the slave laser
via x, or wy. This negative feedback loop can suppress the phase noise spectrum of the
slave laser within a loop bandwidth. If the slave laser output is replaced by a weak phase-
modulated signal, the same PLL circuit operates as a high-gain noise-free amplifier for
a weak incident signal, that is, the strong master output is just a replica of the weak
phase-modulated signal wave.
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AM and FM Quantum Noise in Semiconductor
Lasers—Part |: Theoretical Analysis

YOSHIHISA YAMAMOTO, MEMBER, IEEE

Abstract—~AM and FM quantum noise properties of semiconductor
lasers have been studied theoretically. Theoretical formulations for the
AM noise spectrum, photon number probability density, FM noise spec-
trum, instantaneous frequency probability density, and power spectrum
are presented here as functions of semiconductor laser material, struc-
tural, and pumping parameters. Two theoretical approaches are em-
ployed: one is based on the quantum mechanical Langevin equation,
and the other on the density matrix equation. Starting from the quan-
tum mechanical Langevin equation, three different formulations, that
is, the rate equation, Fokker-Planck equation, and van der Pol equa-
tion, are derived. The parameters which represent stimulated emission,
spontancous emission, and refractive-index dispersion are obtained by
using the Kane function interpolated to Halperin~Lax bandtail and the
Stern’s improved matrix element. The above four different theoretical
formulations are related to each other, and the applicability for each
method is discussed.

I. INTRODUCTION

ETAILED understanding of quantum noise properties

in semiconductor lasers is important for coherent optical
fiber communication systems {1] and sensor systems. Appli-
cations of semiconductor lasers as such principal devices in
coherent optical fiber systems as transmitters, modulators,
local oscillators, and optical amplifiers will give rise to great
advantages in system performance and efficiency. Quantum
noise in semiconductor lasers is one of the most important
problems to be encountered in these applications, since semi-
conductor lasers have a low cavity Q and large quantum noise
when compared with gaseous and solid-state lasers. ,

Five values that represent quantum noise characteristics for
lasers, and that can be measured experimentally, are illustrated
in Fig. 1. They are: 1) AM noise (or intensity fluctuation)
spectrum Wap(w); 2) photon number probability density
Prob(rn); 3) FM noise spectrum Wsgq (w);4) instantaneous fre-
quency probability density Prob(2); and 5) power spectrum
Wo(2).

The AM noise spectrum of a local oscillator is of practical
significance in determining the carrier-to-noise ratio in an opti-
cal heterodyne detection systemn. The bit error rate depends
on the photon number probability density in the local oscilla-
tor. The primary concern of the present study is: how does
the actual AM noise power and photon number probability
density in semiconductor lasers differ from the shot noise level
and the Poisson distribution that is obtained with a completely
coherent wave?

Manuscript received February 22, 1982; revised August 10, 1982.

The author is with the Musashino Electrical Communication Labora-
tory, Nippon Telegraph and Telephone Public Corporation, Musashino-
shi, Tokyo, Japan.
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Fig. 1. Block diagrams for measuring observable quantum noise pro-
perties of semiconductor lasers. WAp(w): AM noijse spectrum;
Prob(n): photon number probability density; Wsg(w): FM noise
spectrum; Prob(£2):instantaneous frequency probability density; and
Wo(R2 - §2¢): power spectrum.

The FM noise spectrum is important in relation to the base-
band signal-to-noise ratio in optical frequency shift keying
(FSK) and phase shift keying (PSK) systems. This is because
the FM noise spectrum appears as an additive noise in the final
demodulation output. The instantaneous frequency probabil-
ity density causes an excess bit error in the FSK system when
the frequency shift between two signal states decreases and the
tails of both signals’ frequency probability densities overlap.
This is also the case in a PSK system, when phase diffusion due
to the FM noise approaches the phase shift between two signal
states.

Two kinds of theoretical bases have been employed so far
for quantum noise analyses of lasers. They are the quantum
mechanical Langevin equation method and the density matrix
method. The former method has been studied extensively by
Haken and his colleagues 2], [3]. Quantum mechanical rate
equations with fluctuation terms [4], [5], the Fokker-Planck
equation for photon amplitude probability density [6], [7],
and the classical van der Pol equation with a noise driving
source [8], [9] belong to this category. The density matrix
method has been studied by Lamb and his colleagues [10] -
[12]. The pioneering work by Shimoda ef al. on maser ampli-
fier analysis (STT theory) [13] corresponds to the linear ver-
sion of this theory. Lax and his co-workers have established
that these two formulations are equivalent when the photon
number in the cavity is large enough [14], [15]. Smith dis-
cussed the corrections for a small photon number [16]. Pho-
ton count statistics are studied experimentally [17] and theo-
retically [18].

Most of these theoretical studies have been devoted to gas-
eous and solid-state lasers. To the author’s knowledge, how-
ever, these different theoretical approaches have not yet been
systematically studied for semiconductor lasers. The relation-
ship between the five values presented above that represent
guantum noise properties of lasers have not fully been clarified
either. The relation between AM and FM quantum noise is de-
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picted in Fig. 2. Spontancous emission coupled to a lasing
mode directly causes intensity fluctuation and phase diffusion
of the laser field. These processes can be described by the
equation only for field variables. However, the actual quan-
tum noise properties of semiconductor lasers are deeply af-
fected by the different processes, such as the competition be-
tween carrier and photon fluctuation, carrier noise induced
refractive-index change, and current noise induced diode tem-
perature change.

The purpose of this paper is to describe the relations be-
tween these quantum noise properties in terms of the semicon-
ductor laser material, stiuctural, and pumping parameters,
through the four different theoretical approaches.

It is well known that gain saturation is of key importance in
laser noise characteristics. Spontaneous emission coupled to a
lasing mode is, on the other hand, a direct origin of quantum
noise. The relation between these two facts can be understood
by refering to one of the important results of this paper. This
result clarifies that the saturation parameter, which appears in
the van der Pol equation and in the photon density matrix
equation, is equivalent to the spontaneous emission coefficient
which appears in the rate equation.

The flowchart of theoretical analyses in this paper is shown
in Fig. 3. Numerical comparisons between the different theo-
retical approaches will be described in an accompanying paper
[19]. Experimental results for several types of AlGaAs lasers
will also be presented there.

II. QUANTUM MECHANICAL LANGEVIN EQUATION

The quantum mechanical Langevin equations for a photon
amplitude operator b*, a dipole moment operator axay',, and
an electron number opérator 7., will first be briefly described
[20]. The van der Pol equation and rate equation to be used
in Sections IV-VI are derived from the Langevin equation.

The photon amplitude operator b* of a single lasing mode
obeys

2 = (o~ K) 0 41 Y gucatoany + F(O). ®
dt Py

Here w is a cold cavity resonant frequency, K = 1/27, is a loss
constant including both the end mirror loss and free carrier ab-
sorption loss, and gz’ is the optical matrix element between
the conduction band state with wave number &k and the va-
lence band state with wave number k'. The correlation func-
tion of the Marcovian fluctuation operator F is

(F(O)F*(s)y=6(t - 5) (FF™) )
where
(FF*)=2Kn,, (F*F)=2K(ns, + 1),{FF)=(F*F*)=0.

nen = [exp Fiw/kT) - 117! is the number of thermal photons.
The equation for the dipole moment operator ag.ay’, is

d
+ -3 +
Z axear'y = (Jekr' = Yrr') Qe '

- 18w b (ke — Niy) + Frerv(D). 3
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Here ey = (Exe - Ex'y)f#i is the frequency separation between
state kc and state k'v, and v,y is the phase decay constant be-
tween the two statés. The fluctuation operator satisfies

{F kek'v k'vkc> + Fivke Frer'v?
=29 [Fre(1 = o) + Frro(1 - i)l s )
Frek's Frer'v? ¥ Fivie Frpre? = 0 (%)

where fr. = [1 + exp {(Exe — £.)/kgT}] ™ is the quasi-Fermi
distribution for the expected value of #ig, = a}.ay, in the con-
duction band, &, is the corresponding quasi-Fermi level,
Juw = [1+exp {(§, - Ex,)/kg T} ™ is the quasi-Fermi dis-
tribution for the expected value of ny, = aj,a, in the valence
band, and &, is the corresponding quasi-Fermi-level.
The time development of the electron number operator ny,
is given by
d ) +
211—; e = % [-ibgux'akcar, + HC]

©)

) d
“Fsp,k + Py +chkc(t) + CE Relet-et

where HC means the Hermitian conjugate and Py is the pump
rate. The spontaneous emission rate rg, x into all continuum
light modes except for the laser mode is given by

Fp,k =207 D 8w P pr nge(1 = ngry). @)
s

Here, py, = Vo, EZ/2n*#%>C? is the normalized density of states
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for the light field, V', is the optical mode volume, and £, is
the optical energy. The last factor in (6) describes the electron—
electron scattering process. The relaxation time 7. is of the
order of 10713-107'% 5. This is smaller than the carrier life-
time shortened by the stimulated emission process except for
the extremely high light field intensity. Therefore, the elec-
trons always obey the quasi-Fermi distribution. An equation
similar to (6) holds for ny,.

Since the phase decay constant yg' is normally very large,
the integration of (3) can be performed adiabatically [14],
[20]

&k D (ngee — i)
J - exr) + viw

+ —_
Apelry =~

t
+ f Frexu(T) - exp (jegr - i) (€ - 7)dr (8)
0

where €2 is the oscillation frequency. By substituting (8) into
(1), it is possible to obtain

d ) lgrw* (e ~ Brn) | s
—b+=(1w*K)b*+{Z — b + F(r)
dt e T2 - e) + vixe

t
+j 2 &k f Frero(T)
kk' [
“exp (Jexx = yiw) (¢ - 1) d7. )

The electron distribution function is, in general, a nonlinear
function of the photon number operator n =b%b. It is possi-
ble to write '

) g |* (e~ Pxy)
e T &) T vw
where G is the unsaturated gain, and the saturation S(z) may
be approximated by a linear function of photon number
das(n)
2V
dn

By using (10) and (11) with (9), and introducing the slowly
varying amplitude B* = b*e™ £ one obtains

=G +jdw - S(n) (10)

S(n) = 1mn

d + 4 dS(l’l) Bt + =
B [K G+ = B] B*=F(), (12)
F(f) = [F(l‘) +7j Z 8K’ f Fery(T)
kK 0
exp (Fepx' — Y} (- 1) dT] e/, (12"

This is the generalized van der Pol equation with a noise driv-
ing source £ (®.

The photon number representation of the Langevin equation
(9) is obtained by using the identity (d/df) n = [(d/df) b*] b +
b* [(d/dt) b] as follows: ’

d
—n=-2K-n+E, +(E, -

- Eye)n+ o)

(13)

where

_ 2. 2Yin

Fe I%c: e (exr' - D +viw
is the rate of spontaneous emission coupled into the laser
mode and £, is obtained from (14) by interchanging kc and
k'v. The correlation function for the fluctuation operator is
given by '

(Fa(D) Fo(s))=8(r = $) QKn + E(n + 1) + E 1)

(14)

ne(1 - nyy)

(15)

Because of the assumption that the electrons in a band are
always in a quasi-equilibrium, it is sufficient to employ one
equation for the total number of electrons N, = 2y ny,. By
inserting (8) into (6), and summing the resulting equatlon over
all k values, one obtains

d
E;Nc"'P‘Rsp‘(Ecv

Eyyn~ Eq + F(2). (16)

Here, P= Z, P, and R o= 2 ¥sp,ic- The correlation function
for the fluctuation operator is given by

(Fo£) Fls))=8(t - ) (P + Ry + Egy(n + 1)+ Eper). (17)

The cross-correlation function between the photon and elec-
tron fluctuation operators satisfies

(Fp(2) Fo(s)) = F (1) Fr(s)

=-8(t-5){Epnt+t 1) +E, -n. (18)

Equations (13) and (16) are rate equations with fluctuation
operators. The mean values of these equations, of course, can
be reduced to a Statz-deMars type rate equation.

III. PARAMETERS IN THE LANGEVIN EQUATION

A. Stimulated Emission, Spontaneous Emission, and
Anomalous Dispersion Parameters

~The expressions for the stimulated emission rate £, n, the

absorption rate E,.n, and the spontaneous emission rate R,
require ‘the evaluation of both the conduction and valence
band densities of states and the transition matrix element.

The conductlon and valence band densities of the states de-
pend on the carrier concentration and have bandtails within
the energy gap. Bandtail representation studies were reported
by Kane [21], Halperin and Lax [22], and Stern [23].

The matrix element is frequently assumed to be based on the
so-called k-selection rule [24]. For semiconductor lasers
doped with impurities and operating at room temperature,
however, the k-selection rule does not hold and the matrix ele-
ment is energy-dependent. The matrix element for the no k-
selection rule transition between a parabolic band and a shal-
low impurity level was derived by Dumke [25]. An improved,
but ‘more complex matrix element, considering the bandtail
effect, was obtained by Stern [23].

Detailed calculation of the gain coefficient was performed
for GaAs using the Stern’s improved matrix element and the
density of states with the Kane function interpolated to the
Halperin~Lax bandtail. The numerical result for peak gain co-
efficient gmay versus the carrier density NV, gives the following
simple expressions for £, and E,,..

w =ATN,
Eye=ATN.

(19)
(20)
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Here, T is the optical mode confinement factor to an active
layer, N, = N,/ V, is the minority carrier density, and ¥, is the
active region volume. A and N, are important material param-
eters determining the gain and noise characteristics of semicon-
ductor lasers, both of which depend on background doping
level and injected minority carrier density.

The spontaneous emission rate R g, is given by

Rgp =N,[7s (21)

where 7, is the spontaneous carrier lifetime which can be calcu-
lated by using the detailed-balance approach of van Roosbroeck
and Shockley from the theoretical gain spectra.

The anomalous dispersion §w appearing in (10) is deter-
mined by the refractive-index change due to carrier density.
It is obtained by the Kramers-Kronig integral of theoretical
gain spectra. Determination of these coefficients 4, Ny, 7,
and dn/dN . will be discussed in an accompanying paper [19].

B. Saturation Parameter, Spontaneous Emission Coefficient,
and Population Inversion Parameter

The saturated gain G - S(n), appearing in (9)-(11), is ex-
pressed by using (19) and (20) as

lgxr | Yiew (e ~ y)

G-S(n)=
% (- egr) + i
1
=—2—AF(N8"N0) 22)

where N, is the saturated carrier density. The unsaturated car-
rier density N2 is, on the other hand, independent of the pho-
ton number xn. This density is determined by the pumping rate
P and the spontaneous lifetime 7 to be

NS =Pr|V,. (23)

The unsaturated gain G is given by using (23) in (22) as
follows:

1 Pr
G=— AT (=" - N, . 24
Lar (5o ) eh)
The oscillation threshold condition is given by
P 1
2Gn EAI‘( thTs —NO) =— (25
Ve Tp

where 7, is a photon lifetime and Py, is the threshold pumping
rate. By using (25) in (24), it is possible to obtain

1
G =—2—T; Rng, + 1). (26)

Here, R =P[Py, - 1 is the relative pumping level, and ng, =
1+ AT'7, N, is the population inversion parameter. This latter
parameter is near unity in gaseous and solid-state lasers. The
most striking feature of semiconductor laser noise is attributed
to the fact that ng, is larger than unity.
The saturated gain G - S(n) is clamped to the cavity loss
constant K at above the lasing threshold by
o B0
dn

<K. (27

37

At well above the threshold the internal quantum efficiency is
safely assumed to be unity, and the photon number » is given
by

_ Rn sp Ve
n =(P_Pth) Tp —_fzi:;:

Here, the second equality is derived by using (25). By using
(28) and (26) with (27), the saturation parameter dS(n)/dn
can be obtained as

ds(n) _ AT _
dn 21,Ve

(28)

A7y
2Tp VO

(29)

where Vo = V,,/T" is the optical mode volume.

The spontaneous emission coefficient § used in the rate
equation analysis is defined as the ratio of the spontaneous
emission rate £, coupled to a laser mode, and the total spon-
taneous emission rate R, as follows:

Arg

BZECU/RSP= Vo

(30)
The spontaneous emission coefficient § has the same form as
the saturation parameter dS(n)/dn except for the normalizing
factor 1/27,.

The spontaneous emission coefficient § as well as the popula-
tion inversion parameter kg, plays a key role in the quantum
noise properties of semiconductor lasers as will be seen in the
subsequent sections.

IV. CLASSICAL TREATMENT OF VAN DER PoL
EQuUATION wWiTH NOISE DRIVING SOURCE

A. Derivation of the Equation

The generalized van der Pol equation (12) for the photon
amplitude, B*(¢), can be transformed into its classical form by
introducing the classical electric field

%6 1/2 ’
E()= 6 2) [B exp (jQ2) + B* exp (-jQ5)]. (1)
The van der Pol equation for E(¢) is given by
‘E dE
+(r-a+ylEP?) —+Q*E=
- B S E =N, (32)
where
r=2K=1Jr,, (33)
a=26G=[(R+AR) ngp +1]/1,, (34)
2 dS
- . ___(11_2 = _g_—._ . (35)
A8 dn T,AQ

Here, AR represents the effective pumping level shift intro-
duced to describe the finite photon number at the lasing
threshold. This value is given in terms of the pumping level R
in the following manner:

AR = (/7 k) exp (-x2R?) [1 + exf (kR)] L, (36)
K= 11;—; (37)

The term AR is introduced so that the van der Pol equation
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can be applied near the threshold. Validity is confirmed by
means of the Fokker-Planck equation, which will be discussed
in Section V. The value AR is v/2f/7ng, at the lasing thresh-
old, and rapidly decreases to zero in the region well above the
threshold. Therefore, the unsaturated gain (34) is consistent
with (26) for well above the threshold region.

The noise driving source N(¢) is given by
N() = jQHQ) Y2 F(r) + c.c. (38)

where c.c. denotes the complex conjugate, and F() is given by

(12"). The spectral density function of the noise driving
source is
40418 1
Wy (2) = [ﬂth + 3 + ”spgN(Q)] . (39
p

Here, the three terms in the bracket respectively indicate the
thermal photon, the cavity loss constant (photon lifetime),
and the spontaneous emission photon contributions to N(¢).
gn () is the gain envelope function normalized as gp(€24) = 1.

The solution of the van der Pol equation (32) is assumed to
be expressed as the sum of the completely coherent signal
wave, and the in-phase and out-of-phase narrow band Gaussian
random noise waves in this manner:

E =E, cos Qt + Cp(f) cos Q1 + S,(¢) sin Q. (40)

The noise driving source N(¢) is also expressed as the sum of
the in-phase and out-of-phase Gaussian random noise compo-
nents such that

N(2) = N (¢) cos Qt + N(¢) sin Q2. 41

By using (40) and (41) with (32) and equating cosine and sine
terms separately, the equation below can be obtained.

ds,,

= 42
d[ 0/295 ( )
dc _
S % (B3 +C2)C, = NJ290. (43)

Here, the assumptions for ¢,, §,<<Qc,, QS, and C_ﬁ,
§2 << E¢ are used. Steady-state solutions of (32) give

—_ n
% (B3 +C2)= —;—” (R + AR)4S). (44)

This value corresponds to the total optical energy stored in a
laser mode.

The simple equations (42) and (43), together with (39) and
(44), are the basic formulations for the analysis to be followed
in this section.

B. AM Noise Spectrum

The output power P(¢) emitted from one of the laser facets
i given by

P(1)= [Eo + Cu(0)]*/27p1. (45)

Here, 77 = [(C/2L) In (1/Rp)]7" is the photon lifetime de-

termined by the output coupling from the laser facet, L is
cavity length, and Ry is the facet reflectivity. dc photocur-
rent, (i), generated in a photodetector is

()= DP(f) = D(EZ + C2)[ 2y (46)

where D = en/#i§) is the photodetector conversion factor, and
7 is the photodetector quantum efficiency.

The term proportional to £,C,(¢) does not contribute to the
dc photocurrent, since C,(¢) is the zero mean Gaussian ran-
dom variable. However this term does contribute to the noise
power, that is, the beat noise between signal and noise waves.
The spectral density of the noise current {i2) is

2
(i2y= iz—— EZW . (w)
TPM

(47)

where W,,(w) is the spectral density of C,(¢). The Fourier
transform of (43) gives

Ws(w)
402 [Qﬁ +{-"i‘3 R+ AR)} }

Tp
2111, gn (00 + W)

gp 2
T, [@ﬂ n {— R+ AR)} ]
Tp

where the following spectral density of N (¢) is used.
Wns(w) = Wyc(w) = 2Wx(2o + w)
_8Q*iQ

7TTp

Wen(w) =

(48)

N En (o + w). (49)

Here, the small contribution of the thermal photon is neglected.
The value of C,,(¢) is calculated by using the spectral density

W, (w) as follows:
— 1 (" =
Cn(H? = lim T f [Ca(D)? dt=f W op(w) dw

T—e 0 0
=#Q)R + AR).  (50)
The value of £ can be derived using (50) in (44) such that

EE =40 2HJ(}HAR)— I
o B R+AR|

Using (48) and (51) with (47), one obtains

61

(= 2N’ en(Qo + w)
"7 wrhyngp(R + AR)?

2nsp 2
[ S R+ AR) - [1+(@/w)*]  (52)

R+ AR

where w,, is the cutoff frequency of the AM noise, and is given
by
_Msp
we == (R + AR). (53)
™



YAMAMOTO: AM AND FM QUANTUM NOISE—PART I

This is the unsaturated gain « - r which indicates that the un-
saturated gain is still effective for suppressing AM noise. The
relative intensity noise RIN is defined as

(i2) 1
Gy R+ AR
- gn(Qo + W)/ [13(R + AR)* {1+ (w/we)*H. (54)
This RIN originates in the beat noise between £ and Cy ().
The additional shot noise due to the signal wave £ and the

noise wave C,(#) are also generated in the photodetector.
Therefore, total RIN is

RIN =eq. (54) + 27py B/ [nnsp(R + AR)]. (55)

The small contribution of beat noise between the noise waves
is ignored here, although it is important for laser amplifiers
operating below the lasing threshold [26], [27].

At well above the threshold region, AR =0 and the beat
noise is dominant. The RIN in this region is approximated by

RIN =27, 8gn(Q0 + W)/ [1n5,R® {1 + (w/w)H].  (56)

This RIN is proportional to 7,, 8, ng5, and R™. At far above
the threshold region, the signal wave induced shot noise is
dominant, as shown by

RIN 2 287pps [(nisp R). (57)

The RIN in this region is proportional to 7pyr, B, #5p, and R™'.
It is noticeable that the RIN depends on photodetector quan-
tumn efficiency.

RIN =

2
=1,8° [% R+ AR) -

C. Photon Number Probability Density and
Variance in Intensity Fluctuations

The probability distribution for the photon number was cal-
culated for the superposition of the constant amplitude coher-
ent wave and the Gaussian noise waves [29], [30]. The pho-
ton number probability density is of the form

1 [(nT) "ex ( (ng) )
1+anp L+np] TP\ T+anp

(ng )
. L - —
" ( <”T>+ (T’lT>2
where {(ny is the signal photon number, {(n) is the noise pho-
ton number, and L,,(x) is the Laguerre polynomial.
This result can be directly applied to the photon number
probability density of semiconductor lasers through introduc-

ing the equivalent signal photon number and noise photon
number in the following manner:

Prob(n) =

(58)

(ng = £ =—ni’3(R+AR)———1—— (59)
i 1O N 2(R + AR)
~2
1
(npy= Cn__ (60)

240 2[R +AR)

The first and second moments of the photon number are
given by [29]

39
(ny= 3 _nProb(n) = (ng+ (ny (61)
(n*y= Y n? Prob(n) = (ng + np)? + 2ng (npd
+{np)? + (ng+ np). (62)
The variance 62 is defined by
02 =n? - (n) =2ny) (np) + np)? +{ng+npd (63)

where the first term is beat noise between the signal and
noise waves, the second term is beat noise between the noise
waves, and the third term is signal wave- and noise waves-
induced shot noise. The relative variance in the intensity fluc-
tuation p = 0%/(n)? is given by

e 1 Msp M 2
p_[ﬁ WR+ARY 4 (R”R)]/[ﬁz (R’LAR)]
64)

The relative variance p is alternatively obtained by integrating
(55) over w = 0 to w = o0, which brings the same result as (68).

D. FM Noise Spectrum

In this section, the FM noise spectrum, that is, the spectral
density function of the instantaneous frequency deviation
58 = Q ~ Q, will be derived.

The laser field (40) is written as

E=[Eq+ Cuh(®)] cos (Qt+6) (65)
where
- Sa(D) | Sa®
o) = -tan” [E + cn(z)] T E G0 (©6)

The second equality of (66) is valid only when the phase dif-
fusion is not large, that is when the measuring time interval is
much shorter than the coherence time for the laser field. The
same assumption was used when deriving (42) and (43). The
instantaneous frequency deviation 82 is given by

do _ -S.(0) N(9)

d=—= = - .
dt Eo+Cu(0 2Q[Eq + Ch(D)]

67

Consequently, the spectral density function of §2 can be cal-
culated using (44) and (49) such that

Wye(w)
492 [ES + C(D?]

= Ben (S0 + W)/ [T, (R + AR)]. (68)

The FM noise spectrum (68) shows a flat frequency response
up to the cutoff frequency for the gain envelope function
gn (84 + ) which is typically 1012-10'® Hz for GaAs lasers.
This is the most striking difference between the FM noise spec-
trum and the AM noise spectrum (55), which has a much
lower and bias level-dependent cutoff frequency w,.

Wsa(w)=

E. Power Spectrum and Spectral Linewidth

The power spectrum of the laser output is mainly due to the
FM noise. The contribution of the AM noise spreads over a
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broad frequency range, and the integrated power spectrum is
smaller than that for FM noise [2], [3]. Therefore, the power
spectrum determined by the FM noise will be derived in this
section.

The laser field is expressed as

E=[Eq + Co()] - Re [v(2) exp (jQ21)], (69)
where
w()=exp [76()]. (70)

The phase @ is a random Gaussian process, although it is not
stationary. The autocorrelation function of v(¢) is given by

Cy(1) = () vt + 7))
. <wr> 2
sin | —
_\2/
w

Since Wsq is constant in the integration, (71) is written as

=exp —2f Wsq(w) dw.|. (71)

0

Cy(1)=exp [~ % Wsa (0) 'r] . (72)

The power spectrum Wy (§2 - £24) can be represented using
the spectral density function of C,(7) as follows.

Wo(82 - Qo) = El; f Cy(r) exp (-7271) dr

— oo

. 8 2
= B/ [ZWTP(R + AR) {(2Tp(————R + AR))

+(Q- QO)ZH . (73)

The oscillation power spectrum has a Lorentzian shape, with a
full linewidth at half-maximum of

B

Avjpp = ——— 74
V27 4nr,(R + AR) (74)
By comparing (68) and (74), it is possible to obtain
Avypy = 5 Weq(w =~ 0). (75)

The FM noise spectrum and spectral linewidth are propor-
tional to 8, 75", and R™*, but are independent of ng,.

The instantaneous frequency probability density, Prob(£2),
can be given as a function of the spectral linewidth Av,,.
This last identity is calculated in the Appendix.

V. FOKKER-PLANCK EQUATION
A. Derivation of the Equation

Since the noise driving source F(7) in the generalized van der
Pol equation (12) is of a Marcovian type, the distribution
function of the photon amplitude W(B, ) can be described by
the Fokker-Planck equation [6], [7]. Here the photon ampli-
tude B=B, +jB,, is treated as a classical random variable.
The noise driving source is similarly treated as a classical vari-
able F=F, +jF,.

The distribution function of the photon amplitude W(B, )
obeys the following equation:

oW 2 2 92
a;W
5p, @M+ Z 0B;08;

i,j=1

ot aB 3858 L")

(76)

where the drift constant d; and the diffusion constant Dy; are
defined as

;= lim —(B(t+T) Bi(e),

r—0

(77

Dy= lim —([B (t+T) - B:®)] [B;(t + T) - Bi(D]). (78)

T—o
From the generalized van der Pol equation (12), one obtains

Bi(t+T)- Bi(?)

t+T
= f {[G ~K - dj(") B*B] B+ F{(t )} dar’.  (79)

t

Using (79) and (F(¢)) = 0 in (77) and (78), it is possible to get

ds
di= (G—K“- (n)B*B> B (Rnsp_BB*B)Bi
dn p
(80)
I ~ o N
Dyj= lim o (Fi(t+ DF() =8 . (81)

p

The Fokker-Plank equation for semiconductor lasers is, from
(76), (80), and (81), of the form

oW

S, + G divI(Ca - (82)

where the operator, div, and the Laplacian A act on B. The
coefficients Cy, C,, and C; are given by

|BI*) BW] = C3 AW

Cl = B/sz (83)
C2 =Rng, B (84)
C3 = nsp/4'rp. (85)
It is convenient to use polar coordinates B=re'®. The
Fokker-Planck equation is then transformed into
ow
+Cp - — [(C - rrw]
ot
10 [ oW 1 %W
=C — |+ = . 86
3[rar(ar> r? a&z] (86)

A theoretical analysis of the Fokker-Planck equation (86) was
performed by Risken in this form [6], [7]. All results which
were found by Risken can immediately be used for semicon-
ductor lasers.

B. Probability Dengsity and Joint Distribution Functions

The stationary distribution function for the photon ampli-
tude W(r) in (86) reads
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C
W(r) = W, exp !} 4‘6’1: - 20, )]

B <r2 ) 2Rnsp)].
2ngp [

The photon number probability density, Prob(n = r*) can then
be given by

=W, exp [— (87)

2R
Prob(n) =2, - exp [— B n (n - ——ﬂ)] (88)
2ng, 8
where the normalization constant is calculated from
f Prob(r) dn =1
0
as
P! =+/7 k[1 +erf (kR)] exp (k*R?) (89)
Nsp
=q/—" 90
K ]/ 28 (90)

The mean photon number (») is calculated by using (88) in the
following manner:

()= 3" n Prob(n) = "B—” R +Py). ©1)

1In order to calculate the correlation function {(B(¢ + T)* B(¢))
the joint distribution probability that B(r) lies in the interval
B'<B(Y)<B'+dB’ and that B(¢ + T) lies in the interval B <
B(t + T) < B+ dB has to be dealt with first. At well above the
threshold region, this joint distribution can be broken down
into

F(r,o:r, ¢, 1) = Fy(r, 7, 7)  Fa($, 9, 7),
where
Fi(r, ', 1)= 77" [1 - exp (-4C1 C,7)] 2

cexp |- y2 4" - 2yy" exp (-2€,C,7)
1 - exp (-4C,C,1) ’

(92)

(93)
$-¢ Cs1

Fy(9,0',7)=(2m)7 0 <—— )

, 94
2 C2 T ( )

Here, 93 is the third Jacobian theta function. The abbreviation
Y =N2R (r- (M) 93)
is used for convenience.

C. Variance and Spectrum for Intensity Fluctuation

The correlation function for the intensity fluctuation K(7) is
calculated from (93) as '

K@ =L@ +7)- D] [P0 - D

n Rn
1y (B ).
B Tp

(96)

41

Equation (96) shows that variance and bandwidth of intensity
fluctuation are given by o? = negpif and w, =Rﬂsp/'rp. This is
in agreement with the results at well above the threshold re-
gion given in (64) and (53). The relative variance, including
shot noise, is given by

K@)+ (r>
=——<}j)2—>-2f—=ﬁ(R + Py + 1)/ [ngp(R +Po)2]. ©7
The spectrum of intensity fluctuation is provided by
RIN = 27,/ [mn2p(R + Po)* {1 + (w/w,)?}]
+ shot noise term, (98)

where the cutoff frequency w, is calculated through taking
the first value of Py into account, which is

= Msp

we = (R +Pg). (99)

. Tp

D. Spectral Linewidth
The correlation function for the phase is calculated by (%94)

such that

— i i B
C,(r) = (e 10t D oie(y = oxp (~ py 7). (100)
The spectral linewidth at half-maximum of the Lorentzian
power spectrum is, taking into account the finite value of Py,

B

4nTp(R +Py) (101)

AV1/2 =

This result is in agreement with (74), which was obtained by
assuming that the laser field is expanded to the coherent signal
wave £ and noise waves Cy,, S,,.

VI. RATE EQUATIONS WITH A
FLUCTUATING OPERATOR

A. Derivation of the Rate Equation

The Statz-deMars type rate equation, i.e., the photon num-
ber representation of the Langevin equation, is obtained from
(13), (16), (19), and (20) for semiconductor lasers as

d n N N
—n=-—+AT £+ AT (=% - Ny n+ . 10
dt n Tp Ve r (Ve 0) n Fn(t) ( 2)
The equation for the total electron number NV, reads

d N N, . N,

— N,=P-—<-AT'{==£-N A=<+ .

dr c T r (Ve v 0> n T Ve Fc(t)

(103)

The correlation function for the photon and carrier fluctua-
tion operators have already been given by (15), (17), and (18).

The carrier and photon numbers are expressed as the sum of
the mean value and fluctuation around them such that

n=n+An

N.=N_,+ AN,.
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Using these equations with (102) and (103), and neglecting the
products of the small fluctuation terms, one obtains

as well as in the resonant relaxation frequency range, are af-
fected by the existence of spurious longitudinal modes and
the lateral carrier diffusion effect, which will be discussed
later. Multimode rate equations with fluctuation operators

d
— AN, =4 AN, + A, An+ F_ (¢ 1
dt ANe =4, ANe + A, An+ Fo(?) (104) were treated by Jackel ez al. [32] and by Mukai ez al. [27].
d ’ B. Photon Noise and Carrier Noise Spectra _
dt An=A3 AN + A Ant Fu(1) (105 The relative intensity noise spectrum is calculated from
(111) as
A 2
RIN=" "Scj) 4
7
_1 [4 (Fc(w)2> + (w + AN (F(00)?) - 241 A5{F (w) Fn(w)) (11%)
n - AxAds - W) WAy +4,)?
where Here, the mean photon number 7 and the mean carrier number
N, are calculated from the following transcendental equation
1 drg N, 4
Ay ———‘(1+ﬁr)+‘“é‘dN “V—, (106) N N
Ts e Ve P—(1+ﬁ)—"—(ﬁ—9——ArNo)
N Ts Ts
—_p_c —
f Ts + AN, (107 6iVC/TS =0 (116)
5 1ty = (BWe/15) - ATN)
As =;; 1 +n), (108)  here
N, 1 __ BW./7s)
= — - ——— n= — .
<~ ATN, - —. (109) 1/rp = (BV,/75) - ATN,)

Tg »
The Fourier transform of (104) and (105) gives

The relative carrier noise spectrum is similarly obtained as

<ANC(“)2>=LX [A%(Fn(w)2)+(w2 + A2 (F(w)?) ~ 24,4 4(F
- AyA, -

N N (14,
_ A2 Fp(w) + (jow - A4) Fe(w)
AN(w) = (A1A4 -~ A2A45 - W) - jw(d) +As)’ (110)
An(w) = AsF (W) + (jw - A1) Fp(w) (111)

(A145 - 4245 - W*) - jw(dy +A4)

Here the spectral density of the photon and carrier fluctuation
terms are given by

BN,

<Fn(w)2>—— (1 +7)+ATN,7, (112)
Tp Ts
(Fo(w)) = P+ ﬁ —< (1 +n)+ATNon, (113)
BJVC _ _
{(F () Fp(wp=- (1 +n)- ATN, 7. (114)

s

Equations (110) and (111), together with (112)-(114), are
basic equations for the quantum noise analysis presented in
this section. This set of equations automatically includes the
carrier noise (113), photon noise (112), and competition be-
tween the two noises (114). Therefore, it can describe the
laser noise properties over the whole range of the pumping
level, including below and just at the threshold, and also over
the range of the relaxation oscillation frequencies. However,
the actual noise properties below and just above the threshold,

(W) F n(w)>] (118)

2)2 +(:J2(A +A4)2

C. Spectrum of FM Noise Due to Spontaneous Emission

The phase diffusion constant D(A8) caused by spontaneous
emission i3 determined by the ratio of the out-of-phase noise
photon ng, coupled to the lasing mode, to the total signal pho-
ton inside a laser cavity. The total noise photon coupled to
the lasing mode is given by the second term on the right in
(102). The probabilities that these noise photons are in-phase
and out-of-phase with respect to the signal photon are equal.
The phase diffusion constant is giveri by

D(AG) = ﬁ;ﬁ= {2 [;14 - <5—TJV£ - AFN(,):I }_1.
p s

The spectral linewidth Av;,, and the FM noise spectrum are
given by

1 1 N, -t
AV1,2=—2— W59(0)={47r [;—‘ (BT—_APN0>]} .
P s

(120)

(119)

The value of 1/7'p (B(NV,/15) - ATN,) indicates how the
actual saturated gain (8(N,/7,) - AT'N,) approaches the cavity
loss constant 1/7,. It can be concluded that the spectral line-
width is determined by the difference between the theoretical
threshold gain and the actual saturated gain.
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D. Spectrum of FM Noise Due to Carrier
Modulation Noise'

The difference between the FM noise spectrum in semicon-
ductor lasers from spectra in other lasers is that in semiconduc-
tor lasers both the carrier modulation noise and current modu-
lation noise due to the quantum effect cause additional FM
noise. The additional line broadening due to the refractive-
index dispersion effect is treated by Haug and Haken [8], and
very recently by Henry [34]. The two treatments employ the
adiabatic elimination of the equation describing a carrier den-
sity fluctuation and use only the equation for photon field
variables. Therefore, it seems that they cannot describe the
effects of the carrier and photon noise competition on FM
noise spectrum and line shape.

The frequency modulation AQ due to the carrier modula-
tion AN (¥) is given by

I' ANL)

AQ = Qo(Cgg + Crc) ot 7
e e

(121)

Here, Q, is the oscillation center frequency, and Cgg and Crc
are the coefficients representing the contribution of the carrier
density change to the refractive-index change caused, respec-
tively, by the band-to-band transition effect and free carrier
plasma dispersion effect [33]. The estimation of values Cpp
and Cpe will be discussed in an accompanying paper. Hegr iS
the refractive-index of the GaAs active layer. The FM noise
spectrum W§q due to the carrier modulation noise is given by

(122)

Qo(Cpp +C 2
W§Q=[ o(Cap ‘ FC)] (AN, ()
AettVo

where (AN _(w)?) is calculated from (118).

E. Spectrum of FM Noise Due to Current
Modulation Noise

The junction current is modulated by the quantum noise
fluctuation of the carrier. In the low frequency range, this
current noise induces diode temperature fluctuation, and con-
sequently, causes frequency modulation.

The junction current noise is introduced in (103) by the
form

P=[I+AI()]e. (123)
Using (123) in (104) gives
Al
d—‘iANc: @) 4 A, AN, + A, An + F(0). (104"
The Fourier transform of (104) gives
Allw)=e[(jw - A1)AN(w) - Az An(w) - F(w)].
(124)

The relative current noise spectrum is calculated to be

(AI(w)*) _

43

where the small contribution of the current noise directly in-
duced by the photon noise and the usual shot noise F (¢) are
ignored.

Frequency modulation AQ due to temperature modulation
AT(¢) as induced by the junction current modulation AZ(f)
is of the form

AQ = -Qo(ay, +an) AT(). (126)

Here, oy, is the linear thermal expansion coefficient, and ¢, is
the thermal refractive-index change coefficient. Temperature
modulation is calculated by the Fourier and Laplace transform
method for the time-dependent thermal equation {35]. The
theoretical and experimental determination of the values
AQ/ATI will be discussed in an accompanying paper [19]. The
FM noise spectrum Wig due to the current modulation noise
is then given by

Wiq (w) = (AQ/AD? (AI(w)?). (127)

VII. PHOTON DENSITY MATRIX EQUATION
A. Derivation of the Equation

The equation of motion for the photon density matrix diag-
onal element takes the form

dpn (nt+t1)4 nA
dt  1+(@m+ s Pnt T ns Prm1
(n+1)B _ nB
1+(r1+1)sp'Ml 1+nstn
+(n+1)Cpysy - nCpy (128)
where
Rsp
A="2R+1) (129)
Tp
1
B=—(ngp - 1) (130)
Tp
1
C=—. (131)
™p

Value A-B corresponds to the unsaturated gain « in the van
der Pol equation (32). The saturation parameter s is equal to
the spontaneous emission coefficient 8, as was discussed in
Section III, that is represented by

s = 4. (132)

The equation of motion for the mean photon number (1) =
Znp,, the second moment (n?®)=Z n?p,, and the rth mo-
ment {n") = Zn'p, are given by

n+1

d<n)=< A—< n
dt 1+(n+ s 1+ns

>B— we,  (133)

I (A1A,

e?43 [A§<F,,(w)2> + (w2 + AF){F(w)?) - 24,4 4(F () Fp(w)}
- A2A3 _

w2)2 +(.<)2(A1 +A4)2 ] (125)
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dn®y _ /2n* +3n+1 4 2n2-n>B
dt 1+(r+1)sy l+n-s

- 26U C+HWC, (134)
dn®y =1 {r (n+1)n rej <ni+1>
= — - B
dt i{?(;)[ 1+(n+1)s A+ 1+ns
+(—1)”f<nf+‘>c]. (135)

For gaseous and solid-state lasers with ng, = 1, terms propor-
tional to B are dropped from (128), (133)-(135). This special
case corresponds to the results derived by Scully and Lamb
[10].

B. Photon Number Probability Density

The master equation (128) is reduced to two equivalent sys-
tems of first order difference equations

nd nB

Tt P PR = 136
Ltns Pt " Taps On ™ Pn 0 (136)
(nt1)4 r+1)B
- - + =(.
1+(m+ s " 1+(n+l)sp"“ (n+1)Cp,,, =0

(137)

These equations can be solved by using (136) and (137) itera-
tively, that is

N (A—B)" no ]
P 0
" C | g2y ltks
N, zn
== (138)
" ()
—+n)!
§
Here,
A-B_ Rngp+1
zZ= S AR (139)

sC 8
The normalization factor Ny is determined by the condition
Zp,=1.
C. Mean Value and Variance of Photon Number

The mean photon number {#) is calculated by

nS
(=Y np, = —Bﬁ R + po). (140)

The result is in agréemen't with (91), obtained from the
Fokker-Planck equation. The relative variance of the photon
number is given by

(n?) - (n)? _ BR + 1)
(n)? ngp(R +po)*

This result is again in agreement with (97), as obtained from
the Fokker-Planck equation.

Il

p (141)

D. Spectral Linewidth

Even when the diagonal elements p,; of the density matrix
are in a steady state, as shown by (138), the off-diagonal ele-
ments in the density matrix have exponential decay functions

[11], which are
pn,n+k(t)=pn,n+k(0) exp (_%k2Dt)' (142)
Here,
1 n
~c-2 B (143)

D==C-2=__E
27 ) 2, (R + po)

The expected value of the electric field for this element is
given by

E(t) = E, exp (-1 D) cos Q1. (144)

The spectral profile for this field is Lorentzian, and its line-
width is given by

8

4n7,(R + po) ) (145)

Ayllz =
This result is in agreement with (101), as obtained from the
Fokker-Planck equation.

VIII. CONCLUSION

Quantum noise properties for semiconductor lasérs were
studied through the use of four different theoretical formula-
tions: the van der Pol equation; the Fokker-Planck equation;
the rate equation; and the photon density matrix master
equation.

AM quantum noise properties were characterized by: 1) the
AM noise spectrum at low frequency RIN(w = 0); 2) the reso-
nance enhancement of AM noise near the relaxation oscillation
frequency RIN(w =~ w,); 3) the bandwidth of AM noise spec-
trum w,; 4) the variance of intensity fluctuation p; and 5) the
photon number probability density Prob(n). FM quantum
noise properties were characterized by the FM noise spectrum
caused by: 1) the spontaneous emission coupléd to a lasing
mode W§B (w); 2) the carrier modulation noise W§gq (w); 3)
the current modulation noise Wi (w); 4) the instantaneous
frequency probability density Prob(£2); and 5) the power spec-
trum or the spectral linewidth Aw,j,. Theoretical formula-
tions for these quantum noise properties, derived from the
just-mentioned four different approaches are summarized in
Table 1. Numerical comparisons between these different for-
mulations are described in an accompanying paper,; as also are
experimental results with AlGaAs lasers.

Theoretical formulations for the AM and FM noise spectra
presented in this paper enable calculation of the signal-to rioise
ratio and carrier-to-noise ratio degradation due to quantum
noise. The C/N degradation in optical heterodyne detection
caused by local oscillator AM noise, and S/N degradation in
FSK and PSX systems caused by FM noise in both the trans-
mitter and local oscillator are specially important.

Error rate calculations for coherent optical transmission sys-
tems that have been based on completely coherent waves and
Gaussian probability densities {36] should be modified to in-
corporate the effects described here. This will be treated in
more detail in a future work, together with the effects of con-
volution with detector dark current induced shot noise of
Poisson process, and the receiver amplifier thermal noise of
Gaussian process, and also photon number probability density
deformation due to optical attenuation and the detection band
limit.
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TABLE I
THEORETICAL FORMULATIONS FOR AM AND FM NOISE PROPERTIES

IN SEMICONDUCTOR L ASERS.

: Not DERrIVED IN THIS WORK

Theoretical Methods van der Pol eq. Fokker-Planck eq. Rate eq. Density Matrix eq.
——
RIN(W=Q ) Eq. (55) Eq.(98) Eq.(115)
RIN(wzwr) Eq.(115) —
bandwidth ). Eq.(53) Eq. (99) Eq. (115)
variance P Eq.(64) Eq.(97) Eq. (141)
Prob(n) Eq.(58) Eq. (88) e Eq.(138)
FM noise
spectrum W;f(u)) Eq.(68) Eq.(101) Eq. (120) Eq. (145)
spectrum Wgc,q(‘*” —— Eq.(122)
spectrum w;‘n(w) _ Eq.(127) I
spectral linewidth aly Eq.(74) Eq.(101) Eq.(120) Eq. (145)
Prob () Eq.(A5) with Eq.(74) Eq.{101) Eq.(120) Eq. (145)
APPENDIX where 93(k, ) is the third Jacobian theta function. The out-

INSTANTANEOUS FREQUENCY PROBABILITY DENSITY

The probability distribution of the output intensity Prob([),
after passing through an optical frequency discriminator corre-
sponds to the instantaneous frequency probability density
when the relation of the output power versus the optical fre-
quency can be assumed to be linear. This ideal optical fre-
quency discriminator is, for instance, realized by a Michelson
interferometer operating around its center frequency 247 =
2N7 + /2, where £ is the optical frequency and 7 is the de-
lay time introduced by the arm length difference in the inter-
ferometer. Normalized optical power from the Michelson in-
terferometer is written as

I(H) =1 +sin [A8(r)]. (A-1)
In order to determine the probability density function Prob(/),
the probability P.(Af8) that the phase has changed by A# in

the time interval 7 should be calculated. The phase change has
a Gaussian probability density [27]

P(40)= (A2)

1 ( Ag?
onDr P 207)
where D = 2nAv,j, is the phase diffusion constant. The out-
put intensity 7 is a multivalued function of Af as indicated
by (A-1). Therefore, the probability density Prob(J) df is the
sum of all probabilities that A@ is an interval d(A8) around
sin™' (7 - 1). This is shown by

d(as) &= (A8 + 2km)?
(2nDr) 2 kzz_m {eXp [_ 2D7 ]

(A8 - 2km)?
*exp [— 2Dt ] }

d(A8) VK
exp {~ 2_D7—'-

71\~
6~
2

Prob() df =

(A-3)

put intensity deviation AJ corresponds to the optical fre-
quency deviation AL2 from the center frequency £24 as follows:

Al=1-AQ. (A-4)

The instantaneous frequency probability density, Prob(Af),
is calculated from (A-3) and (A-4) as

Prob(Af) = Ag exp [~Af2[(Avyy, [77)?]

s _inAf ox (_ m? )
3 p 27{AV1/27' ’

AV1/2 ’

Equation (A-5) indicates that the instantaneous frequency
probability density has a Gaussian profile near the central re-
gion, but that it has a much broader tail due to the additional
theta function. The bandwidth of the Michelson interferom-
eter with a decay time 7 is 1/2n7. Equation (A-5) can then be
written in a general form as a function of the spectral line-
width of Av,, and detection bandwidth B.

Af? )
2AV1/230

s [ inAf ( 11230)]
. -—,exp |~ .
3 AV1/2 A1)1/2
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AM and FM Quantum Noise in Semiconductor
Lasers—Part ll: Comparison of Theoretical
and Experimental Results for AlGaAs Lasers

YOSHIHISA YAMAMOTO, MEMBER, IEEE, SHIGERU SAITO, MEMBER, IEEE, AND TAKAAKI MUKAI

Abstract—Four different theoretical formulations for AM and FM
quantum noise properties in semiconductor lasers are compared with
each other for AlGaAs lasers. These formulations are based on van
der Pol, Fokker-Planck, rate, and photon density matrix equations.
Experimental results with AM noise spectra, FM noise spectra, and
spectral linewidths for four different types of AlGaAs lasers are also
delineated and compared with the theoretical predictions. The spon-
taneous emission coefficient g8 and population inversion parameter
ngp, which are basic parameters for determining the quantum noise
properties of semiconductor lasers, were calculated by the density of
states with Kane function interpolated to Halperin-Lax bandtail and
the Stern’s improved matrix element. Experimental AM and FM
quantum noise properties show good agreement with the theoretical
predictions derived through use of estimated § and ngy, values.

I. INTRODUCTION

HE AM and FM quantum noise properties for semicon-

ductor lasers were formulated in the preceding paper [1]
through implementation of the four different theoretical
approaches: a classical van der Pol equation; a Fokker-Planck
equation, a rate equation, and a photon density matrix master
equation. These formulations are numerically compared in
this paper with AlGaAs laser parameters being taken into
account. Experimental studies of AM and FM quantum noise
properties for AlGaAs semiconductor lasers and a comparison
between experimental and theoretical results are also described
in detail.

Variance in intensity fluctuation for semiconductor lasers
was originally measured by Armstrong and Smith, through a
Hanbury Brawn-Twiss experiment [2]. AM noise spectra for
an AlGaAs laser have been measured by a single detector tech-
nique, [3], [4] and the results compared with a rate equation
analysis based on an approximate parabolic band model [4].
AM noise spectra for an AlGaAs semiconductor laser amplifier
biased below the lasing threshold were also measured under
external signal injection, and the results compared with multi-
mode rate equations based on an approximate exponential
bandtail model [5]. A photon counting experiment was per-
formed for an AlGaAs laser just above the lasing threshold
[12]. The obtained photon number probability density has

Manuscript received February 22, 1982; revised August 10, 1982.

The authors are with the Musashino Electrical Communication
Laboratory, Nippon Telegraph and Telephone Public Corporation,
Musashino-shi, Tokyo, Japan.

also been compared with a Fokker-Planck equation analysis
{13}.

Several experimental studies concerning the power spectrum
and spectral linewidth for semiconductor lasers have been
reported. The Lorentzian line shape was directly observed by
means of optical heterodyne detection for a 10.6 um PbSnTe
laser [6] and a 0.85 um AlGaAs laser [7]. The spectral line-
width was also mentioned by coherent length measurement
using 4.15 km fiber [8], delayed self-heterodyne detection
[9], Fabry-Perot interferometry [10], visibility measurement
with a Michelson interferometer [12], and FM-AM noise con-
version [11]. FM noise spectra, however, have not yet been
studied, to the authors’ knowledge.

The purpose of this paper is to provide systematic com-
parisons between theoretical and experimental results for AM
noise, FM noise, and power spectrum for AlGaAs lasers. Four
different types of AlGaAs lasers were used in the experiment.
The experimental dependences of the above three quantum
noise properties mentioned above on laser structure, bias level,
and output power are compared with the four different theo-
retical formulations-derived in the preceding paper [1]. The
material parameters, describing stimulated emission, spon-
taneous emission, and anomalous dispersion, used in the
theoretical noise analyses are obtained by the calculation using
the Stern band model and several independent experiments.

II. SpoNTANEOUS EMISSION COEFFICIENT, POPULATION
INVERSION PARAMETER, EFFECTIVE CARRIER
LIFETIME, AND REFRACTIVE INDEX DISPERSION

A. Evaluation of Structural and Material Parameters

The spontaneous emission coefficient § and population in-
version parameter gy, are two basic parameters for determining
the AM and FM quantum noise properties of semiconductor
lasers. The effective carrier lifetime is shortened from the
spontaneous lifetime due to its dependence on carrier density.
The refractive index is also dependent on carrier density
through the anomalous dispersion and the free carrier plasma
dispersion. These two processes are also deeply related to the
quantum noise properties. In this section, these parameters
illustrated in Fig. 1 will be determined for four different types
of AlGaAs lasers which are used in the noise measurement.

The spontaneous emission coefficient g, which is alterna-
tively called the saturation parameter s, is of the form {1}

0018-9197/83/0100-0047$01.00 © 1983 IEEE
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Fig. 1. Definitions of five material parameters 4, Ny, 7, d7g/dN,, and
dn/dN,.

B=Ar/V, (1)

where 4 = dG/dN, is the differential gain constant in m?fs, 74
is the spontaneous lifetime, and V,, is the optical mode volume.
The population inversion parameter ng, =N, /(N, - N,) is
given by

ngp =1+ AT N, (2)

for above the lasing threshold. Here, I’ is the optical mode
confinement factor for the active layer, N, is the carrier
density where stimulated emission rate exceeds absorption
rate, and 7, is the photon lifetime. The effective carrier
lifetime 7.¢f is given by

1 dr
Teff =Ts/( - T d—NL 'Ne,th) . 3)
s e

The refractive index dispersion is given by the sum of the
band-to-band anomalous dispersion and the free carrier plasma
dispersion as follows:

dn _d(An) &
dN,  dn,

The five material parameters 4, N,, 74, d74/dN,, and dn/dN,,
and the three structural parameters V,,, I', and 7, are necessary
to calculate these parameters.

Material parameters A and NV, are determined by the relation
of the peak gain coefficient gn,« to the carrier density N, as
shown in Fig. 1. Peak gain coefficient versus carrier density
for GaAs, is calculated by using the density of states with
Kane function interpolated to Halperin-Lax bandtail and the
Stern’s improved matrix element [14]. The numerical results
are shown in Fig. 2 as a function of the background doping
level.

The gain coefficient was experimentally measured with
external signal injection into the semiconductor laser, biased
at below the lasing threshold [15], [16]. The transmitted
signal power was maximum when the signal frequency was
matched to the Fabry-Perot resonant frequency and was
minimum when the signal frequency was detuned to fit
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Fig. 2. Theoretical and experimental peak gain coefficient g,y versus
the minority carrier density NV, for GaAs lasers. : p-type,
————— : n-type, ®: experimental results for GaAs lasers with non-
doped active layer.

between the two axial mode frequencies. The output signal
power ratio v leads to the gain coefficient as follows:

=il [ ()] o) ®

where L is cavity length, Rpy is facet reflectivity, and ay, is
free carrier absorption loss. The optical mode confinement
factor I' and facet reflectivity Ry, are calculated through the
use of the laser waveguide structure parameters [16]. The free
carrier absorption loss oy, is given as a function of the majority
carrier density in an active layer [17]. The carrier density N,
is, on the other hand, estimated from the nominal current
density Jyom (Afcm? - um), like N, =71, X Jpom X 10/,
Here, e is the electron charge. The leak current estimated by
the measured maximum quantum efficiency is extracted. As
will be mentioned later, the spontaneous lifetime 7 is depen-
dent on the carrier density N,. Therefore, the procedure to
determine &, needs to be solved in a manner consistent with
the relation between 7, and N,. Experimental results for g
versus N,, thus obtained, are plotted in Fig. 2 for a 900 um
cavity length channeled substrate planar (CSP) AlGaAs laser
and a 300 um CSP laser. The active layers of all these lasers
are undoped.

Agreement between the theoretical and experimental results
for g versus IV, is fairly good. Parameters 4 and N, can be
estimated from these results as shown in Table 1 for the four
AlGaAs lasers used in the noise measurement,

The spontaneous lifetime 7, versus the carrier density /, is
shown in Fig. 2 as a function of background doping level. The
values of 7; and dry/dN, at the clamped threshold carrier
density are shown in Table I.

Fig. 3 shows the calculated gain spectra and the related
refractive index anomalous dispersion as a function of minor-
ity carrier density. The anomalous dispersion is calculated by
the following Kramers-Kronig integral of theoretical gain
spectra.

P (7 1 [Ag(E)- Ag(E)
2m?

B)=-—— g
An(E) Ry P ]dE 6)

The theoretical results of An versus N, are shown in Fig. 4 asa
function of background doping. The total refractive index
dispersion including free carrier plasma dispersion coefficient
at the clamped threshold carrier density is shown in Table I.
The optical mode volume ¥, is given by the product of the
cavity length L and the cross-sectional area of the lasing mode,
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TABLE I
THE STRUCTURAL AND M ATERIAL PARAMETERS AND THE SPONTANEOUS
EMISSION COEFFICIENTS AND POPULATION INVERSION PARAMETERS

FOR AlGaAs LASERS

300um BH 200pm IS

900pm CSP 300pm CSP
Active Layer non-doped non-doped non-doped p-doped
(p0=1x1018 en”™)
wvo(mé) 1. 3x10-15 4.0x1071® 2.1x10710 1.5x10710
i 0.2 0. 0.2 0.5
va; (psec) 1.9 1.7 1.3 1.1
A (/secy  2.81x107 12 2.82x107 1% 2.82x10" 12 3.3x10712
No TE 1.36x102% 1.36x10%% 1.36x10°% 1.05x10%%
T (nsec) 2.4 2. 2.2 2.0
drs/dNe(secm3) -0.8 -0. -0.5 -0.4x10733
an/an_(n”) -6.5 -3.0 3.0 -8.5x107%7
B theoretical 5.2x107° 1.6x107° 3.0x107> 4.4x107°
Ny theoretical ! 2.5 2.5 3.7
‘@experimentalfderived from
Ln> 3.3x107% 1.1x107° 2.2x107° 3.5%107°
I 1.0x107° 1.5x107° 2.2x107°
Sy, 6.4x1078 — 4.0x107°

Ny = 2x107em™3

a0
300+ Ny= 1x307cni3
200+
100 -
0

-700

-003L

Fig. 3. Calculated gain spectra and refractive index dispersion due to anomalous dispersion.

which is estimated by the far field pattern divergent angles in
the lateral and vertical directions. Photon lifetime is defined
as7p = [c{1/L In 1/Rps + ap }] 72

Material and structural parameters that were thus deter-
mined, as well as calculated § and ng, values using these
parameters, are summarized in Table I for the four AlGaAs
lasers.
B. Mean Photon Number and Saturation Output Power

Output optical power at well above the lasing threshold is
determined by the photon number in a single lasing mode in
the following manner:

P, =# QU e (7

where Tpar = [(¢/2L) In (1/R0)] 7! is the photon lifetime due
to the output coupling from the facet. The mean photon
number at well above the threshold can be derived from [1]

=22 R ®)
B .

where R =1/Iy, - 1 is the pumping parameter. Fig. 5 shows the
theoretical photon number, which is calculated using the esti-
mated § and ng, values in (8), as 4 function of the bias level R.
Experimental results for a 900 um CSP laser, 300 um CSP
laser, and 300 um buried heterostructure (BH) laser are also

presented.
The spontaneous emission coefficients f§ estimated from the
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Fig. 5. Total photon number » in a laser mode versus bias level R
for three different types of GaAs lasers. : rate equation;

: van der Pol equation and Fokker-Planck equation;

---------- : photon density matrix equation; o e X: experimental

results.

measured photon number, are summarized in Table I for the
four AlGaAs lasers. Here theoretical ng, values are used to
derive § from (8). The discrepancy between the theoretical
and the experimental 8 values is within a factor of two for all
the lasers.

The saturation output power /5 at which the gain coefficient
is decreased by 3 dB from the unsaturated value is given by
(29) of {1]

ctifl

Ts

Iy = =chiQ/BV,)  [W/m?]. (%)
This value was experimentally determined by gain saturation
measurement of semiconductor laser amplifiers through vary-
ing the external injection signal level [16]. The saturated
single pass gain G, and the saturated overall gain G, of a

Fabry-Perot type amplifier are given by

Gy=exp [{Tg°/(1 +1/Iy) - as.} L]
Ge=(1 - Ry)*Gy/(1 - Ry Gy)*.

(10)
(11)

Here, g€ is the unsaturated gain coefficient, which is measured
with the small injection signal derived above. The mode power
density [ inside a laser cavity is given as a function of the pho-
ton number in this manner:

= chi Qin

——-—-—VO . (12)
Using (9) and (12) with (10), it is possible to obtain the satu-
rated single pass gain

Gy =exp [{Tg%(1 + Bm) - ap}L]. (13)

Fig. 6 presents experimental results comparing overall signal
gain normalized by the unsaturated overall signal gain G,/G¢,
with photon number <n} for a 300 um CSP laser, 300 um BH
laser, and a 200 um TIJS laser. The bias levels for the laser
amplifiers were adjusted to give an unsaturated overall signal
gain of 20 dB. The mode photon number {n) is estimated
from the amplified signal output power using (7).

The spontaneous emission coefficients § estimated from the
gain saturation experiment shown in Fig. 6, are summarized in
Table 1. The spontaneous emission coefficients § thus deter-
mined, are again in agreement with the theoretical 8 values
to within a factor of two.

I1I. AM QuanTUuM NOISE

AM quantum noise properties of semiconductor lasers are
characterized by AM noise spectra, variance in intensity fluc-
tuation, and photon number probability density. In this
section, theoretical and experimental comparisons of these
values are discussed.

A. AM Noise Spectrum

The experimental setup for measuring AM noise spectra is
shown in [5, Fig. 2]. The noise power P(w), displayed on a
spectral analyzer, is given by

P(w) = [nH(iamig?® + 2enplipn{e] Ry, B,G(w)
(14)

Here, np is the quantum efficiency of Si-APD, including the
coupling loss between semiconductor lasers and Si-APD; (g is
the avalanche multiplication factor of Si-APD;<igy,) = e{n)/Tpy
is the assumed initial photocurrent at np = 1; Ry, is the load
resistance; B, is the resolution frequency width of a spectrum
analyzer; G(w) is the frequency response of the electronic
amplifier, including the frequency response of Si-APD;
Pinermal(w) is the electronic amplifier thermal noise; and
Pyack current (@) is the Si~APD dark current shot noise. The
mean square value of g is given by [18]

1
(g¥= [k<g>+ (2 - ——) (1- k)} (g*
(&
where %k is the ionization coefficient ratio between electron
and hole. The value of & in the Si~-APD used in the experiment
is0.02 [19]}.

+ Pihermat(@) + Pyark current (w).

{15)
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Fig. 6. Experimental results with normalized signal gain G,/GZ versus
photon number # inside a laser cavity for three different types of
GaAs laser amplifiers. Unsaturated signal gain was.20 dB.

The normalized AM noise spectrum, defined by the noise
power generated in a unit of load resistance per unit band-
width normalized by the dc electric power [1], is given by

<i31>AM + 2€(igh>

(g
- P(w) = Prhermal(®) ~ Paark current (@)
Ry BoG(w)np(*ign)

e g% ]
+ 1- .
o [ np(g”*

The spectrum for G(w) was measured by using AlGaAs LED
light to illuminate the Si-APD, which induced shot noise with
a white spectrum. The quantum efficiency of Si-APD was 0.7
at an 825 nm wavelength. Coupling loss between the semicon-
ductor lasers and Si-APD was -4.5 dB.

Fig. 7 shows experimental results for RIN at low frequency,
versus the bias level R for the 300 ym CSP laser. Theoretical
results calculated with the rate equation (115), van der Pol
equation (55), and the Fokker-Planck equation (98), as de-
rived in the preceding paper [1], are also plotted with the
theoretical § and ng, values in Fig. 7.

The RIN decreases by R™> with the bias level between
107> <R <1, where the beat noise between signal and noise
photons is the dominant noise source. Experimental results
are in good agreement with the rate equation analysis. The
van der Pol and Fokker-Planck equations give slightly lower
RIN’s than the rate equation analysis because the carrier
modulation noise induced AM noise and the coupling effect
of the carrier noise and photon noise were not taken into
account. This is not the inherent drawback of the Fokker-
Planck equation. The quantum mechanical Fokker-Planck
equation for field and carrier operators, of course, is the exact
expression for quantum noise. The above discrepancy stems
from the adiabatic elimination of carrier variables introduced
to derive simple Fokker-Planck equation (98) of [1]. The
RIN in this bias region is proportional to 7,8/n3p.

The RIN at the high bias level R > 1, on the other hand,
decreases more slowly with bias level and the dependence on
bias level approaches R™'. At this bias level, signal photon
induced shot noise is the main noise source. The RIN is
proportional to Brppr/ngp.

Although experimental results are in good agreement with
single-mode rate equation analysis for the bias level R = 1072,

RIN =

(16)
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Fig. 7. RIN spectrum at low frequency versus bias level R for 300 pm
CSP laser. : rate equation; ————— : van der Pol equa-
tion and Fokker-Plarick equation; ---------- : photon density matrix
equation; o: experimental results in this work; and e: experimental
results from Jackel er al. [4].

experimental results at bias level R < 1072 differ from those
with the single-mode rate equation. The multimode rate equa-
tion analysis [5] is, on the other hand, satisfactory at this bias
level, as can be seen in Fig. 7. Similar results were obtained
for the 900 um CSP and 200 um TIS lasers.

Fig. 8 shows experimental and theoretical results concerning
the excess noise factor y defined by

X= <i}21>AM/(2e(igh>)’ (17)
for the 300 um CSP laser. The excess noise factor x indicates
how the actual laser field approaches the completely coherent
wave with Poisson distribution and a theoretical shot noise
limit. Fig. 8(a) and (b) employs the normalized bias level R
and the output optical power as an abscissa, respectively.
The AM noise level of the semiconductor laser is about one
order of magnitude larger than the theoretical shot noise limit
even at a high bias level. The dependences of AM excess noise
factor on background doping level and threshold gain are
shown in Fig. 9. To decrease AM excess noise, heavily n-doped
active layer and large threshold gain, which, for instance, is
realized by decreasing the mode confinement factor, are
preferable. This is mainly because the population inversion
parameter ng, is small in n-doped GaAs and decreased with
threshold gain as shown in Fig. 2.

Experimental and theoretical results conecerning RIN fre-
quency characteristics for the 300 um CSP laser are shown in
Fig. 10. The experimental results with flat response at low
frequency, as well as the cutoff characteristics at high fre-
quency are well described by the rate equation analysis. The
discrepancy between the experimental results and single-mode
rate equation analysis near the relaxation oscillation fre-
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Fig. 10. AM noise spectrum for 300 um CSP laser biased at R = 0.02.

: single-mode rate equation; ———-~-~— : multimode rate

equation; o: experimental results in this work; and e: experimental
results from Jackel et al [4].

quency stems from spurious longitudinal modes and lateral
carrier diffusion effects, both of which are neglected in the
single-mode rate equation analysis shown by a solid line.

The multimode rate equation analysis [5] shown by the
dotted line agrees better with the experimental results.

Fig. 11 shows the 3 dB down cutoff frequency for RIN
against the bias level R for the 300 um CSP laser. Calculations
were performed using the rate equation, van der Pol equation,
and the Fokker-Planck equation. The three theoretical
methods gave similar results. The cutoff frequency is propor-
tional to ng, R/7, and is from several tens to several hundred
GHz, even at the R < 1 bias level. '

B. Variance of Intensity Fluctuation

Variance in intensity fluctuation p for the 300 um CSP laser
is presented in Fig. 12 as a function of the bias level R. Three
theoretical curves, based on the van der Pol equation (64),
Fokker-Planck equation (97), and photon density matrix
equation (141) of [1], show similar results. The theoretical
shot noise limit is also plotted in Fig. 12. The Fokker-Planck
equation analysis differs from the other two in the R 2> 1 bias
level, since the signal wave induced shot noise is not included
in the Fokker-Planck method.

The photon distribution changes at threshold from a Bose-
Einstein distribution below threshold to a Poisson distribution
at well above the threshold. This smooth transition is seen by
the value H, defined as

AR - ) = (1 + Hym)). (18)

The value of H, is unity for the Bose-Einstein distribution,
and zero for the Poisson distribution. The value of H, is
calculated in terms of the variance p and the mean photon
number {n) as

Hy=p- 1/(n). (19)

Fig. 13 shows the experimental and theoretical values for H,
in relation to the bias level R for the 300 um CSP laser.

C. Photon Number Probability Density

The probability density for the photon number Prob(n) in
the 300 um CSP laser is shown in Fig. 14 as a function of the
bias level R. The probability densities for the photon number,
calculated by the Fokker-Planck and density matrix equations,
give similar results. The Poisson distribution with the same
mean photon number is plotted by dotted lines for reference.
The probability density, on the other hand, approaches the
Bose-Einstein distribution with decreasing bias level.

IV. FM QuanTUuM NOISE

FM quantum noise properties for semiconductor lasers are
characterized by FM noise, power spectra, spectral linewidth,
and instantaneous frequency probability density. In this
section, theoretical and experimental comparisons of these
values are presented.

A. FM Noise Spectrum

The experimental setup for measuring FM noise spectra
is shown in [L1, Fig. 1]. The FM noise from the AlGaAs
semiconductor laser field is converted to AM noise by the
optical frequency discriminator, which consists of a Michelson
interferometer. The output of the optical frequency dis-
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Fig. 12. Theoretical variance in intensity fluctuation p versus bias
level R for 300 um CSP laser. : van der Pol equation;
—————: Fokker-Planck equation analysis; ---------- : photon
density matrix equation; —+—-—-— : theoretical shot noise level.

criminator contains both the original AM noise and FM-AM
conversion noise. The noise power P(w), displayed on a
spectrum analyzer, is defined by

P(w) = [np(ERam + i2dpm) (8P + 2enp (ign) (g™)]

"Ry BoG(w) * Pinermal (@) + Paark current (W). (20).

Here, the excess noise (i2)py due to FM-AM conversion is
given as a function of the FM noise spectrum Wyq (w),
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Cirm

<i}(7)h>2 (21)
Here, K is the Michelson interferometer constant and 7 is the
delay time due to the arm length difference.

The frequency discriminator constant K is estimated by the
measured delay time 7. The value of K, is directly measured
by the demodulation experiment with the sinusoidally fre-
quency modulated AlGaAs laser. The oscillation frequency
for the AlGaAs laser is directly modulated by the injection

=KgWsqlw) = 2m2 72 Wsa(w)/[1 + (‘*”')2] -
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current modulation [20]. The maximum frequency shift
Af, at modulation frequency f,,, was determined by the side-
band to carrier intensity ratio of the optical spectrum observed
by the Fabry-Perot interferometer; as is shown in Fig. 15(a).
The FM-AM converted optical signal was detected by Si-APD
and displayed on the spectrum analyzer. This is shown in
Fig. 15(b). Demodulated output, divided by Af;, gives the
spectrum of the frequency discriminator constant. The dis-
criminator constant K thus determined is in good agreement
with the estimated K; value using the measured 7 value. Fig.
15(c) shows the output signal obtained by direct detection of
frequency modulated semiconductor laser output. A spurious
AM signal due to injection current modulation and the AM
noise spectrum can be seen. These are smaller than the FM
signal and FM noise by 25 and 10 dB, respectively.

Fig. 16 contains experimental results concerning the FM
noise spectrum for the 900 um CSP laser. Theoretical FM
noise spectra, calculated by the rate equation, are seen in this
figure. They are results of the spontaneous emission coupled
to the lasing mode, the carrier modulation noise induced
refractive index fluctuation, and the current modulation noise
induced temperature fluctuation. The FM noise spectrum at
low frequency is mainly determined by the current modula-
tion noise. Resonant enhancement of the FM noise spectrum
-at the relaxation oscillation frequency stems from the carrier
modulation effect. To the authors’ knowledge, the existence
of these two noises has not been mentioned thus far. The FM
noises spectrum in the other frequency range is determined by
spontaneous emission noise and carrier modulation noise.

A theoretical and experimental comparison of the FM noise
spectra for the 900 um CSP laser is shown in Fig. 17. Fig. 18
shows a theoretical and experimental comparison of the
resonant peak frequency of the FM noise spectrum versus the
bias level R for the 900 um CSP laser. The resonant peak fre-
quency for the AM noise spectrum is also plotted in Fig. 18.
Similar results are obtained for the 300 um CSP and 200 um
TJS lasers.

B. Power Spectrum and Spectral Linewidth

The experimental setup for measuring the power spectrum
through optical heterodyne detection is shown in [21, Fig. 1].
Two identical AlGaAs lasers, which oscillate in a single longi-
tudinal mode with almost identical wavelengths, are installed
in a temperature controlled chamber, and biased at almost the
same bias level R. The oscillation frequencies for the two
lasers were detuned in relation to each other by about 1 GHz.
Rough frequency tuning was performed by adjusting the diode
temperature, and fine tuning was done by changing the bias
current.
eliminate undesired reflection feedback from the optical ele-
ments into the lasers. The same optical isolators were also
used in the FM noise spectrum measurement, since FM noise
properties are sensitive to the external feedback [7], [22],
[23].

The observed beat spectrum was shown in Fig. 19 as a
function of the bias level for the 300 um CSP laser. The ex-
perimental results are in good agreement with the theoretical
Lorentzian line shape shown by a solid line. The power spec-

Two additional optical isolators were inserted to -
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Fig. 15. (a) Optical spectrum of directly frequency modulated GaAs
laser output as observed by scanning Fabry-Perot interferometer.
Modulation frequency was 100 MHz. (b) Demodulated FM signal,
and FM noise determined by means of Michelson interferometer fre-
quency discriminator. (c) Residual AM signal, and AM noise.
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trum is, to be exact, not the Lorentzian line shape, because
the current modulation noise and carrier modulation noise
introduce nonuniform FM noise spectra as shown in Fig. 16.
The solid lines in Fig. 19 are drawn by choosing the linewidth
to give the best fit to the experimental results. The noise
floor at about -67 dBm stems from electronic amplifier
thermal noise.

The spectral linewidth obtained from the oscillation power
spectrum is shown in Fig. 20 as a function of the bias level R
for the 300 um CSP laser. Here the spectral linewidth for one
laser is assumed to be half the spectral linewidth of the beat
spectrum, since the two lasers are biased at almost the same
pumping level and have almost equal spectral linewidths. The
spectral linewidth was alternatively measured by the FM noise
spectrum using the relation {1]

(22)

The spectral linewidth, determined by the flat portion of FM
noise spéctra is also presented in Fig. 20. The theoretical
linewidths calculated with the four different theoretical
models are also shown in Fig. 20. Here the theoretical § and
rsp values from Table I are used. Experimental results are in
good agreement with the rate equation analysis. The van der
Pol, Fokker-Planck, and photon density matrix equation
analyses give slightly lower results than the rate equation
analysis, since carrier modulation noise induced line broaden-
ing is not included in them. It is noticeable that both line
broadening due to spontaneous emission noise and carrier
modulation noise decrease in proportion to R7*.

The theoretical and experimental spectral linewidth for the
900 um CSP laser, 300 um CSP laser, and the 200 um TJS
laser are shown in Fig. 21. The difference between three lasers
stems from the difference in spontaneous emission coefficients.
Spectral linewidth is proportional to §/7pR and is as narrow as
250 kHz at R = 1 for the 900 um CSP laser.

Fig. 22(a) and (b) compares the experimental spectral
linewidths versus optical output power reported so far for
CSP laser and TIS laser. It is uncertain why the linewidth
measured by Mooradian et al. is broader than other results.
Recently, Henry claimed that linewidth broadening due to
carrier modulation noise is about thirty times larger than the
spontaneous emission noise contribution, which is successful
to explain Mooradian’s experimental results {25]. The dis-
crepancy between the present theoretical result and Henry’s
result is mainly due to his omission of mode confinement
factor. Henry used the parabolic band model to estimate
carrier density and refractive index anomalous dispersion
coefficient [26], which results in the overestimation of
anomalous dispersion effect. This seems to be partly re-
sponsible for the above discrepancy.

The linewidth due to spontaneous emission noise and
carrier modulation noise are plotted in Fig. 23 as functions
of background doping level and threshold gain. To decrease
the linewidth, n-doped active layer and small optical mode
confinement factor are preferable.

Avypr = S Wsg(w = 0).

C. Instantaneous Frequency Probability Density

The probability density for the instantaneous frequency,
Prob(£2), is shown in Fig. 24 as a function of the spectral
linewidth Awy),/B,, as normalized by the detection band-
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Fig. 20. Spectral linewidth Avj;> versus bias level R for 300 um
CSP laser. : total FM noise calculated by rate equation;
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: carrier modulation noise induced FM noise.
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Fig. 21. Spectral linewidth Ay, versus bias level R for three different

types of GaAs lasers. =7z : rate equation; 4 0 e: experimental
results from FM noise spectrum measurement.

width. The instantaneous frequency probability density has
a Gaussian probability density with Wsq B, variance near the
central region, but it has a much broader tail than the Gaussian
distribution as shown by (AS) of [1].

V. CONCLUSION

AM and FM quantum noise properties for four different
types of AlGaAs lasers were studied experimentally. The
experimental results were compared with the theoretical
predictions using four different formulations derived in the
preceding paper [1].

Two basic parameters of the spontaneous emission coeffi-
cient § and population inversion parameter zg,, as well as the
effective lifetime 7,77, and the refractive index dispersion
coefficient dn/dN,, which determine the AM and FM quantum
noise properties, were estimated using the Stern band model
and the structural parameters V,, T, and 7, for the four
AlGaAs lasers. The accuracy of the estimated § and n, values
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was confirmed with the independent experimental results
concerning mean photon number and saturation output
power. Experimental results regarding AM noise spectra, FM
noise spectra, and spectral linewidth were in good agreement
with the theoretical predictions that used the estimated $and
ngp values.

The dependences of the AM noise spectrum, AM noise band-
width, variance in intensity fluctuation, photon number proba-
bility density, and spectral linewidth on material, structural,
and pumping parameters are discussed. An active layer with
heavily n-doping and small optical mode confinement factor
are favorable to decrease both AM and FM quantum noise
at a fixed output power. A higher bias level and output power
level are, of course, favorable for decreasing quantum noise.
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The quantum noise of an injection-locked laser oscillator is analyzed by the operator Langevin
equation. The problem is also treated by the Fokker-Planck equation and the same results are ob-
tained in the same regimes of applicability. The steady-state solution of the Fokker-Planck equation
gives the probability distribution of amplitude and phase, the Langevin equation arrives more
directly at the spectrum of amplitude and phase. The phase of the injection-locked oscillator is re-
lated to the phase of the injection signal and thus constitutes a measurement of phase. In the limit
of complete inversion and zero internal loss of the laser resonator, the associated uncertainty is
twice that dictated by the uncertainty principle. This result is interpreted by comparing it with the
uncertainty introduced by a linear amplifier which can perform a simultaneous measurement of am-
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plitude and phase.

INTRODUCTION

The quantum noise of a laser oscillator has received a
great amount of study, both theoretical and experimental.
The first treatment of the laser oscillator with operator
noise sources is due to Haken.!~* Lax and co-workers, in
a series of papers, developed and expanded the theory fur-
ther.>~° A density matrix description of the laser oscilla-
tor was pioneered by Scully and Lamb!® and expanded
upon in a book by Sargent, Scully, and Lamb.!! Mandel
and Wolf contributed to the theoretical description.'?

The experimental verification of the quantum noise
emitted by lasers started with the study of frequency noise
of an He-Ne laser by Javan et al.!> was followed up by
laser amplifier noise studies by Kliiver.!* The frequency
noise initially observed was governed by the thermal vi-
brations of the laser cavity length. The amplitude noise
near threshold, however, was found to be attributable to
quantum noise.!>!® Quantum noise could be detected in
semiconductor diode lasers,!” since quantum noise
predominates over classical noise generating mechanisms
in such lasers because of their small dimensions and fast
relaxation times. More recently, quantum noise fluctua-
tions were observed in He-Ne laser gyros,'® the emergence
of quantum noise having been made possible by cancella-
tion of classical noise contributions in the measurement of
difference frequencies.

Injection locking of lasers for communication pur-
poses!® has rekindled the interest in quantum noise limita-
tions on this form of modulation. The classical theory of
injection locking is discussed in Stratonovich’s book.?°
Haken et al.?! studied the quantum theory of locking of
modes in a laser oscillator. Chow et al.?? pointed out the
narrowing of the laser spectrum due to injection locking.
No complete quantum-mechanical treatment of the noise
accompanying injection locking exists in the literature.
The present paper presents such an analysis. In the limit
when the oscillator runs at a very high power level with
complete inversion, the mean-square phase fluctuations of
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the output waveform are found to be
1
L 2 :ns : av ’

where (n,),, is the average photon number of the injec-
tion signal. If the phase of the output is viewed as a mea-
surement of the phase of the locking signal, then this mea-
surement results in a phase uncertainty twice that dictated
by the uncertainty principle. This result is compared with
a measurement of a coherent state after amplification by
an ideal linear amplifier. Such an amplification makes
possible the simultaneous measurement of amplitude and
phase fluctuations, doubling the uncertainty in the pro-
cess, as pointed out by Haus and Townes,?> Arthurs and
Kelly,?* and Caves.?

We start in Sec. I with the operator Langevin equation
and obtain the fluctuation spectra of amplitude and phase
of the locked oscillator in Sec. II. In the limit of complete
inversion we determine the minimum phase uncertainty.
This result is compared with that of the linear amplifier in
Sec. III. The only difference between the two systems is
that the relaxation times of amplitude and phase, different
in the case of the locked oscillator, become identical in the
case of the linear amplifier. We ascertain the fact that the
linear amplifier is capable of reaching the ideal limit of a
simultaneous measurement.

In Sec. IV we set up the Fokker-Planck equation for the
P(a) function of the laser oscillator, supplemented by an
injection-locking term due to a c-number source. Section
V treats the case of a coherent state coupled to the oscilla-
tor via an optical isolator and finds that the Fokker-
Planck equation is identical with that of a c-number
source, with the amplitude of the c-number source re-
placed by the eigenvalue of the coherent state. The
steady-state distribution P(a) is approximately a two-
dimensional Gaussian in amplitude and phase. The equa-
tions of motion for the expectation values of amplitude
and phase are then related to the analysis of Sec. II. The
mean-square amplitude and phase fluctuations are ob-

((A$?) o) =
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tained in Sec. VI and compared with the results of the
Langevin approach. The two approaches are shown to
lead to the same result in the same ranges of applicability.

I. QUANTUM-MECHANICAL
LANGEVIN EQUATION

In this section, and the subsequent two sections we con-
sider the operator Langevin equation for the injection-
locked oscillator (see Fig. 1) and the regenerative ampli-
fier. We start with the Langevin equation for the laser in
the absence of an injection signal as derived in Ref. 11.
The pertinent equation is (49), p. 334:

. 1
a(t)=— >

(04 +
— - +HAa'a
Qo

where a (¢) is the slowly varying envelope of the annihila-
tion operator a (t)e Y.

&/ is the linear gain parameter, w,/Q is the decay rate
of the laser resonator in the absence of the gain medium,
A is the saturation parameter expressing the dependence
of the gain on the photon number a'a: the total gain pa-
rameter is .« — % a'a. The function G(?) is the operator
noise source with the correlation function*!!

(GG +(G (G ("))

a(t)+G(1), (1.1)

Lo & (N Ny si—r), (2
2 Q y 2 1 ’ .
where the first term 5-w,/Q represents the zero-point fluc-
tuation of the photon field and the second term
(g2/Y)XN,+N,) represents the atomic dipole moment
fluctuation. g is the atom-field interaction matrix element
and y is the phase decay constant of the dipole moment.
The Marcovian assumption that the dipole moment and
energy decay constants are much larger than the photon
decay constant wy/Q is used to derive (1.1) and (1.2). The
noise contribution of the level operator is neglected be-
cause it is of higher order in (ga).

The interaction Hamiltonian between a laser photon
operator a and an injection signal operator b is assumed to
be

=2

V —ii(kba'e —ilo—wok_ optel (@00 , (1.3)

where b is the annihilation operator of the injection signal,
o is the frequency of the injection signal, and w, that of
the oscillator. The interaction Hamiltonian is quadratic in
the excitation amplitudes of the two systems, laser and in-
jection signal. The coupling is thus linear. Here, again, b

PARTIALLY
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—— 7z
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FIG. 1. Schematic of injection-locked laser oscillator.
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is an envelope operator, the natural time dependence
exp(iwt) has been factored out. The decay rate wy/Q con-
sists of two contributions, one from the unloaded quality
factor Qy, and the other from the external Q,Q,:

(20 @9 (2]

=4 14
04 (1.4)

Q0 Q.
The external Q expresses the coupling to the mode of the
injection signal, the unloaded Q incorporates coupling to
any other modes and to the loss. We shall find it con-
venient to use time constants 7, and 7, defined by

Wo 2
0. = . , (1.5)
(20 2
—_—=, (1.6)
Qo To

The coupling constant « has been assumed real with no
loss of generality, since this choice disposes of an arbitrary
phase reference.
The Heisenberg equation of motion:
.
a=—|7, 1.
7% al (1.7)
which led to (1.2) is supplemented by the coupling term
(1.3) and results in

a=1
T2

@ +
A ————HRa'a

Q
This is the quantum-mechanical Langevin equation of in-
jection locking of an oscillator. The linear laser amplifier,
operating below its oscillation threshold, is also described
by (1.8) if the gain saturation term Ba'a is dropped in
the above equation. The coupling constant x can be relat-
ed to the external Q and the bandwidth B of the injection
signal as shown in Appendix A

2Bo, 172

—i(0—wg)t

a-+kbe +G(t). (1.8)

—172
Te

To

k=2B/1,)?= (1.9

Here B is the Nyquist bandwidth related to the signal
sampling time T as follows:

B=1/2T .

II. AMPLITUDE AND PHASE NOISE
OF INJECTION-LOCKED OSCILLATOR

The Langevin approach leads directly to the spectra of
the amplitude and phase fluctuations, the Fourier
transforms of the correlation functions. The Fokker-
Planck approach used later on gives the probability densi-
ties of the fluctuating quantities. In this section we derive
the amplitude and phase spectra of the injection-locked
oscillator starting with (1.8).

The operator a generally follows the time dependence of
the injection signal, if the locking is successful. Thus, it is
convenient to write

—i[(@—@g)t +¢y+Ad]

a(t)=(ag+Aa)e 2.1

and



—i[(@—wg)t +A¢]

b(t)=(by+Ab)e (2.2)

Here ay, by, and ¢ are real ¢ numbers. The Hermitian
operators Ab and Ay express the excess amplitude and
phase noise of the injection signal, and Hermitian opera-
tors Aa and A¢ those of the oscillator excitation. The
zero-point fluctuations attributable to the input port are
already included in the Langevin noise operator G (¢). We
shall assume that Ab and Ay commute and are uncorrelat-
ed. G(t) commutes with both and is uncorrelated with ei-
ther because we assume that a and b are operators pertain-
ing to two different subsystems.

The above quantum-mechanical quasilinearization is an
extension of the one used for a laser oscillator by Haken*
and Lax.” Use of (2.1) and (2.2) in the quantum-
mechanical Langevin equation (1.4) leads, after separation
into orders of the perturbation, to an equation for the c-
number amplitude a, and phase ¢,

—-i(a)—a)o)ao—% d—%—%aé ag=rboe®. (2.3)

The amplitude ay is related to by by

ap= X 77175 b0 > (2.4)
(w——a)o)2+% d—%—%a%

where the factor multiplying b, is the net gain, the
enhancement of the injection signal, and

wo—a

tang,= (2.5)

1

)
> .@a%—d+—0

Qo
In the absence of an injection signal, the gain is infinite,
and from this fact one may evaluate the value of q of the
free-running oscillator

Q
Z . (2.6)

The injection signal increases a, so that
oA —Bak <wy/Q

and the gain coefficient is less than the loss coefficient.
The increase in amplitude with the injection signal, for
small changes Aag from a, is given by (2.4) and (2.6)

af=

K cosdy
RBak

I

ao(bo;éO)—ao(bo:O) b() . (2.7
At synchronism, w=wy, the injection signal b, and the
iy . _ .
response age -~ are in phase, ¢g=0. Increased detuning
leads to a reduction of the net gain and an increase of the
dephasing, provided that the detuning is within the lock-
ing bandwidth Aw;. The locking bandwidth is obtained
from the imaginary part of (2.3) and by noting that
|singg | <1. We then have

KOg
|wg—o | < ——=Awy .
ao
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The oscillation frequency w, the phase shift ¢y, and the in-
crease Aa, of the amplitude are shown schematically in
Fig. 2 as functions of the detuning wy— ;.

The equations for the amplitude and phase perturba-
tions are

Ad=_Ra

Ta

—(wo—w)agAd + Kk cosdg Ab +k singy boAyY
+3(G(t)exp{i[(w—wo)t +dol}
+GT(texp{ —i[(@—wo)t +¢0]}) , (2.8)

where we have used (2.4) and (2.5). Further,

. b
Ab=— " cospy( Ap— Ad) +(wo—) 2L — K- singoAb
ag a4 4o

+~2i—(G(z)exp{i[(w—mo)t +ol)
ag

—Gl(exp{ —i[(0—wo)t +d0]}),  (2.9)
where
w-w;
4
(a) 'Awl_ ) Aw,_ > Wo -~ Wi
%,
4
w2 +
(b) T T > -w;
Dw, 0 Aw_ G
-m/2 +
Aaq,
y
c > wWy-w;
(c) Doy Wy - W
FIG. 2. Oscillation frequency w, phase shift ¢, and increase

in amplitude Ag, vs frequency detuning w; —w. ; is the input
signal frequency, w, is the oscillator frequency without input
signal and Aw,, is the locking bandwidth.
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l=.@'a(2)

Ta

(2.10)

is the decay rate of the amplitude perturbation, i.e.,

1

@0
o ———RBa?
2 a

Q
expanded to first order in Ag, giving Za}Aa. The decay
rate of the phase is zero in the absence of an injection sig-
nal. In the presence of an injection signal it is

1 kbo
— =——c0s¢g=
Tp ap

@9
174 a% — o + —Q“
and is larger, the larger the injection signal. The phase re-
laxation time is directly related to the gain at resonance,
ao=kTpby at resonance, as can be seen from (2.4) and
(2.11).
A useful relation is obtained by combining (2.11) and
(2.5):

(2.11)

1 Kby |
wy—w=—tangg=——singy . (2.12)
T, ap

p

The determinantal equation for the homogeneous equa-
tion, for an assumed exp(—iQt) dependence, is

[—i9+i]
Ta

where we have used (2.4) and (2.5). The solution is

, 1
_1Q+———]+(w0—-w)2:0, (2.13)
Tp

1 L7
N.(Q)= lim 7, f_Tp/zdt

Tp—n:o
+ 116 (e

N, (Q)= 1
s(Q) TTQOT

f—T /2

+§[e""’°G<t>e

The noise sources consist of the inphase (cosine, subscript
¢) and quadrature (sine, subscript s) contributions of the
excess noise of the signal and the noise source G (t). The
former are due to the amplitude Ab and phase Ay and are
weighted by cos¢g and +singg, respectively; the weighting
is interchanged between that for amplitude and phase.
Further, the spectrum of the noise source G (#) is shifted
from that centered around w,, as implied by the noise en-
velope G (2) of (1.8), to that centered around w.
The Fourier transform of A¢(),

. 1 T,/2 .
A$(Q)= lim 7, f_‘;P/z Ad(t)ein A0t

Tp—>

(2.18)

ilwo—wg)t

i(@—ag)t
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2

2 —

Q |1
1 [ 1
Ta Tp

2 (7, Tp

L[L 1

172
—(600—60)2] .

When the injection signal is not detuned, wy=w, the
eigenfrequencies are imaginary and equal in magnitude to
the decay rates 1/7, and 1/7, of amplitude and phase.
The amplitude and phase fluctuations are decoupled.
When wg#w, the two fluctuations couple and the decay
rates of the resulting solutions are affected by the indivi-
dual decay rates and degree of detuning.

The Fourier transform of the amplitude fluctuation
operator, treated as a periodic function of period T, is

T /2

AQt
Aa(nAQ)= lim 2 T f_T L, Aa(n)e™B%%Gr . (2.14)
From here on, we treat
Q= lim nAQ
AQ—0
n— o0
as a continuous variable ). From (2.8) and (2.9)
_m+TL N,(Q)—(@o— )N, (Q)
Aa(Q)= ? ,
. 1 .
[-zn+— | —io+-L +(wo—w)?
T, T
(2.15)

where the noise sources N.(Q) and N;(Q) are defined,
with n AQ=Q:

e A2 (cosdy )i Ab (1) + (singg)kbo At(2)

+e—i¢oGT(t)e—i(w-—a)o)t]} , 2.16)

™A% (cosdo)kboAY(t)— (singo)k Ab (1)

—ilw—ag)t

—e oG (n)e 1. (2.17)

|
with n AQ =, follows similarly,

a

‘_in+—T1— ’NS(Q)+(coo—w)Nc(Q)
1

Ad(Q)=

¢ Qo . 1 2

—iQ+— |+ (wo—w)
Tp

Ta

(2.19)

The spectrum WA,,( ) is obtained from (2.15) by taking
the average of Aa T(Q)Aa(Q) and by dividing by the
frequency interval AQ=27/T in the limit as T — oo,
AQ—0:



and similarly for Ay. We further assume that the ampli-
tude and phase fluctuations of the injection signal are un-
correlated. Then using (2.16) and (2.17) the spectra of N,
and N, are
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Waal)= lim —(Aa*(mAa Q)= lim L Loz LIV, (9) +(ep—o (NN, @)
a—0 AQ | | 7
— iQ+L (wg— <N Q)N,(Q))
Tp
— |0+ @) (NN (@) (2.20)
P
h ! 1
where , , Jim —A(NJ@N(@)
2 o2 (a2 1 11 Qo2
| "= |V —(@o—w) =2 | + | T : — ($in2Go )W () + (cos’bo)i? | bo | 2W 5 y(Q)
®
2.21) +ZL ; 0+ & (N2+N )] (2.24)
W:l“he noise source G(t) is uncorrelated with itself; ™ Q
G'(1)G(1') is correlated in an impulselike manner (1.2)  The cross spectrum of N, and N is
and, hence, its spectrum is flat. Denote the spectrum of
Ab by lim —— Q)N (Q
1 Jim AQ (NlQ)N,(Q))
— 1 2 il .
Wap(2)= AIK!LIEO AQ (ABT(Q)AB(Q)) (2.22) —xK sm¢ocos¢0[ Wap(Q)— | bo | 2WA¢(Q)] . (2.25)

The spectra of the excess noise of the injection signal may
possess structure, whereas the internal noise has a flat
spectrum, the last terms in (2.23) and (2.24). The internal
noise spectrum has an intensity that is simply related to
the inversion as one may ascertain by eliminating the

Jlim E (NJ(QIN,(Q)) atom-field interaction parameter g?/y with the relation'!
Q-0 —1
2
=(cos?o k> W ap(Q) + (sin’dg)i? | by | 2 W py(Q) g _ 2(N,—N, )% (2.26)
1 |1 o g?
*an 20 +=—(N,+N,) |, (2.23)  Combining (2.20) and (2.22)—(2.26) one may write for the
14 amplitude spectrum
I
1 . .
Wpa(Q)= Ik Qz—e——TlT cosz¢0+(coo—a))281n2¢o+—z—(a)o—a))smd)ocos¢0 KW 5(Q)
k: ) P
+ [ Q%+ % sinpg+ (wo— ) ?*cos’py— —:‘—(wo—w)sin%cos% bi%WA¢(w)
P I
1 1 @o 1 No+N,y
1 QZ e _ 21 Y L e L X
+ 5 |0 2 +wo—a) |5 i N,_N, ]} (2.27)
The phase spectrum is
. 2 .
Wag(Q)= -——1—2——2 Q>+ —12— cos2¢y+ (wo—o)*sin’py+ ——(wo— @ )sindocosdo bi(z)WA,,,(Q)
|=@ | ao Ta a
[ 2 1 ) 2 2 . 2
+ | |Q°4 = |sin$y+(wo—w)cos ¢0——T—(w0—a))sm¢ocos¢o K W pp(Q)
T a
1 1 o l 1 N,+N,
+ — QZ _ 2 2
2 Ta +(w0 w) Q 4 Nz _Nl ] } (2'28)
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Let us consider first the effect of the oscillator noise, as-
suming zero excess noise of the injection signal. In this
case both amplitude and phase spectra simplify greatly.
Consider the phase spectrum

+(600—w)2

1
O+
2

1
|2|? 2m
1, 1N+N,

4 T4 N,—N,

aiWas(Q)=
@o

X___

Q

In the amplitude spectrum 1/7, is interchanged with 1/7,.

(2.29)

1
QZ+'—2"
L 1
ik 2

1 iN2+N1

47 4 N,—N,

+(wo—w)?

@o

X ——

o

Because the two relaxation rates are not the same, the
spectra differ.

. (2.30)

100
(a)
L lob sin¢,
2] 0.804
e “o
w AM NOISE
> |
b
|
o PM NOISE
olf
1T 1/%, /g
{ { {
00I L I
000l o0l ol n.o\ 10
FREQUENCY
100 (C )
sin ¢,
o} =
w 0.8
%] .
o (o]
z AM NOISE
w 1+
>
'—
<<
o PM NOISE
o
oIt
(VA 1/,
{ 4
0.0l L !
000l 00l o.l s.o\ 10
FREQUENCY
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The phase measurement on the oscillator at a large am-
plitude a ( may be viewed as a measurement of the phase
of the injection signal. In the process noise is introduced.
The minimum amount of uncertainty, or mean-square
phase deviation within the observation time T, must be
compatible with the uncertainty principle that does not
permit the measurement of phase better than given by the
inequality

1

—_—, 2.31
4(An?2),, @31)

(A¢?) o>
where (An?2),, are the fluctuations of the signal photon

number. For a coherent state { An?),,=(n,),, and there-
fore

1
v T N
T 4(ng)ay

The spectrum of the injection signal is at, and near, the
frequency w. A measurement of the phase must be cen-
tered at =0 and have a bandwidth 47B =27/T (two-
sided spectrum). To detect an undistorted phase signal,
the phase response of the locked oscillator must not vary

(A4%)

| —
0o (b)
o} sing,
% O'80,4O
S AM NOISE
w | E
=
’-—
< PM NOISE
w
[+ 4
olt
Vas 1/,
{ { |
00! I I
0.00I 00l ol l.O\ 10
FREQUENCY
100 sing, (d)
0.8
W o
14
[e)
= AM NOISE
w
> Ir
<
o PM NOISE
[« 4
ol b
VAl /7,
¢ {
00l L I
0.00I 00l o. 1.0 10
FREQUENCY

FIG. 3. Spectrum of amplitude and phase noise. Amplitude and phase noise are normalized by wo72 /47Q and a)orﬁ cos’po/4mwQal,

respectively. Frequency is normalized by the amplitude noise bandwidth, 1/7,.

Phase noise bandwidth is assumed to be

1/7,=1/107, and signal bandwidth 1/T=1/1007,. Excess noise of input signal is (a) {(Ab?) =b%(Ay?) =0, coherent state, (b)
(Ab?) =b3(A¢?) =0.1/4, (c) {Ab?) =b3{Ay?) =+, equal to zero-point fluctuation, and (d) (Ab?) =b3(Ay?) =2
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over the bandwidth 47B. Therefore, we may evaluate the
mean-square fluctuations (A¢2T ).y within the observation
time T from the product

4TBW 54(Q=0) .
Using (2.11) and (1.9)

(AP% ) oy =4TBW (2 =0)

__ 1 N,

2(ngYay N2—N, To

[1+72(@o—a)][1+75(0p—w)’]

[1—{—7',,'1'1,(cuo—cu)2]2

Te

1+

, (2.32)

where {ng),,=b3 is the average number of signal pho-
tons. The frequency-dependent factor has a minimum
value of 1 at (w—wg)=0 and (w—wy)=co (the latter
value is uninteresting because it corresponds to no gain).
Thus, the minimum value of (A% ),, occurs at w=awq,
when the injection signal has the natural frequency of the
oscillator, and is equal to twice the value imposed by the
uncertainty principle enhanced by the inversion factor
N,/(N,—N,), and the cavity loss factor [1 + (7. /7o)].
The two factors approach unity for complete inversion of
the atomic systems, and for a highly over-coupled cavity
Te/To<< 1.

Next, consider the noise in the presence of excess ampli-
tude and phase noise of the injection signal. The spectra
of amplitude and phase are plotted in Fig. 3 for different
detunings and input excess noise spectra. With increasing
detuning both the amplitude and phase noise are increased
|
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due to amplitude-to-phase conversion and vice versa. The
phase noise relaxation rate 1/7, is assumed to be -+ times
the amplitude relaxation rate 1/7, which corresponds to a
signal gain of 20 dB. The excess noise is assumed to have
the same bandwidth as the signal.

III. AMPLITUDE AND PHASE NOISE
OF LINEAR AMPLIFIER

We have found that a locked oscillator measures the
phase of the injection signal with an uncertainty twice
that of the ideal measurement. This is, at first sight,
surprising because one may have expected that the locking
of an oscillator constitutes a measurement of the phase of
the injection signal without a simultaneous measurement
of the amplitude. As such, it ought not to incur the 3 dB
penalty imposed by a simultaneous measurement.?3~2% In
order to understand our result, it is useful to study the
linear amplifier.

The fluctuations of the linear amplifier differ from
those of the locked oscillator only by the fact that the
phase and amplitude relaxation times are identical in the
amplifier case
@o

e

T T Tp 2

3.1
Qo

and the saturation term %a} is ignored. The result of
Sec. II can be taken over with the interpretation of ¢q
[compare (2.5)]

tangy=(wo—o)7 . (3.2)

Introduction of these relations into (2.27) and (2.28) gives

1 1
Wpa(Q)= Q%08%po+ ———— |K2Wap(Q)+ k203 QU sin’do) Way(Q)
Aa Ik l do Poosdy Ab 0 o)W ay
wo 1 1 1 N2+N,
Y 02 2 _ 21 1 ey .
+ ) [ +1'2+(w° ) e 4 N,_N, } (3.3)
and
2 __ 1 2.2 I T YY) .
agWae(Q)= IE [ Q°cos’Py+ Zoos’dy K2 W ay(Q) +K>Q%sin’Po W 5, (Q)
@9 1 1 |1 1 N+N,y
— 92 2 AV R B A S
+ 0 [ +rz+(w0 LU oyl bt N,—N, ], (3.4)
|
2
where Gl= K
1 ((1)0—60)2+':7
|2 |*= [[Q+(wo—w>]2+— [Q—(wo—a) P+ L | .
7 0 ] 72 gives, at =0,
(3.5) Wa@=0) 1w 1 [ N ] 56
. . . . 2 2 47 | Ny— )
It is of interest to ascertain the uncertainty in the deter- ¢ K Q Am 2 =N

mination of amplitude and phase of a coherent state, with
Way=Wap=0. In this limit, the amplitude spectrum re-
ferred to the “input” by division by the power gain

The same result is obtained for b(z,WM(Q:O). Again the
use of the definition of the coupling coefficient gives for
the amplitude uncertainty { Ab? ),, measured in a time in-
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terval T
2T Waa( Q= 0) 1 N e
- 1+— 3.7
(Ab})ay= T G 2NN, ' 3.7
and for the phase uncertainty
2 27 11 N2 Te
=W Q=0)=———"— |1+ —
(AFT D=7 Wyl A=0)=5 b3 N,—N, To
(3.8
The product of the two uncertainties is
. 1 N 2 s 2
A 2 2 —_— 2 1 _€
( bT>av<A¢T>av 4 <ns>av Nz—Nl o
(3.9)

When the inversion is complete this product reaches the
ideal limit, imposed on a simultaneous measurement of
amplitude and phase. The rms value of the ideal limit is
two times larger than that imposed by the Heisenberg
principle on an ideal measurement of either amplitude or
phase. This is the penalty incurred by a simultaneous
measurement.?* 2

Injection-locked oscillators also permit the simultaneous
measurement of amplitude and phase variations; however,
the gains for the in-phase and quadrature components are
not the same. It is of interest, therefore, to ascertain
whether the locked oscillator obeys the uncertainty princi-
ple as it applies to a simultaneous measurement. The am-
plitude gain follows from (2.7) with Q—0:

o

(Aa}
1+(w—w )271,

Gl= <ab) = | k08¢0 | 2= (3.10)

The measurement of b within an observation time T is
sug)ject to fluctuations referred to the input by division by
G;:

27 1

(AbE), =W (Q= 0)—T—EZ_
1 N, Te. [l+(a)—co0)21"%]2
2 N,—N, [1+(@—w) 7,7,

(3.11)

For (w—wy)—0 the above reduces to the result of the
linear amplifier. The product (Ab?%),(Ad%),, can be
made to approach the ideal limit for a simultaneous mea-
surement in the limit of no detuning, strong over-
coupling, and complete inversion. The product increases
with increased detuning, because 7, > 7, for a locked oscil-
lator. [Compare the definitions of 1/7, and 1/7,, (2.10)
and (2.11), respectively.]

IV. FOKKER-PLANCK EQUATION
FOR ¢-NUMBER INJECTION SIGNAL

In the preceding sections we used the Langevin ap-
proach to obtain expressions for the spectra of the fluctua-
tions. The Fokker-Planck equation leads to the probabili-
ty distributions of amplitude and phase. The Fokker-

Planck equation for the P distribution of Ref. 11, pp.
294295, Eq. (25), corrected for the erroneously omitted
term describing diffusion in the radial direction, reads

OP 1138 |2, 9 4.
a2 ror e Q Br
« 1 0 oP o 1 9
+ 4 rorl| or + 4 ,2 892P @.1

Here, polar coordinates are used and the a parameter is
written

=re'f,
Equation (4.1) was obtained by assuming an “injection” of
active particles in the upper state. The lower state is pop-
ulated as the result of the interaction of the particles with
the field, resulting in the reduction by % r? of the gain pa-
rameter .

The equation of motion is a diffusion equation with a
forcing term in the radial direction, the first derivative
with respect to 7, that tends to confine the P distribution
in the radial direction. An initial delta function distribu-
tion P(a)==8(a—ay), diffuses from « and, as a function
of time, spreads in both O directions. The natural time
dependence exp( —iwgt), where w, is the frequency of the
oscillator, has been factored out.

Next, recall the origin of the Fokker-Planck equation
which was derived through integration by parts of the
equation for the density matrix

deaP Ya)a] ,

where

p= fdzaz%lti |a){a]

:fdzaa Pa%m)(a[+c.c.

@o
A ———RB |a|?
Q ]

+ [ d*aaP |a){a| . 4.2)

da 6 *
We shall use both (4.1) and (4.2) in extending the analysis
to an injection signal.

Suppose that the Hamiltonian used in the derivation of
the equation of motion of the density matrix

p= [ d*aP(a)|a){a|

is supplied by the coupling Hamiltonian (1.3). In this sec-
tion we shall treat the annihilation operator b of the injec-
tion signal as a ¢ number. In Sec. V we shall generalize
the analysis, treating b as an operator. The time depen-
dence of the density matrix

(4.3)

p=— %[%,p] @.4)

is supplemented by
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[(Kba Te_i(w_wo)t—Kb*a ei(m—-wo)t)P(a) l a><a | —P(a) | a><a | (kba 1—e —i(m—mo)t_Kb*aei(a)——wo)t)]
=P(a) Kb*e““"""”'g% +kb e""“"“"’"a—i— ] la)(a|, .5
l
where we have used the identities'! lead to the Fokker-Planck equation:
= a N
a|a)(a|=ala)al | %?z_{%ad_%_@,a|zp+w]
a'|aY(a|= [58——+a* la){a] ,
* 2 .
4+ J P — Kb*el(w_wo)ti*P +c.c.
laY{a|a= 3 ~+a|la)ea]|, da da da
* (4.6)

t *
ala'=a*|a){a]| . . . .
@)l @) el One may now introduce polar coordinates to clarify the

Equation (4.5) introduced into (4.2) to supplement the meaning of the above equation. Define the argument of b

interaction Hamiltonian, subsequent integration by parts, as —¢,b=|b |e"i¢
|

8P _ 113 (2|, @ 4., & 19 | oP
a 2rarlr&[ Q '%rlP+4rarrar
2
+%{~;12—~a%;P—K|b[ —i—%rcos[e+(w—wo)t+¢]1>——i—%sin[e+(w—wo)t+¢]z> . @.7)
By introducing a new angular variable
¢=(wp—w)t —y—0 (4.8)
we may transform (4.7) into
3 11 o], e || 2188, w1 @,
E;P(r’d”t)——Z r or [r [&[ Q Bro P+ 4 ror| or T3 r? 3¢?
opP 19 19 .
ol 19 —=29 (sing P) | . 4.9)
+(w coo)a¢ K|b | rar(rcosqu) r‘a¢(sm¢ )

This is the desired locking equation.

Before we proceed with its analysis we want to show that it is of more general validity than its derivation implies. We
have assumed that the injection signal was a c-number source. Yet, we are interested in a full quantum-mechanical
analysis of a locked oscillator. One may question, therefore, whether the results obtained from (4.9) ignore some quan-
tum noise effects. This is not the case. In Sec. V we shall show that Eq. (4.9) is valid, if the injection signal is a coherent
state of another system separated from the oscillator by an isolator at zero temperature so that the coherent state can be
defined independent of the evolution of the excitation in the oscillator. Of course, the isolator is responsible, in part, for
the zero-point fluctuations of the injection source. The parameter b in (4.9) has to be interpreted as the eigenvalue 3 of
the coherent state of the injection signal, b =p.

V. FOKKER-PLANCK EQUATION FOR OPERATOR INJECTION SIGNAL

In Sec. IV, we have treated the injection signal amplitude b as a ¢ number. Consider now the case when the injection
signal is treated as an operator. The density matrix of the combined system is now

p=P(a,B)|a){a|® |B)B| ,

where | B)(B| is the matrix of the states of the injected signal. The coupling term (4.5) has to be generalized to account
for the operator nature of b. We note the property of the operator product b fa:

bla |a)(a|®|BY{B| = l%w‘ ]alaﬂal@ IB)Y(B|

and analogous relations for the pre- and post-multiplication by ba' and bla. The result is
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(KbaTei(mo—m)t_KabJrei(w——wo)t) 1 a><a | ® |B)<B| . 'a><a ! ® lB)(B] (KbaTei(a)o—w)t_KabTei(m——mo)t)

i(lo—ag)t i
e Ka aB “+

i(wg—ow)t
= e 0

Kﬁi-l-ei(w_wo)tkﬁt e
da

d i(wg—a)t
" 0 Ka*
da

9
o la){a|®|BY(B| . .1

Integration by parts transfer the derivatives onto P, so that the equation of motion for P becomes [compare (4.6)]

aP 3 o) 9?
— =1 1—7 —_—— % 2 .C.
3 3 |® o 0 |a|?|P|+c.c [+ aaa*P
i(w—awg)t d i(wg—w)t d
+ [—— Ke 0 B‘g‘——-Ke 0 *E P +tc.c. (5.2)

We can integrate P over all 8. Then, the terms containing derivatives with respect to 8 and B8* integrate to zero. The

equation of motion for f d’BPis
S rapp={-2 |a|w—2_3|a|?| [aBP
at da (0]
9’ io—ogt d
o/ d’BP — o 2
+ da da* f BP+ [Ke da

This is the Fokker-Planck equation for an oscillator,
described in terms of a P distribution of a states, locked
by injection of 3 states. In general, the oscillator system
reacts back onto the injection-signal system. Another
equation would have to be written down for it. If an iso-
lator (at zero degrees) is inserted between the oscillator
and the injection-signal system, the latter may be treated
as unaffected by the former, except of course that energy
is being lost by it to the oscillator. One may imagine it to
be continually prepared in sequences of [ states assigned
to time intervals T.

If the injection signal is in a 3 state, the integral over all
B of B* P can be replaced by 8* f d?BP. Then, interpret-
ing f d’BP as the reduced P distribution one finds that
(5.3) and (4.6) are in one-to-one correspondence if f3 is in-
terpreted as b, and P as f d2B P of the full P distribution.
In the sequel we shall use the notation of Sec. IV with the
understanding that we are treating the case of locking via
a coherent f3 state.

VI. FLUCTUATIONS DERIVED
FROM FOKKER-PLANCK EQUATION

In Sec. IV we have derived the Fokker-Planck equation
for a c-number injection signal. In Sec. V we showed that
the same equation follows for an injection signal that is in
a coherent state; the eigenvalue 3 of the coherent state can
be identified with the amplitude of the c-number source.
In this section we shall study the mean-square fluctuations
predicted by the Fokker-Planck equation and compare
them with the results obtained from the operator
Langevin equations. Because we assumed a coherent state
injection signal we are covering only the case of zero ex-
cess noise of the injection signal.

Consider first (4.1), the equation of the free-running os-
cillator. In the steady state, (3/9¢)P=0, the phase is ran-
dom, (8/00)P=0. The first derivative with respect to r
provides a forcelike restoring action that makes P cluster

]

[ @*BB*P +c.c. (5.3)
T
around the equilibrium value r =ay, for which
@o
o ———Hay=0. (6.1)
Q
The equation is solved approximately by expanding
o
rlo ———ABr?
Q

around r =ag:

—r [d—%g-——.@rz ] =2.@a(2)(r —ag)

=2

o =2 ]( ). (6.2
—— ¥ —a . .
Q 0

The P distribution can be integrated directly from (6.2)

P(r) 1 (r —ao)” 6.3
= exXp— .
Vara, P 252 )
with
ol=(4Rad/t)"" . (6.4)

The distribution is Gaussian around the average value
r =ay. Note that the first derivative term with respect to
r provides a stabilizing effect around r =a, and that its
coefficient is positive.

The locking of the oscillator by the injection signal has
two effects represented by the new terms, derivatives with
respect to  and ¢. The derivative with respect to ¢ pro-
vides a forcelike restoring action on the phase analogous
to the restoring “force” on the amplitude of the free-
running oscillator. This term can be interpreted by ex-
panding it around ¢, the phase for which the argument of
the derivative (9/rd¢) vanishes. Write r =ay+6r,
é=¢o+0¢. Then
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(@—wo)r 4+ | b |sing=(w—ay)ag+k|b |sing,
+ (0 —wo)dr +k | b | cosdydd .
(6.5)

The zeroth-order part of the above equation vanishes
when
k| b |sin
Wg—0= —I——l—@ (6.6)
ao
which is identical in form with (2.12).

The second effect of locking is the increase of the am-
plitude a, from the value imposed by (6.1) in the free-
running case. Expansion of the terms under the derivative
(1/r)(d/3r)r in (4.1) around ay and ¢, gives

(2]

M—E—.@rz +k|b | cosd

-r

2

1 @o
=an ld-———é‘—.@a%

+K|b | cospo— Bajdr —x | b | sing, 8¢ . (6.7)

The zeroth-order term gives the new equation for the am-
plitude a, as affected by the injection signal and corre-
sponds to (2.7). The perturbation term may be approxi-
mated, in the limit of |b | /ay << 1, large gain, by

—RBaldr —k | b |sing, 5= —:I—Sr —(w—wglay 8¢ ,

a

(6.8)

where we have used (2.10) and (6.6). When (6.5)—(6.8) are
introduced into (4.9) one obtains the “linearized” version
of the Fokker-Planck equation with x =8r and y =a (8¢ as
the independent variables. A change of variables to the
Cartesian coordinates x and y gives

d d 1
=p ) =—|— — P
» (x,y,t) O 7_ax+(a)0 o)y
o | 92 3?
— | —4— P
T2 ax?  3y?
+ 2 Ly (we—o)x |P, 6.9)
oy |7
where we have set
Kb ospy= L (6.10)
ay Tp

in analogy with (2.11).
The steady-state solution of (6.9) is obtained with the
Gaussian ansatz

P exp] — 5 (Agex?+24,,xpy +4,,2)] . (6.11)

Equating equal powers of x and y one obtains four equa-
tions for the three unknowns A,,, 4,,, and 4,,. These
equations are not independent and have the solution:

1 1 1 1 1
—+—||= | =+ [+2o—ap)?
4 | Ta||Ta|Ta T
A= 1 1) ’
—+— | +4o—a)’
Ta  Tp
(6.12)
1 1
—+— 1 L-f-—l— +2(w—w)?
4 | Ta || |Ta T
Ayy:? 1 ) 2 ,
l—"+— + 4@ —awp)?
Ta ’Tp
(6.13)
and
1 1
27 2
T, T
AxyF%(wo—a}) 1 1"2 2 . (6.14)
T—+;— + 40 —wp)?
4 a

The probability distribution is indicated in Fig. 4 in the
(r,¢) plane. The x and y coordinates parallel to the ampli-
tude and phase perturbations, respectively, are also indi-
cated. When the injection signal is detuned from the

(a) INJECTION-LOCKED OSCILLATOR

2
e wy, - w>0
Y X
0,2<a¢2> %'
P N 2
e A <Aa">

(b) 4o

LINEAR AMPLIFIER

af<ag®>t " I
IR

v

<Aa2>

FIG. 4. P distribution of injection-locked oscillator (a) and
linear amplifier (b) in a plane.
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natural frequency of the oscillator, w=~wy, then the two-
dimensional Gaussian has principal axes that are not
parallel to x and y, respectively; the phase and amplitude
fluctuations are correlated.

The present results are easily compared with the results
of Sec. II when w=w, We shall look at this case in de-
tail. Consider the mean-square phase deviations of (6.9)
for wp—w =0, 4, =0,

(8¢2>av= ! d

. (6.15)
Ayya(z) 4a2 K

In the derivation of (4.1) it had been assumed that the
laser medium is in the upper state in the absence of sa-
turation. The saturation reduces the gain so that one may
identify the unsaturated gain parameter .27, divided by the
saturated gain, with the ratio of the upper level population
N,, to the difference between upper and lower level popu-
lations:
o _ N,
o —RBa % N,—N,
and no level degeneracy has been considered. The saturat-

ed gain is approximately equal to wy/Q. Thus, we may
write for (6.15)

1 N Ny
Q 4a? "N,—N,
Next we introduce the average photon number of the in-

jection signal, | b |%2=(n,),,, using the gain at synchro-
nism derived from (2.4)

1 1 N,
862), :
< ¢>v Q 4<ns>av KTP N2—N1

(8¢%) 0= (6.16)

(6.17)

The phase fluctuations have a Lorentzian spectral profile
(see Sec. II) that occupies a bandwidth proportional to
1/7,. The phase measurement of the source requires only
a bandwidth B equal to 1/2T, where T is the time of “ob-
servation” of the source. Thus, if a filter is introduced
that cuts out the unnecessary part of the spectrum, the
mean-square fluctuations are reduced by the factor
4B7,=27,/T (see Appendix B) so that one has for the fil-
tered mean-square fluctuations

(2] 1 1 N,

863 Yoy ="
(ST )ev="0 2n, Ve 2T N2 N,
1 Te NZ
= |14+4— |, (6.18)
2<ns)av + N2"‘N1

where we have used (1.9). This is the same result as (2.32)
for wg—w=0. An analogous investigation of the mean-
square amplitude fluctuations {( Ar2),, confirms the result
of Sec. III at synchronism. The analysis of locking off
synchronism is considerably more complicated and is not
presented here. The following issues have to be confront-
ed: (a) The mean-square deviation of the amplitude and
phase are equal to the diagonal elements of the inverse of
the matrix

AxxAyy

Ax)’ A)’)’
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(b) The spectrum of the fluctuations off synchronism is
given by (2.29) and (2.30), respectively. The filter of band-
width B selects the portion 4B of the overall spectrum at
Q=0. When the analysis is carried out the results of Secs.
IT and III in the general case, w=~w,, are fully confirmed.
We have used the spectral information obtained from
the Langevin equations to derive the filtered mean-square
fluctuations from the total mean-square fluctuations of
the steady-state solution of the Fokker-Planck equation.
Alternately, one could have derived the spectrum from the
time-dependent solution of the Fokker-Planck equation.
The time-dependent Fokker-Planck equation yields the
time evolution of an initial impulse of the probability dis-
tribution in the x-y plane. The autocorrelation functions

(x(Ox(t+7)) oy
and

(Yt 415

can be derived from this information. The spectra are the
Fourier transforms of the autocorrelation functions. The
same result is obtained as from the Langevin equations,
albeit with considerably more effort.

Finally, we note that according to (4.6) we have related
the results of the Langevin equation to the mean-square
fluctuations of a=r e?, and not those of the field opera-
tor a. In doing so we have ignored the mean-square fluc-
tuations associated with an a state. Because the mean-
square fluctuations found are large compared with the
mean-square spread associated with an «a state, the ap-
proximation, applicable in the limit of high gain, is a legi-
timate one.

VII. DISCUSSION

The operator Langevin equation leads rather directly to
the spectra of the amplitude and phase fluctuations of a
locked oscillator. The two spectra differ in the case of the
oscillator, become identical for the modulated amplifier.
The locked oscillator provides a means for the quantum
measurement of the phase of the injection signal. It does
not give minimum uncertainty. In the limit of complete
inversion and negligible internal loss the excess fluctuation
is 3 dB higher than the ideal limit. We interpreted this re-
sult with the aid of the linear amplifier which does offer
an ideal simultaneous quantum measurement of amplitude
and phase in the limit of complete inversion and negligible
internal loss. Such a measurement requires doubling of
the minimum uncertainty of each of the complementary
variables. The phase noise of the locked oscillator can be
understood from another point of view: It can be inter-
preted as frequency-noise to phase-noise conversion of the
oscillator. The spectrum of the frequency modulation
noise W,,(Q) of the self-oscillating laser follows from
(2.29), with 1/7, =0 and & —wy=0

(l)o/Q N2
477'a(2) N,—N, )

Wao(Q)= QW 4y (Q) = (7.1)

The frequency-to-phase conversion factor is obtained from
(2.5) and (2.11)
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ay/kb 2 2
d$ _ _ 20/%bo . (7.2) i](a)|2=—2—|(a)|2=ﬂ—ﬂl—. (A2)
dwg cosdg dt Te 2/7,
Combining (7.1) and (7.2) we find But
2 2
d wo/Q N, 1(b)|2="Aa)’T (A3)
Q)= Wa (@) |22 | = ,
Wag( D) =Wio() dawg 4mKk*b3cos’py No—N Te
where T is the sampling time for b. Introducing (A3) into
and thus (A2) we find
21 1 N, Te 2
AP?) =W ,s(Q)= 1+— 22
(a¢%) T A 2b3cos’py N2—N, 7o o 7T

which is equal to the phase noise of the locked oscillator
(6.18) for cosgpg=1.

The Fokker-Planck approach gives the probability dis-
tribution of amplitude and phase. The uncertainty of a
measurement cannot be determined from it directly
without information on the spectra of phase and ampli-
tude which is obtained most conveniently from the
Langevin approach. Of course, the information on the
spectrum is contained in the Fokker-Planck equation as
well but requires a greater effort of extrication.
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APPENDIX A: THE EXPECTATION OF EQ. (1.8)

We explore the expectation of Eq. (1.8) as applied to the
cavity with no gain
1 1
— + —
Te 7o

(a)+x(b) . (A1)

d
lar=—

The system is conservative when 1/73=0. In this limit
one may apply time reversal considerations to the system.
Consider the unexcited cavity, with (b)=0. Thus, {(a)
decays because energy escapes from the resonator at the
rate 2/7,.

The rate of energy escape is 2%wo/7, | (a) | % This has
to equal to the power carried away from the resonator (see
Fig. 1). When this solution is time reversed, the power
flow is reversed and travels toward the resonator. The
buildup rate of energy is now 2/7,. From (Al)

This is the desired relation.

APPENDIX B: THE FILTERING
OF PHASE FLUCTUATIONS

We have stated in the text that a filter of bandwidth B
reduces the mean-square fluctuations of the phase by a
factor of 4B7,, where 7, is the response time of the phase.
We prove this statement here.

In Sec. II we find that the spectrum of the phase is
Lorentzian of the form

1

Tz (B1)
14+ Q%7

H(Q)=

where 7, is the decay time of the phase and H (Q) is as-
signed unity amplitude at Q=0. The area of H(Q) is

S H@ae= [ 42

— (B2)
-« 1+ 07,

=7/Tp -
A filter with flat response over a bandwidth B ( <<1/7,)
in Hz passes a portion 47B of the (two-sided) spectrum.
Thus, the ratio of the total mean-square fluctuations [in-

tegral over all Q of H(Q)] to the mean-square fluctua-
tions passed by the filter is

47B
m/Tp -

4BT,

. (B3)

The sampling time T is related to the bandwidth B by the
Nyquist criterion

B=1/2T .
Thus, the fraction 4B7, can be written

4B7,=27,/T . (B4)
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