
Chapter 10

Negative Conductance Oscillators
(Lasers)

Negative conductance oscillators are employed for amplifying and generating coherent
electromagnetic fields in various frequency regions. The essential components of a nega-
tive conductance oscillator are a frequency-selective circuit, a device showing a negative
differential conductance (gain), and a device with a nonlinear gain-saturation or amplitude-
limiting function. Various frequency-selective circuits are used to form a high-Q cavity
depending on an operation frequency, i.e., an LC circuit, delayed feedback loop, Fabry-
Perot cavity, ring cavity, distributed feedback cavity, and many others. Usually, the neg-
ative differential conductance and the nonlinear characteristics are provided by the same
device. Solid-state devices such as tunnel (Esaki) diodes, IMPATT diodes, Gunn diodes,
and Josephson junctions are employed for a radio wave and microwave oscillators. Accel-
erated electron beams and inverted media are used as a negative differential conductance
and nonlinear element for higher-frequency regions, including millimeter, sub-millimeter,
infrared, optical, and XUV spectra.

In a typical coherent communication system, a transmitter consists of an oscilla-
tor, modulator, and post-amplifier. An oscillator generates a low-noise and frequency-
stabilized electromagnetic wave. Information is encoded onto either the amplitude, fre-
quency, or phase of the coherent carrier wave emitted from the oscillator. A post-amplifier
compensates for the loss of the modulator and/or to boost the transmitted signal power.
If frequency or phase modulation is employed, an injection-locked oscillator can be used
as a post-amplifier. For example, a low-noise Gunn diode is used as an oscillator and a
high-power IMPATT diode is used as an injection-locked oscillator (post-amplifier). The
received signal is fed into a mixer with a coherent local oscillator wave in order to trans-
late the carrier wave into an intermediate frequency (IF) signal or directly into a baseband
signal. This mixing process has a frequency and mode filtering function and rejects back-
ground noise and cross-talk from other channels. A local oscillator is frequency stabilized
and often phase-locked to the received signal. A phase-locked-loop (PLL) oscillator is
employed for homodyne detection. Negative conductance oscillators can be used as free-
running oscillators, injection-locked oscillators, and phase-locked-loop local oscillators in
such a coherent communication system.

A negative conductance oscillator is described by the circuit shown in Fig. 10.1. An LC
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Figure 10.1: An electrical circuit model of a negative conductance oscillator.

series circuit represents a frequency-selective element. An active element with a negative
differential conductance (gain) and a nonlinear gain saturation characteristic is represented
by a complex impedance −Ra + jXa, where the negative resistance −Ra represents a
saturable gain and the reactance Xa represents an associated dispersion. The active
element should have an internal noise source represented by the noise voltage va. A positive
resistance RL represents a load resistance, which accounts for the output coupling loss from
the oscillator. An external noise is fed into the oscillator through this load resistance and
is represented by the noise voltage vL. Finally, the oscillation field is represented by an
internal AC current i(ω). van der Pol was the first to study the noise properties of such a
negative conductance oscillator; thus, it is often referred to as the van der Pol oscillator.[1]
Note that the circuit representation of the negative conductance oscillator in Fig. 10.1 is
quite general. This simple model covers the fundamental performance and noise property
of almost all negative conductance oscillators, including a laser oscillator.

10.1 Master Equation of a Laser Oscillator

Figure 10.2 shows a typical laser oscillator. Two high reflection mirrors constitute a Fabry-
Perot cavity. The photon decay rate is expressed by ω

Q = c
2L ln 1

R1R2
, where Q is a cavity

Q-value, L is a cavity length and R1, R2 are the mirror reflectivities. An oscillation field
and inverted medium are represented by the electric field E(z, t) and the ensemble of
atomic polarizations P (z, t) :

E(z, t) =
1
2

∑
n

En(t)ei(ωnt+φn)un(z) + C.C. , (10.1)

P (z, t) =
1
2

∑
n

Pn(t)ei(ωnt+φn)un(z) + C.C. , (10.2)

where n designates a longitudinal mode with a spatial mode function un(z). We assume
a single transverse mode operation. The Maxwell equation with a driving term is given
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Figure 10.2: A laser oscillator with a Fabry-Perot cavity.

by[2],[3]

−∂2E

∂z2
+ µ0σ

∂E

∂t
+ µ0ε0

∂2E

∂t2
= −µ0

∂2P

∂t2
. (10.3)

Using Eqs. (10.1) and (10.2) in Eq. (10.3), we have the equations of motion for the am-
plitude and phase of the oscillation field:

Ėn = −1
2

(
ωn

Q

)
En − 1

2

(
ωn

ε0

)
Im(Pn) , (10.4)

φ̇n = (Ωn − ωn)− 1
2

(
ωn

ε0

)
1

En
Re(Pn) , (10.5)

where ωn
Q = σ

ε0
is the photon decay rate, Ωn is an empty cavity resonant frequency, and

ωn is an actual oscillation frequency. Equations (10.4) and (10.5) show that the in-phase
component Re(Pn) of the induced atomic dipole causes a dispersion and the quadrature-
phase component Im(Pn) of the dipole provides a gain. It is convenient to introduce an
electric susceptibility χn = χnr + iχni to represent a dipole,

Pn = ε0χnEn = ε0(χnr + jχni)En . (10.6)

Using Eq. (10.6) in Eq. (10.4) and Eq. (10.5), we have the laser master equation:

Ėn = −1
2

(
ωn

Q

)
En − 1

2
ωnχniEn , (10.7)

φ̇n = (Ωn − ωn)− 1
2
ωnχnr . (10.8)

The steady state solutions of Eqs. (10.7) and (10.8) provide the threshold condition (gain
= loss) and the oscillation frequency,

ωn

Q
= ωnχni , (10.9)

ωn = Ωn − 1
2
ωnχnr . (10.10)
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Figure 10.3: A complex electric susceptibility χ = χr + i χi of an inverted system.

The representative functions of χi and χr are shown in Fig. 10.3. Equation (10.10)
indicates that the actual oscillation frequency ωn is always pulled toward the gain center
from an empty cavity frequency Ωn due to the presence of the dispersion.

If the cavity internal electric field amplitude is normalized to represent a “photon
amplitude”, the stored energy is given by

E = h̄ωA2
0 =

1
2
LA2 , (10.11)

where A0 is the photon field amplitude, n = A2
0 is the photon number and A is the

equivalent oscillation current amplitude in the LC circuit (Fig. 10.1), i.e. I = A cos(ωt).
From Eq. (10.11), the photon field amplitude A0 and the equivalent current amplitude A
are related by

A0 =

√
L

2h̄ω
A . (10.12)

The output optical power from the laser oscillator is given by

Pout = h̄ωA2
0

(
ω

Qex

)
=

1
2
RLA2 , (10.13)

from which the photon decay rate is expressed as

ω

Qex
=

RL

L
. (10.14)

The internally generated optical power is given by

Pin = h̄ωA2
0ωχi(A0) =

1
2
Ra(A)A2 , (10.15)

from which the photon amplification rate is expressed as

ωχi(A0) =
Ra(A)

L
. (10.16)
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The actual oscillation frequency is given by

ω = Ω− 1
2
ωχr(A0) = Ω− 1

2L
Xa(A) , (10.17)

from which the dispersion is expressed by

ωχr(A0) =
Xa(A)

L
. (10.18)

Table 10.1 summarizes the one-to-one correspondence between the electrical circuit lan-
guage and the quantum electronics language.

Table 10.1: Comparison of the electrical circuit language and quantum elec-
tronics language for a laser oscillator.

Electrical circuit Quantum electronics

Oscillation field

√
L

2
A

√
h̄ωA0

amplitude

Photon decay rate
RL

L

ω

Qex

Photon amplification
Ra(A)

L
ωχi(A)

rate

Dispersion
Xa(A)

L
ωχr(A)

10.2 Free-Running Van der Pol Oscillators

When the active element is pumped by an external energy source and a negative differential
conductance is realized, the internal and external noise voltages, va and vL, are amplified
and the fluctuation frequency component of the current i(ω) near the LC circuit resonant
frequency, ω0 = 1√

LC
, grows. This process is called “regenerative amplification.” Once the

negative resistance of the active element balances the positive load resistance, i.e. Ra =
RL, the circuit becomes unstable and the noise grows exponentially, purifying its spectral
shape. The circuit starts to oscillate and the steady-state coherent field amplitude is
established in the circuit. This steady-state condition is established by the gain-saturation
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of the active element. In this way, the broadband noise, va and vL, are transformed into a
coherent wave with stabilized amplitude and a well-defined frequency. Frequency-selective
amplification which purifies the spectral profile and gain saturation which stabilizes the
amplitude are the two basic ingredients for a negative conductance oscillator.

The circuit equation (in complex representation) for the current i(ω) is given by[4],[5]
[
RL + i

(
ωL− 1

ωC

)
−Ra + iXa

]
i(ω) = va(ω) + vL(ω) . (10.19)

A time-dependent real current i(t), which is a real part of i(ω), is expressed as

i(t) ≡ Re(i(ω)) = Re
[
(A + ∆A)ei(ωt+∆φ)

]

= [A + ∆A(t)] cos(ωt + ∆φ(t)) , (10.20)

where A and ω are the average amplitude and frequency of the oscillating current and
∆A(t) and ∆φ(t) are slowly varying amplitude and phase fluctuations. The gain saturation
of the active element is represented by

−Ra =
−R0

1 + βA2
, (10.21)

where −R0 is the unsaturated negative differential resistance, which is proportional to the
pump rate, and β is the saturation parameter.

If one assumes
∣∣∣∆A

A

∣∣∣ ¿ 1, one can linearlize Ra and Xa as follows:

Ra = Ra(A) +
∂Ra

∂A
∆A , (10.22)

Xa = Xa(A) +
∂Xa

∂A
∆A . (10.23)

Since an actual oscillation frequency ω is close to the LC circuit resonant frequency, one
obtains

ωL− 1
ωC

=
L

ω

(
ω2 − 1

LC

)
=

L

ω
(ω + ω0)(ω − ω0) ' 2L(ω − ω0) . (10.24)

Substituting Eqs. (10.20), (10.22), (10.23), and (10.24) into Eq. (10.19) and taking the
real part of both sides of Eq. (10.19), one obtains

Re

{[
RL −Ra(A)− ∂Ra

∂A
∆A + i2L(ω − ω0)

+i

(
Xa(A) +

∂Xa

∂A
∆A

)]
(A + ∆A)ei(ωt+∆φ)

}
= va(t) + vL(t) . (10.25)

Replacing iΩ = i(ω − ω0) by d
dt and taking the time derivative (A + ∆A(t))ei(ωt+∆φ(t)),

Eq. (10.25) is reduced to

Re

{[
RL −Ra(A) + i2L

(
ω − ω0 +

Xa(t)
2L

)
+ 2L

(
1
A

d∆A

dt
− 1

2L

∂Ra

∂A
∆A

)

+i2L

(
d∆φ

dt
+

1
2L

∂Xa

∂A
∆A

)]
Aei(ωt+∆φ)

}
= va(t) + vL(t) . (10.26)
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If one ignores all fluctuation terms, i.e. ∆A(t) = ∆φ(t) = va(t) = vL(t) = 0, in Eq. (10.26),
one has the following steady-state solutions:

RL = Ra(A) =
R0

1 + βA2
, (10.27)

ω = ω0 − Xa(A)
2L

. (10.28)

From Eq. (10.27), the squared, steady-state oscillation amplitude is given by

A2 =
1
β

(
R0

RL
− 1

)
. (10.29)

As shown in Fig. 10.4(a), the squared coherent oscillation amplitude builds up at an

A2

RL
R0 (      pump rate)

oscillation
threshold

0

RL
R0 (      pump rate)

0

unsaturated gain

saturated gain
RL

Ra(A)

(a)

(b)

Figure 10.4: The oscillator power and saturated gain of a laser oscillator.

oscillation threshold, R0 = RL, and increases linearly with the pump rate (the unsatu-
rated negative differential resistance R0 is proportional to the pump rate). The negative
differential resistance Ra linearly increases with the pump rate below the threshold and is
clumped at the load resistance RL above the threshold, as shown in Fig. 10.4(b). When the
oscillation field increases above the steady-state value given by Eq. (10.29), the saturated
gain decreases to below RL and the circuit has a net loss. This results in the decrease
in the oscillation field. On the other hand, when the oscillation field decreases below the

7



steady-state value, the saturated gain increases to above RL. In this case, the circuit has
a net gain and the oscillation field is amplified. In this way, the oscillation field amplitude
and the saturated gain are simultaneously stabilized to their steady-state values. This
nonlinear process is due to mutual coupling between the oscillation field and the active
element and is termed “relaxation oscillation.”

10.3 Amplitude and Phase Noise of an Internal Field

The small fluctuating parts in Eq. (10.26) are
(

2L
d

dt
∆A−A

∂Ra

∂A
∆A

)
cos(ωt + ∆φ)−

(
2LA

d

dt
∆φ + A

∂Xa

∂A
∆A

)
sin(ωt + ∆φ)

= va(t) + vL(t) . (10.30)

Multiplying Eq. (10.30) by cos(ωt + ∆φ) or sin(ωt + ∆φ) and integrating over one period
of oscillation, T = 2π

ω , one has

2L
d

dt
∆A−A

∂Ra

∂A
∆A =

ω

π

∫ t+ π
ω

t− π
ω

(va(t
′
) + vL(t

′
)) cos(ωt

′
+ ∆φ)dt

′
= vac + vLc , (10.31)

2LA
d

dt
∆φ + A

∂Xa

∂A
∆A = −ω

π

∫ t+ π
ω

t− π
ω

(va(t
′
) + vL(t

′
)) sin(ωt

′
+ ∆φ)dt

′
= −(vas + vLs) .

(10.32)
Here, vac(vLc) and vas(vLs) are the cosine and sine components of the internal (external)
noise voltages,

va(t) = vac cos(ωt + ∆φ) + vas sin(ωt + ∆φ) ,

vL(t) = vLc cos(ωt + ∆φ) + vLs sin(ωt + ∆φ) .

A resistive saturation parameter s and reactive saturation parameter r are introduced
and defined by

s ≡ − A

Ra(A)
∂Ra

∂A
, (10.33)

r ≡ A

Ra(A)
∂Xa

∂A
. (10.34)

If one uses Eq. (10.21) for saturated gain, the resistive saturation parameter is given
by

s =
2βA2

1 + βA2
=

{
0 : βA2 ¿ 1 (just above threshold)
2 : βA2 À 1 (far above threshold)

. (10.35)

Equations (10.31) and (10.32) are rewritten using Eqs. (10.33) and (10.34) as

d

dt
∆A +

sRL

2L
∆A =

1
2L

(vac + vLc) , (10.36)

d

dt
∆φ +

rRL

2LA
∆A = − 1

2LA
(vas + vLs) . (10.37)

8



The amplitude noise ∆A is caused by the cosine components of the internal and external
noise voltages and is suppressed with the decay rate s

2
RL
L = s

2

(
ω
Qe

)
, where Qe is a Q

factor due to output coupling loss and ω
Qe

is the associated photon decay rate. The gain
saturation represented by the resistive saturation parameter s operates as a restoring force
for the amplitude. On the other hand, there is no restoring force for the phase. The phase
noise ∆φ is caused by the sine components of the internal and external noise voltages
and also driven by the amplitude noise via the reactive saturation parameter. Therefore,
the phase of a free-running oscillator diffuses via a random walk, while the amplitude is
stabilized to its steady-state value. This effect is shown schematically in Fig. 10.5.

Figure 10.5: The noise driving forces of a laser oscillator.

Fourier analysis of Eqs. (10.36) and (10.37) results in the power spectral densities of
∆A and ∆φ:

S∆A(Ω) =
1

s2R2
L

· Sac(Ω) + SLc(Ω)
1 + (Ω/Ωc)2

, (10.38)

S∆φ(Ω) =

(
ω
Qe

)2

4A2R2
LΩ2

[Sas(Ω) + SLs(Ω)] +

(
r
s

)2
(

ω
Qe

)2

4A2R2
LΩ2

· Sac(Ω) + SLc(Ω)
1 + (Ω/Ωc)2

. (10.39)

Here, the noise bandwidth Ωc is given by

Ωc =
s

2

(
ω

Qe

)
=





0 : βA2 ¿ 1 (just above threshold)
ω

Qe
: βA2 À 1 (far above threshold) . (10.40)

Figure 10.6 shows the amplitude noise spectra for various pump rates. At far above
threshold, the amplitude noise spectrum is reduced to

S∆A(Ω) =
1

4R2
L

· Sac(Ω) + SLc(Ω)

1 +
(
Ω/ ω

Qe

)2 . (10.41)

Let us consider the two limiting cases:
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Figure 10.6: The amplitude noise spectra of a laser oscillator.

(1) Quantum Limit: Sac(Ω) = SLc(Ω) = 4h̄ωRL

Both internal and external noise voltages are limited by a quantum mechanical zero-
point fluctuation. An ideal laser oscillator is such an example. The amplitude noise
spectrum for this case is

S∆A(Ω) =
2h̄ω
RL

1 +
(
Ω/ ω

Qe

)2 . (10.42)

(2) Thermal Limit: Sac(Ω) = SLc(Ω) = 8kBTRL

Both internal and external noise voltages are limited by Johnson-Nyquist thermal
noise. An ideal microwave oscillator is such an example. The amplitude noise spectrum
for this case is

S∆A(Ω) =
4kBT
RL

1 +
(
Ω/ ω

Qe

)2 . (10.43)

The stored energy inside the LC circuit is given by

1
2
LA2 = h̄ωn , (10.44)

where n is the number of oscillator photons. Therefore, the spectrum of the photon number
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is

S∆n(Ω) =
(

LA

h̄ω

)2

S∆A(Ω) =





4n ·
(

ω
Qe

)−1

1 +
(
Ω/ ω

Qe

)2 : Quantum limit

4n

(
2kBT

h̄ω

) (
ω
Qe

)−1

1 +
(
Ω/ ω

Qe

)2 : Thermal limit

.

(10.45)
Therefore, the variance in the photon number 〈∆n2〉 is calculated by the Parseval theorem:

〈∆n2〉 ≡
∫ ∞

0
S∆n(Ω)

dΩ
2π

=

{
n : Quantum limit
2nnth : Thermal limit

. (10.46)

The van der Pol oscillator in the quantum limit has a Poissonian photon number distri-
bution at far above threshold, for which the variance 〈∆n2〉 is equal to the mean n. On
the other hand, the variance of the photon number in the thermal limit is larger than
the Poisson limit by a factor of 2nth = 2 (kBT/h̄ω), where nth is the number of thermal
photons.

Figure 10.7 shows the phase noise spectra for various pump rates. The phase noise

Figure 10.7: The phase noise spectra of a laser oscillator.

spectral density diverges in the zero frequency limit, S∆φ(Ω → 0) → ∞, which is the
characteristic of a Wiener-Lévy process and originates from the fact that there is no
restoring force for a phase. When r = 0 and at a quantum limit, the phase noise spectral
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density is

S∆φ(Ω) =

(
ω

Qex

)

A2
0Ω2

. (10.47)

A laser has a coherent photon field A0 inside a cavity, into which a random-phase sponta-
neous emission is coupled. The rate of spontaneous emission coupling into a laser mode
is equal to A = ω

Qex
, because the stimulated emission rate B per photon must be equal to

the cavity decay rate ω
Qex

at above the threshold and the spontaneous emission rate A into
a laser mode must be equal to the stimulated emission rate B for one photon (Einstein’s
relation). One-half of the spontaneous photons have a quadrature phase with respect to
the laser field and causes a phase diffusion. The phase jump per one spontaneous photon
with a quadrature phase is equal to ∆φ = 1/A0 and the rate of such a phase jump is given
by 1

2

(
ω

Qex

)
[1/s]. From this simple argument, we obtain the expression for a random walk

phase diffusion over a time interval t:

∆φ2 =
1

A2
0

× 1
2

(
ω

Qex

)
t ≡ 2Dφt , (10.48)

from which we have the phase diffusion constant,

Dφ =

(
ω

Qex

)

4A2
0

=
1
4

lim
Ω→0

[
Ω2S∆φ(Ω)

]
. (10.49)

If we define an instantaneous frequency by

∆ω(t) =
d

dt
∆φ(t) , (10.50)

the frequency noise spectrum is given by

S∆ω(Ω) = Ω2S∆φ(Ω)

=

(
ω

Qex

)2

4A2R2
L

[Sas(Ω) + SLs(Ω)] +

(
r
s

)2
(

ω
Qex

)2

4A2R2
L

· [Sac(Ω) + SLc(Ω)]
1 + (Ω/Ωc)2

.

(10.51)

In contrast to the phase noise, the frequency noise is a statistically stationary process and
has a finite spectral density at Ω = 0.

The frequency noise enhancement factor appeared in Eq. (10.51) is expressed by

r

s
≡

(
A

Ra(A)
∂Xa

∂A

)
/

(
− A

Ra(A)
∂Ra

∂A

)

= −
(

∂Xa

∂A

)
/

(
∂Ra

∂A

)

= −
(

∂χr

∂A0

)
/.

(
∂χi

∂A0

)
. (10.52)

This parameter is often referred to as a linewidth enhancement factor or Henny’s α
parameter.[3],[5]
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10.4 Spectral Linewidth

The oscillator circuit impedance is calculated from Eq. (10.19) as

Z(ω) = 2L

[
1
2

ω

Q
+ i(ω − ω

′
0)

]
, (10.53)

where ω
′
0 = ω0 − Xa(A)

2L is the actual oscillation frequency, ω0 is the cold cavity resonant
frequency, and Q is the effective (or active) Q value defined by

ω

Q
≡ ω

Qe
− ω

Qa
=

RL

L
− Ra(A)

L
. (10.54)

The spectral profile of the oscillating current i(ω) is calculated by

|i(ω)|2 =
Sva(ω

′
0) + SvL(ω

′
0)

4L2

[
1
4

(
ω
Q

)2
+ (ω − ω

′
0)2

] . (10.55)

Since Sva(ω
′
0) and SvL(ω

′
0) are slowly-varying functions of ω

′
0 and can be considered con-

stant where the denominator is not very large, the spectral profile Eq. (10.55) is Lorentzian
with a full-width at half-maximum (FWHM)

∆ω1/2 =
ω

Q
. (10.56)

(1) Below the Oscillation Threshold

In this case, gain saturation is negligible, Ra(A) ' R0, and thus one obtains

∆ω1/2 =
ω

Qe

(
1− R0

RL

)
. (10.57)

The spectral linewidth decreases linearly with the difference (RL−R0) between the thresh-
old pump rate and the actual pump rate.

(2) Above the Oscillation Threshold

In the earlier discussion about the steady-state solution, the saturated gain Ra(A)
was made equal to the loss RL. This is not exactly the case because an actual oscillator
has internal and external noise sources. The saturated gain Ra(A) is always slightly
smaller than the loss RL; that is, an actual oscillator has a small “net loss” even above
the threshold, as shown in Fig. 10.8. The steady-state oscillation field is maintained in
spite of a “net loss” because the internal and external noise powers are coupled into the
oscillator and compensate for the net loss. By increasing the noise powers coupled into
the oscillator, the “net loss,” RL − Ra(A), increases and the spectral linewidth becomes
broader.
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Ra (A)

RL

RL -Ra (A) : net loss

R00

oscillation threshold

Figure 10.8: The saturated gain Ra(A) vs. pump rate R0 of a laser oscillator.

In order to evaluate the saturated gain and the linewidth, let us calculate the total
emitted power by

Pe = RL

∫ ∞

0

∣∣i(ω′0)
∣∣2 dω

2π

=
RL

4L2
(

ω
Q

)
[
Sva(ω

′
0) + SvL(ω

′
0)

]
. (10.58)

Let us consider the two limiting cases:

(2-A) Quantum Limit: Sva(ω
′
0) = SvL(ω

′
0) = 2h̄ω

′
0RL

∆ω1/2 ≡
ω

Q
=

h̄ω
′
0

(
ω
Qe

)2

Pe
. (10.59)

If one uses ∆ν1/2 = 1
2π∆ω1/2 and ∆νc = 1

2π

(
ω
Qe

)
, one obtains

∆ν1/2 =
2πhν

′
0(∆νc)2

Pe
. (10.60)

This is the Schawlow-Townes linewidth for a laser oscillator.[6]

(2-B) Thermal Limit: Sva(ω
′
0) = SvL(ω

′
0) = 4kBTRL

∆ω1/2 =
2kBT

(
ω
Qe

)2

Pe
, (10.61)

∆ν1/2 =
4πkBT (∆νc)2

Pe
. (10.62)

This is the Shimoda-Takahashi-Townes linewidth for a maser oscillator.[7]
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10.5 Spontaneous Emission Coupling Efficiency

The spectral linewidth ∆ω1/2 in the quantum limit is rewritten using Eqs. (10.29) and
(10.13) as

∆ω1/2 =
(

ω

Qe

) 2β
h̄ω
′
0

L(
R0
RL

− 1
) . (10.63)

The linewidth drops by a factor of 2βh̄ω
′
0/L at the threshold and decreases linearly with

the relative pump rate (R0/RL − 1), as shown in Fig. 10.11. The physical meaning of the
factor 2βh̄ω

′
0/L can be elucidated in the following way. According to the saturated gain

model Eq. (10.27), the gain is decreased to one-half at the saturation intensity:

A2
s =

1
β

. (10.64)

This saturation intensity A2
s is converted to the saturation photon number by Eq. (10.44)

ns =
L

2h̄ω
′
0β

. (10.65)

The transition from the upper state to the lower state in an efficient laser oscillator
is achieved by the two processes: spontaneous emission with a rate A and stimulated
emission with a rate Bn, where A and B are Einstein’s spontaneous A and stimulated B
coefficients and n is the photon number of a laser mode. When A À Bn, Ra(A) ' R0

(unsaturated gain), wherease if A ¿ Bn, Ra(A) ¿ R0 (highly saturated gain). The gain
decreases to one-half of the unsaturated gain, Ra(A) = 1

2R0, at n = ns, where we should
have

A = Bns . (10.66)

The total spontaneous emission rate A is equal to the product of the spontaneous emis-
sion rate into a single laser mode B and the total number of modes M within the gain
bandwidth,

A = BM . (10.67)

The spontaneous emission coupling efficiently ξ is defined by the fractional rate of spon-
taneous emission coupled into a single laser mode out of the total spontaneous emission
rate. Based on this definition, we can express ξ in terms of the effective mode number M
or the saturation photon number ns:

ξ =
1
M

=
1
ns

=
2h̄ω

′
0β

L
. (10.68)

Laser threshold

A laser threshold is defined as the condition that the average photon number of a
laser mode is equal to one, where the stimulated emission rate is equal to the spontaneous
emission rate into the same mode. The average photon number at a threshold is

n = ξPthτph = 1 , (10.69)
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from which the threshold pump rate is given by

Pth =
1

ξτph
=

(
ω
Qe

)

ξ
. (10.70)

A minimum possible laser threshold is equal to ω
Qe

, which is achieved when ξ = 1, and a
laser threshold increases with decreasing ξ.

Photon number

The photon number at below threshold is

n = ξPτph = ξ
P(
ω
Qe

) , (10.71)

while that at above threshold is

n = ns (P/Pth − 1) =
1
ξ

(P/Pth − 1) . (10.72)

The photon number jumps from n = 1 at P = Pth to n = 1/ξ at P = 2Pth as shown in
Fig. 10.9.

Figure 10.9: Average photon number n vs. normalized pump rate P/
(

ω
Qe

)
.

Spectral linewidth

The spectral linewidth at below threshold is

∆ω1/2 =
ω

Qe
(1− P/Pth) , (10.73)
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while that at above threshold is

∆ω1/2 =

(
ω
Qe

)

n
= ξ

(
ω

Qe

)
1

P/Pth − 1
. (10.74)

The spectral linewidth abruptly drops from the cold cavity linewidth ω
Qe

to ξ
(

ω
Qe

)
at

P/Pth = 2, as shown in Fig. 10.11. The abrupt change of the spectral linewidth is absent
for ξ = 1.

Gain saturation

The total spontaneous emission rate A increases linearly with the pump rate at below
the threshold, but is saturated at above the threshold due to the onset of the stimulated
emission,

A =





P : bellowsthreshold

Pth =

(
ω
Qe

)

ξ
: above threshold

. (10.75)

Figure 10.10 shows the normalized total spontaneous emission rate A(
ω

Qe

) vs. normalized

pump rate P/
(

ω
Qe

)
.

Figure 10.10: Normalized spectral linewidth ∆ω1/2(
ω

Qe

) vs. normalized pump rate P/
(

ω
Qe

)
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Figure 10.11: The spectral linewidth ∆ω1/2 vs. pump rate R0 of a laser oscillator.

10.6 Amplitude and Phase Noise of an Output Wave

The amplitude and phase noise studied thus far is those of the internal field of an oscillator.
In most practical cases, however, one needs to know the noise of an output wave rather
than that of an internal field, and these two are not identical.[4],[5]

Consider a negative conductance oscillator with a circulator as the output coupling
element, as shown in Fig. 10.12. The circulator separates the input and output ports and
simultaneously serves as the load resistance RL for an oscillator internal circuit as shown
in Fig. 10.1. Therefore, as far as the internal current I is concerned, this configuration is
identical to the oscillator model shown in Fig. 10.1.

Figure 10.12: A negative conductance oscillator with an output coupling circuit.

The output current Ie consists of the reflected noise current vL/2RL and the internal
current I:

Ie = I − vL

2RL
, (10.76)
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where
I = (A + ∆A) cos(ωt + ∆φ) , (10.77)

Ie = (Ae + ∆Ae) cos(ωt + ∆φe) , (10.78)

vL = vLc cos(ωt + ∆φ) + vLs sin(ωt + ∆φ) . (10.79)

From the above relations, the amplitude noise of the output wave is

∆Ae(Ω) = ∆A(Ω)− vLc(Ω)
2RL

=
(

1
i2LΩ + sRL

− 1
2RL

)
vLc(Ω) +

1
i2LΩ + sRL

vac(Ω) . (10.80)

The power spectral density of ∆Ae is thus given by

S∆Ae(Ω) =

(
2
s − 1

)2
+ (Ω/Ωc)2

4R2
L[1 + (Ω/Ωc)2]

SLc(Ω) +
1

s2R2
L

· 1
1 + (Ω/Ωc)2

Sac(Ω) . (10.81)

At just above the oscillation threshold (s ¿ 1), the spectrum Eq. (10.81) is close to that
of the internal field Eq. (10.38) except for the white noise in the high-frequency regime,
Ω > ω

Qe
, (Fig. 10.13). This white noise comes from the reflected external noise −vLc/2RL

in Eq. (10.80).

Figure 10.13: Normalized amplitude noise spectrum of an output field.

At far above threshold (s ' 2), Eq. (10.81) is reduced to

S∆Ae(Ω) =
1

4R2
L




(
Ω/ ω

Qe

)2

1 +
(
Ω/ ω

Qe

)2 SLc(Ω) +
1

1 +
(
Ω/ ω

Qe

)2 Sac(Ω)


 . (10.82)
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Consider the following two cases. When both internal and external noise sources are
quantum limited, i.e., SLc(Ω) = Sac(Ω) = 4h̄ωRL, one has a white noise spectrum:

S∆Ae(Ω) =
h̄ω

RL
. (10.83)

The output photon flux N is given by

N =
1
2
RLA2

e/h̄ω , (10.84)

and its spectrum is

S∆N (Ω) =
(

RLAe

h̄ω

)2

S∆Ae(Ω)

=
RLA2

e

h̄ω
= 2N . (10.85)

If this photon flux fluctuation is converted to photocurrent fluctuation by a photodetector
with 100% quantum efficiency, the current spectrum is

S∆I(Ω) = q2S∆N (Ω) = 2q2N = 2qI , (10.86)

where I = qN is the average dc current. This is the full-shot noise. As shown in Fig. 10.14,
the origin of this (quantum) shot noise is the internal noise vac in the low-frequency regime,
Ω < ω

Qe
, and the external noise vLc in the high-frequency regime, Ω > ω

Qe
. The (originally

white) internal noise vac is transformed into a Lorentzian spectrum due to the storage
(averaging) function of the resonator. A rapid fluctuation component of vac is averaged by
the storage effect of the field inside the resonator. On the other hand, the (originally white)
external noise vLc is transformed into the opposite spectral shape because a fluctuation
component of vLc near the cavity resonance

(
Ω < ω

Qe

)
is absorbed and suppressed by

the gain saturation of a laser oscillator. A fluctuation component of vLc far from the
cavity resonance

(
Q > ω

Qe

)
is simply reflected. A highly saturated oscillator behaves as a

“matched load” near resonance and behaves as an “infinite impedance reflector” far from
resonance.

The phase noise of an output wave is given by

∆φe(Ω) = ∆φ(Ω)− vLs(Ω)
2RLA

= − 1
iΩ2LA

[
vas +

(
1 + iΩ

L

RL

)
vLs

]
− rRL

iΩ2LA
· 1
iΩ2L + sRL

(vac + vLc) .

(10.87)

The power spectral density of ∆φe is

S∆φe(Ω) =
1

4L2A2Ω2
Sas(Ω) +

(
1

4L2A2Ω2
+

1
4R2

LA2

)
SLs(Ω)

+
(

r
s

)2

4L2A2Ω2
· 1
1 + (Ω/Ωc)2

[Sac(Ω) + SLc(Ω)] . (10.88)
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Figure 10.14: Normalized amplitude noise spectrum of an output field at far
above threshold.

The phase noise spectrum S∆φe(Ω) is shown in Fig. 10.15 and is different from the internal
phase noise spectrum S∆φ(Ω) only in the high-frequency region, i.e. white-noise spectrum.
The internal phase noise due to vLs and the directly reflected noise wave vLs are 90◦ out-
of-phase, as indicated in Eq. (10.87), so they are simply added. On the other hand, the
internal amplitude noise due to vLc and the directly reflected noise wave vLc are 180◦

out-of-phase, as indicated in Eq. (10.80), and thus cancel each other out.
In the special case of no internal noise, Sac(Ω) = Sas(Ω) = 0, and quantum-limited

external noise, SLc(Ω) = SLs(Ω) = 4h̄ωRL, the amplitude and phase noise spectra are

S∆Ae(Ω) =
h̄ω

RL
·

(
Ω/ ω

Qe

)2

1 +
(
Ω/ ω

Qe

)2 ↘

A2S∆φe(Ω) =
h̄ω

RL

1 +
(
Ω/ ω

Qe

)2

(
Ω/ ω

Qe

)2 ↗
S∆Ae(Ω) ·A2S∆φe(Ω) =

(
h̄ω

RL

)2

. (10.89)

This is often referred to as the spectral Heisenberg uncertainty principle. A saturated
oscillator suppresses the amplitude noise to below the shot-noise value (standard quan-
tum limit: SQL) and enhances the phase noise to above the SQL within the resonator
bandwidth, Ω < ω

Qe
. Such a field with reduced amplitude noise and enhanced phase noise

is called an amplitude-squeezed state, which satisfies the minimum uncertainty product.
On the other hand, a field with the amplitude and phase noise equal to the SQL is
called a coherent state. An ideal saturated oscillator without internal noise produces an
amplitude-squeezed state in the low-frequency regime and a coherent state in the high-
frequency regime, as shown in Fig. 10.16. An example of such an ideal laser without an
internal noise (pump noise) is a constant-current-driven semiconductor laser.
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Figure 10.15: Normalized phase noise spectrum of an output field.

10.7 Injection-Locked Oscillators

Consider a negative conductance oscillator, which is injection-locked by an external co-
herent signal ve, as shown in Fig. 10.17. The circuit equation (in complex representation)
is[8]

[
RL + i

(
ωL− 1

ωC

)
−Ra + iXa

]
i(ω) = va(ω) + vL(ω) + ve(ω) . (10.90)

Assume that the internal current i(t) is phase-locked by the injection signal ie(t) = ve
2RL

,

ie(t) = Re

(
ve(ω)
2RL

)
= Re(Ae eiωt) , (10.91)

i(t) ≡ Re [i(ω)] = Re
[
(A + ∆A)ei(ωt+φ+∆φ)

]
. (10.92)

The amplitude and phase noise of the injection signal are attributed to the external noise
voltage vL. Using Eqs. (10.91) and (10.92) in Eq. (10.90), one obtains

{
RL −Ra(A)− ∂Ra

∂A
∆A + 2L

1
A

d

dt
∆A

+i2L

[
ω − ω0 +

Xa(A)
2L

+
1

2L

∂Xa

∂A
∆A +

d

dt
∆φ

]}

×(A + ∆A)ei(ωt+φ+∆φ) = va + vL + 2RLAee
iωt .

(10.93)
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Figure 10.16: The spectral uncertainty relation between the amplitude and
phase noise of an output field from an ideal laser.

The steady-state solution is obtained by neglecting all fluctuating terms:
[
RL −Ra(A) + i2L(ω − ω

′
0)

]
A = 2RLAe(cosφ− i sinφ) . (10.94)

Here, ω
′
0 = ω0− Xa(A)

2L is a free-running oscillation frequency. The real part of Eq. (10.88)
is

[RL −Ra(A)]A = 2RLAe cosφ . (10.95)

We expand the oscillation amplitude A in terms of a free-running oscillation amplitude
A0 and small change of amplitude ∆A due to the injection signal:

A = A0 + ∆A , (10.96)

where A0 satisfies the gain clamping condition

RL =
R0

1 + βA2
0

. (10.97)

Using Eqs. (10.96) and (10.97) in Eq. (10.95), one obtains

∆A = Ae

(
1 + βA2

0

βA2
0

)
cosφ . (10.98)
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Figure 10.17: An electrical circuit model of an injection-locked laser oscillator.

This increase in the internal oscillation amplitude is converted to the change in the output
wave amplitude by using the boundary condition, ∆Ae = ∆A−Ae:

∆Ae =
(1 + βA2

0) cosφ− βA2
0

βA2
0

Ae . (10.99)

When the oscillator is pumped just above threshold, βA2
0 ¿ 1, the conversion from the

input to output amplitude, a reflection coefficient, is given by

∆Ae

Ae
' cosφ

βA2
0

> 1 (amplification) . (10.100)

On the other hand, when the oscillator is pumped far above threshold, βA2
0 À 1, the

reflection coefficient is
∆Ae

Ae
' cosφ− 1 (attenuation) . (10.101)

As will be shown later, if the injection signal frequency ω and the free-running oscilla-
tion frequency ω

′
0 are identical, the phase shift φ is equal to zero. In such a case, the

injection-locked oscillator at far above threshold completely suppresses the amplitude sig-
nal and, therefore, the injection-locked oscillator operates as a matched load with complete
amplitude limiting function.

The imaginary part of Eq. (10.94) is

L(ω − ω
′
0)A = −RLAe sinφ . (10.102)

In order to have a real value of the phase shift φ in Eq. (10.102), one has the constraint
for the allowed frequency detuning

∣∣∣ω − ω
′
0

∣∣∣:

∣∣∣ω − ω
′
0

∣∣∣ =
∣∣∣∣
RL

L

Ae

A
sinφ

∣∣∣∣ ≤
ω

Qe
· Ae

A
= ∆ωL . (10.103)
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This gives the Adler’s equation for a locking bandwidth ∆ωL. When the frequency de-
tuning ω − ω

′
0 is within this bandwidth, the oscillator frequency is locked to the injection

signal frequency ω. The phase shift φ is now given by

sinφ = − ω − ω
′
0(

ω
Qe

)
Ae
A

=
ω
′
0 − ω

∆ωL
. (10.104)

Figure 10.18 shows the oscillation frequency ωa, phase shift φ, internal amplitude modu-
lation ∆A, and output wave amplitude modulation ∆Ae of the injection-locked oscillator
as a function of the frequency detuning ω − ω

′
0.

ω a- ω

−∆ω L

∆ω L
ω0

' - ω

π
2

- π
2

−∆ω L

∆ω L

−∆ω L ∆ω L

∆A
Ae

1 + βA0
2

βA0
2

−∆ω L ∆ω L

R0 RL>

R0 RL

∆Ae

Ae

ω0
' - ω

ω0
' - ωω0

' - ω

φ

0 0

>>

Figure 10.18: The oscillation frequency ωa, phase shift φ, internal amplitude
change ∆A

Ae
and reflection coefficient ∆Ae

Ae
of an injection-locked oscillator.

Consider the amplitude and phase noise of an injection-locked oscillator. Assuming
ω = ω

′
0 and φ = 0 in Eq. (10.93), one obtains
(

2L
d

dt
∆A−A

∂Ra

∂A
∆A

)
cos(ωt)− 2LA

(
d

dt
∆φ +

1
2L

∂Xa

∂A
∆A

)
sin(ωt)

= va + vL + 2RLAe∆φ sin(ωt) . (10.105)
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Multiplying cosωt and sinωt and integrating over one period of oscillation, one has the
following equations for the amplitude noise ∆A(t) and phase noise ∆φ(t):

2L
d

dt
∆A−A

∂Ra

∂A
∆A = vac + vLc , (10.106)

−2LA

(
d

dt
∆φ +

1
2L

∂Xa

∂A
∆A

)
= vas + vLs + 2RLAe∆φ . (10.107)

The resistive saturation parameter s is now given by

s ≡ − A

Ra(A)
∂Ra

∂A

= − A

RL

∂Ra

∂A

(
1− 2Ae

A

)−1

, (10.108)

where Eq. (10.95) with φ = 0 is used to derive the second equality. Equation (10.106) is
rewritten as

d

dt
∆A +

s

2

(
ω

Qe

) (
1− 2Ae

A

)
∆A =

1
2L

(vac + vLc) . (10.109)

The Fourier-transformed internal and external amplitude noise are

∆A(Ω) =
1

2L [vac(Ω) + vLc(Ω)]
iΩ + ∆ωa

, (10.110)

∆Ae(Ω) = ∆A(Ω)− vLc(Ω)
2RL

=
ω
Qe
−∆ωa − iΩ

2RL(iΩ + ∆ωa)
vLc(Ω) +

ω
Qe

2RL(iΩ + ∆ωa)
vac(Ω) . (10.111)

Here, ∆ωa = s
2

(
ω
Qe

) (
1− 2Ae

A

)
is the amplitude noise bandwidth. At far above threshold

and for a relatively small injection signal, ω
Qe
− ∆ωa ' 2∆ωL. Since ω

Qe
À ∆ωL in a

practical situation, ∆ωa ' ω
Qe

and one thus has the amplitude noise spectrum:

S∆Ae(Ω) =
1

4R2
L


 Ω2 + 4∆ω2

L

Ω2 +
(

ω
Qe

)2 SLc(Ω) +

(
ω
Qe

)2

Ω2 +
(

ω
Qe

)2 Sac(Ω)


 . (10.112)

When the internal noise voltage is negligible, Sac(Ω) = 0, the normalized amplitude noise
spectrum is shown schematically in Fig. 10.19.

On the other hand, Eq. (10.107) is rewritten as

d

dt
∆φ + ∆ωL∆φ =

r
(

ω
Qe

)

2A
∆A− 1

2LA
(vas + vLs) . (10.113)

The Fourier-transformed internal and external phase noise for the negligible reactive sat-
uration parameter r = 0 are

∆φ(Ω) =
−[vas(Ω) + vLs(Ω)]
(iΩ + ∆ωL)2LA

, (10.114)
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Figure 10.19: Normalized amplitude noise spectrum of an injection-locked oscillator.

∆φe(Ω) = ∆φ(Ω) +
vLs(Ω)
2RLA

= − 1
2LA(iΩ + ∆ωL)



vas(Ω) +


1− iΩ + ∆ωL(

ω
Qe

)

 vLs(Ω)



 .(10.115)

The phase noise spectrum is given by

S∆φe(Ω) =
Sas(Ω)

4L2A2(Ω2 + ∆ω2
L)

+
SLs(Ω)
4L2A2

Ω2 +
(

ω
Qe
−∆ωL

)2

(
Ω2 + ∆ω2

L

) (
ω
Qe

)2 . (10.116)

When the internal noise voltage is negligible, Sas(Ω) = 0, the normalized phase noise
spectrum is shown schematically in Fig. 10.20.

If the internal noise is negligible, Sac(Ω) = Sas(Ω) = 0, and the external noise is
quantum-limited, SLc(Ω) = SLs(Ω) = 4h̄ωRL, the amplitude and phase noise spectra are
reduced to

S∆Ae(Ω) =
h̄ω

RL


 Ω2 + 4∆ω2

L

Ω2 +
(

ω
Qe

)2


 , (10.117)

A2S∆φe(Ω) ' h̄ω

RL




Ω2 +
(

ω
Qe

)2

Ω2 + ∆ω2
L


 . (10.118)

When ∆ωL ¿ ω
Qe

, the product of the amplitude and phase noise spectra satisfies the
uncertainty relationship:

S∆Ae(Ω) ·A2S∆φe(Ω) ' η

(
h̄ω

RL

)2

, (10.119)
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Figure 10.20: Normalized phase noise spectrum of an injection-locked laser oscillator.

where η = 4 for Ω ¿ ∆ωL and η = 1 (minimum uncertainty product) for Ω À ∆ωL. As
shown in Fig. 10.21, an injection-locked oscillator has a localized phase distribution due
to a phase-restoring force, while a free-running oscillator has a completely random phase
distribution due to the absence of a phase-restoring force.

If an external injection signal has a phase diffusion noise ∆φex and excess amplitude
noise ∆Aex, the equation of motion for the phase noise of an injection-locked oscillator is

d

dt
∆φ = −∆ωL cosφ(∆φ−∆φex) + (ω

′
0 − ω)

∆A

A
−∆ωL sinφ · ∆Aex

Aex

+
r

(
ω
Qe

)

2A
∆A− 1

2LA
(vas + vLs) . (10.120)

When there is a frequency detuning between ω
′
0 and ω, the amplitude noise of the external

injection signal, ∆Aex, and that of the injection-locked laser, ∆A, contribute to the phase
noise. When ω

′
0 = ω, those excess noise contributions are suppressed but the phase

diffusion noise ∆φex of the external injection signal is not suppressed, and we have

S∆φe(Ω) =
Ω2

Ω2 + ∆ω2
L

S0
∆φe

(Ω) +
∆ω2

L

Ω2 + ∆ω2
L

S∆φex(Ω) , (10.121)

where S∆φe(Ω)0 is the external phase noise spectrum of a free-running oscillator Eq. (10.88)
and S∆φex(Ω) is the phase diffusion noise spectrum of an external injection signal.

10.8 Frequency Modulation Feedback and Phase-Locked-
Loop Oscillators

The frequency and/or phase noise of a laser oscillator is suppressed alternatively by a
hybrid optoelectronic feedback control. Figures 10.22(a) and (b) show a frequency modu-
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Figure 10.21: Phase noise distributions of a free-running laser and injection-locked laser.

lation feedback (FMFB) and phase locked loop (PLL) oscillator. In the FMFB oscillator,
the output field from a slave laser is mixed with the output field of a (frequency standard)
master laser and the beat note at a difference frequency ωIF = ωs − ωm is fed into the
frequency discriminator. The discriminator output reports the instantaneous frequency
noise of the slave laser and is fedback to the slave laser to counter-modulate the oscil-
lation frequency of the slave laser via the dispersion term χr (or reactance Xa) of the
active medium or the empty cavity resonant frequency ω0. This negative feedback loop
can suppress the frequency noise spectrum of the slave laser within the loop bandwidth in
addition to the center frequency stabilization to the master laser frequency.

In the PLL oscillator, the output field from a slave laser is mixed with the output field
of a (phase standard) master laser with an identical frequency ωm = ωs. This optical
homodyne detection output reports the instantaneous phase noise of the slave laser and
is fedback to the slave laser to counter-modulate the oscillation phase of the slave laser
via χr or ω0. This negative feedback loop can suppress the phase noise spectrum of the
slave laser within a loop bandwidth. If the slave laser output is replaced by a weak phase-
modulated signal, the same PLL circuit operates as a high-gain noise-free amplifier for
a weak incident signal, that is, the strong master output is just a replica of the weak
phase-modulated signal wave.
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Figure 10.22: (a) Frequency modulation feedback (FMFB) laser oscillator and
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AM and F M  Quantum  Noise in Semiconductor 
Lasers-Part I: Theoretical  Analysis 

Abstract-AM and FM quantum noise properties of semiconductor 
lasers have been  studied  theoretically.  Theoretical  formulations for  the 
AM noise  spectrum, photon number  probability  density, FM noise spec- 
trum, instantaneous  frequency  probability  density,  and  power  spectrum 
are  presented here as functions of semiconductor  laser  material,  struc- 
tural, and pumping  parameters.  Two  theoretical  approaches  are  em- 
ployed: one is based on the  quantum  mechanical Langevin equation, 
and the  other  on the  density maixix equation.  Starting  from the quan- 
tum mechanical Langevin equation, three different  formulations, that 
is, the  rate equation,  Fokker-Planck equation,  and van der Pol equa- 
tion,  are derived. The  parameters which represent  stimulated  emission, 
spontaneous emission, and refractive-index  dispersion are obtained by 
using the Kane function interpolated to Halperin-Lax  bandtail  and the 
Stern's  improved matrix element. The above four different  theoretical 
formulations are related to each other, and the applicability  for each 
method is discussed. 

D 
I. INTRODUCTION 

ETAILED  understanding  of  quantum noise  properties 
in  semiconductor  lasers is important  for  coherent  optical 

fiber  communication  systems [l] and  sensor systems.  Appli- 
cations  of  semiconductor  lasers as such  principal devices in 
coherent  optical  fiber  systems as transmitters,  modulators, 
local  oscillators, and  optical  amplifiers will give  rise to great 
advantages  in  system  performance  and  efficiency. Quantum 
noise in  semiconductor  lasers is one  of  the  most  important 
problems to be  encountered in  these  applications,  since semi- 
conductor lasers have a  low  cavity Q and large quantum noise 
when  compared  with  gaseous  and  solid-state lasers. 

Five  values that  represent  quantum noise  characteristics  for 
lasers, and  that  can  be  measured  experimentally, are  illustrated 
in Fig. 1. They  are: 1) AM noise (or intensity  fluctuation) 
spectrum WQ(O); 2) photon  number  probability density 
Prob(n); 3) FM noise  spectrum W,n(w); 4) instantaneous  fre- 
quency  probability  density  Prob(i2);  and 5) power  spectrum 

The AM noise  spectrum  of  a  local  oscillator is of practical 
significance in  determining the carrier-to-noise ratio  in  an  opti- 
cal heterodyne  detection  system.  The  bit  error  rate  depends 
on the  photon  number  probability  density in the local oscilla- 
tor.  The  primary  concern  of  the  present  study is: how  does 
the  actual AM noise  power  and photon  number  probability 
density in semiconductor lasers  differ  from the  shot noise level 
and  the Poisson  distribution  that is obtained  with a  completely 
coherent wave? 

WO (a). 
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Fig. 1. Block diagrams for measuring observable quantum noise Pro- 
perties of semiconductor lasers. w + ( ~ ) :  AM noise spectrum; 
Prob(n):  photon  number  probability  density; Wsn(w): FM noise 
spectrum;  Prob(n) :instantaneous  frequency  probability density; and 
Wo(n - no): power spectrum. 

The FM noise  spectrum is important in relation to  the base- 
band  signal-to-noise ratio in  optical  frequency  shift  keying 
(FSK)  and  phase  shift  keying (PSK) systems.  This is because 
the FM noise spectrum  appears as an additive  noise in the final 
demodulation  output.  The  instantaneous  frequency  probabil- 
ity  density  causes  an  excess  bit  error  in the FSK  system  when 
the  frequency  shift  between  two signal states decreases and  the 
tails of  both signals' frequency  probability  densities  overlap. 
This is  also the case in a PSK system,  when  phase  diffusion  due 
to  the FM noise  approaches  the phase  shift  between two signal 
states. 

Two  kinds  of  theoretical bases have been  employed so far 
for  quantum noise  analyses  of  lasers.  They  are the  quantum 
mechanical Langevin equation  method  and  the density  matrix 
method.  The  former  method  has been  studied  extensively  by 
Haken  and  his  colleagues [2], [3] . Quantum mechanical  rate 
equations  with  fluctuation  terms  [4] , [5] , the Fokker-Planck 
equation  for  photon  amplitude  probability  density [6], [7] ,  
and  the classical van der Pol equation  with a  noise driving 
source [8] , [9] belong to this  category.  The  density  matrix 
method  has  been  studied  by Lamb and  his  colleagues [ l o ]  - 
[ 121 . The pioneering  work by  Shimoda et al. on maser  ampli- 
fier  analysis (STT theory) [13] corresponds to the linear  ver- 
sion  of this  theory.  Lax  and his co-workers have established 
that these two  formulations are  equivalent when  the  photon 
number  in  the  cavity is large  enough [ 141 , [ 151. Smith dis- 
cussed the corrections  for a small photon  number [ 161 . Pho- 
ton  count statistics  are  studied  experimentally [ 171 and  theo- 
retically [ 181 . 

Most of these  theoretical  studies have been  devoted to gas- 
eous  and solid-state lasers. To the  author's  knowledge,  how- 
ever,  these  different  theoretical  approaches have not  yet been 
systematically  studied for  semiconductor lasers. The relation- 
ship  between the five values presented  above  that represent 
quantum noise  properties of lasers have not fully  been  clarified 
either.  The  relation  between AM and FM quantum noise  is de- 
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picted in Fig. 2 .  Spontaneous  emission  coupled to a lasing 
mode  directly  causes intensity  fluctuation  and  phase  diffusion 
of  the laser field.  These  processes  can  be  described  by  the 
equation  only  for field  variables.  However, the  actual  quan- 
tum noise properties  of  semiconductor lasers are deeply  af- 
fected  by  the  different  processes,  such as the  competition  be- 
tween  carrier  and photon  fluctuation, carrier noise induced 
refractive-index  change,  and  current noise induced  diode  tem- 
perature  change. 

The  purpose  of  this  paper is to describe  the  relations  be- 
tween  these  quantum  noise  properties  in  terms of the  semicon- 
ductor laser  material,  structural,  and  pumping  parameters, 
through  the  four  different  theoretical  approaches. 

It is well known  that gain saturation is of  key  importance in 
laser noise characteristics. Spontaneous emission coupled  to  a 
lasing mode is, on  the  other  hand,  a direct  origin  of quantum 
noise.  The  relation  between  these two  facts  can  be  understood 
by  refering to one  of  the  important results of this  paper.  This 
result  clarifies that  the  saturation  parameter,  which  appears in 
the van der  Pol  equation  and  in  the  photon  density  matrix 
equation, is equivalent to the  spontaneous emission coefficient 
which  appears  in  the  rate  equation. 

The  flowchart of theoretical  analyses in this  paper is shown 
in Fig. 3. Numerical  comparisons  between  the  different  theo- 
retical approaches will  be described  in  an  accompanying  paper 
[ 191 . Experimental  results  for several types  of AlGaAs lasers 
will also be  presented  there. 

11. QUANTUM MECHANICAL LANGEVIN  EQUATION 
The  quantum  mechanical Langevin equations  for  a  photon 

amplitude  operator b", a  dipole  moment  operator alcakpv, and 
an electron  number  operator nkc,  will first be briefly  described 
[20] . The van der Pol equation  and rate equation to be used 
in Sections IV-VI are derived from  the Langevin equation. 

The  photon  amplitude  operator b+ of  a single lasing mode 
obeys 

d 
dt 
- b + = ( j U - K ) b + + j C  gkk'a;cak'V+F(t). (1) 

kk' 

Here  is a  cold  cavity  resonant  frequency, K = 1/27, is a loss 
constant  including  both  the  end  mirror  loss  and  free  carrier  ab- 
sorption loss,  and gkk' is the optical matrix  element  between 
the  conduction  band  state  with wave number k and  the va- 
lence  band  state  with wave number k'. The  correlation  func- 
tion  of  the  Marcovian  fluctuation  operator F is 

( F ( t )  F+(s)) = 6 ( t  - S )  (FF') ( 2 )  

where 

(FF? = 2 K n t h ,  (F+F) = 2K(nth + I), ( F F )  = (F+F+) = 0. 

nth = [exp (4QlkT) - 1 l - I  is the  number of thermal  photons. 
The  equation  for  the  dipole  moment  operator a&QkPu is 

d 
dt - a*kcak'v = ( j fkk '  - Ykk') a*kcak'v 

- jgkk'b+(nkc - nk'v)  Fkck'v(t)* (3) 

35  
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Fig. 2. Relations  between quantum noise in semiconductor lasers. 

Theoretical Analysis of AM and FM 
Quantum Noise in GaAs Lasers 

Here fkk' = (Eke - ./?k'v)/fi is the  frequency  separation  between 
state kc and  state k'u, and ykk' is the  phase  decay  constant  be- 
tween  the  two  states.  The  fluctuation  operator satisfies 

(Fkck'vFk'vkc) + (Fk'vkc  Fkck'v) 

= 2Ykk' [ fkc ( l  - fk'v)  fk'v(1 - fkc ) ]  Y (4) 

(Fkck'vFkckJv)  (Fk'ukcFktvkc)= 0 (5) 

where fkc  = [ 1 + exp ((./?kc - E ; , ) / ~ B  T } ]  -' is the  quasi-Fermi 
distribution  for  the  expected value of nkc = a+kcakc in the  con- 
duction  band, tc is the  corresponding  quasi-Fermi level, 
fkfu = [ 1 t exp {(&, - EkIu)/kB T } ]  -' is the  quasi-Fermi dis- 
tribution  for  the  expected value of nko = a+kvakv in the valence 
band,  and cu is the  corresponding  quasi-Fermi-level. 

The  time  development  of  the  electron  number  operator nkc 
is  given by 

where HC means  the  Hermitian  conjugate  and P k  is the  pump 
rate.  The spontaneous emission rate rsp,k into all continuum 
light modes  except  for  the laser mode is  given by 

rsp,k = 2 d i  kkk'12pLnkc(1  - nk'u). (7) 

Here, p~ = V0E+2&3C3 is the  normalized  density  of  states 

k' 
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for  the  light  field, V ,  is the  optical  mode  volume,  and Eg is 
the optical  energy.  The  last  factor  in (6) describes the  electron- 
electron  scattering  process. The  relaxation  time T , ~  is of  the 
order  of  10-'3-10-'2 s. This is smaller than  the carrier  life- 
time  shortened  by  the  stimulated emission  process except  for 
the  extremely high  light  field  intensity.  Therefore,  the  elec- 
trons always obey  the  quasi-Fermi  distribution. An equation 
similar to (6)  holds  for nk,. 

Since the phase  decay constant Tkk' is normally very large, 
the integration  of (3) can be  performed  adiabatically [ 141, 
P O I  

I' Fkck'u(T) ' exp ( jekk '  - Y k k ' )  ( t  - dT (8)  

where is the oscillation  frequency. By substituting (8) into 
(l),  it is possible to obtain 

rt 

' exp ( j f k k '  - Ykk ' )  (t - 7) dT. (9) 

The  electron  distribution  function is, in general,  a  nonlinear 
function  of  the  photon  number  operator n = b'b. It is  possi- 
ble to write 

where G is the  unsaturated gain,  and the  saturation S(n) may 
be approximated by  a  linear function of photon  number 

By using (10)  and  (11)  with (9), and  introducing  the slowly 
varying  amplitude B+ = bce-Jat , one  obtains 

This is the generalized van der  Pol equation  with  a noise driv- 
ing source F(t>. 

The  photon  number  representation  of  the Langevin equation 
(9) is obtained  by using the  identity (dldt) n = [(d/dt) b+]  b + 
b+ [(dl&) b]  as follows: 

d 
dt 
- n = - 2 K .  n +E,, + (E, - E,) n + F,(t) (1 3) 

where 

is the rate  of  spontaneous  emission  coupled  into  the laser 
mode  and E,, is obtained  from  (14)  by interchanging  kc and 
k'u. The  correlation  function  for  the  fluctuation  operator is 
given by 

(F,(t) F,(s)) = S ( t  - s) (2Kn + E,(n + 1) + E,n). (15) 

Because of  the  assumption  that  the  electrons  in  a  band  are 
always in  a quasi-equilibrium, it is sufficient to employ  one 
equation  for the  total  number  of  electrons N ,  = & nkc. By 
inserting (8) into (6) ,  and summing the resulting equation over 
all k values, one  obtains 

d 
d t  
- N ,  = P - R,, - (E, - E",) n - E,  t F,(t). (1 6 )  

Here, P = X k  P k  and R,, = & rsp,k.  The  correlation  function 
for  the  fluctuation  operator  is given by 

(F,(t) F,(s)) = S ( t  - s) (P t R,, t Eo(n + 1) t E,,n). (17) 

The  cross-correlation function  between  the  photon  and elec- 
tron  fluctuation  operators satisfies 

(F,(t) F,(s)) = (F,(t) F,(s)) 

= - S ( t  - s) (E,(n + 1) t E,, . n). (1 8) 

Equations  (13)  and (16) are  rate  equations  with  fluctuation 
operators.  The  mean values of these equations,  of  course,  can 
be reduced to  a  Statz-deMars type  rate  equation. 

111. PARAMETERS IN THE LANGEVIN  EQUATION 
A. Stimulated Emission, Spontaneous Emission, and 
Anomalous Dispersion  Parameters 

The expressions for  the  stimulated emission  rate EcUn, the 
absorption  rate Eucn, and  the  spontaneous emission rate R,,, 
require the evaluation of  both  the  conduction  and valence 
band  densities of states  and  the  transition  matrix  element. 

The  conduction  and valence band  densities of  the  states  de- 
pend on the carrier concentration  and have bandtails  within 
the energy  gap.  Bandtail  representation  studiqs  were reported 
by Kane [21],  Halperin and  Lax  [22] , and  Stern [23].  

The  matrix  element is frequently assumed to be  based on  the 
so-called k-selection  rule [24] . For semiconductor lasers 
doped  with  impurities  and  operating  at  room  temperature, 
however, the k-selection  rule does  not  hold  and  the  matrix ele- 
ment  is  energy-dependent.  The  matrix  element  for  the  no k- 
selection  rule  transition  between  a  parabolic band  and  a shal- 
low  impurity level was derived  by  Dumke [25]. An improved, 
but  more  complex  matrix  element, considering the  bandtail 
effect, was obtained  by  Stern  [23] . 

Detailed  calculation  of  the gain coefficient  was  performed 
for GaAs  using the Stern's  improved matrix  element  and  the 
density of states  with  the  Kane  function  interpolated to  the 
Halperin-Lax  bandtail. The numerical  result for  peak gain co- 
efficient g,,, versus the carrier  density Ne gives the following 
simple expressions  for E,, and E,, . 

E,  = A rN, (1 9) 

E,, = AFNo. (20) 
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Here, r is the  optical  mode  confinement  factor to an  active At well above  the  threshold  the  internal  quantum  efficiency is 
layer, Ne = N,/Ve is the  minority carrier density,  and V, is the safely  assumed to  be  unity,  and  the  photon  number n is  given 
active region volume. A and No are important  material  param- by 
eters  determining  the gain and noise characteristics  of  semicon- Rnsp Ve 
ductor lasers, both of which  depend on background  doping = (p  - ' t h )  r~ =- . .  (28) 

A r r ,  
level and  injected  minority  carrier  density. 

The  spontaneous emission rate R ,  is given by Here,  the  second  equality is derived by using (25). By using 
(28)  and  (26)  with  (27),  the  saturation  parameter dS(n)/dn 

R ,  = NC/T, (21) can be  obtained as 

B. Saturation Parameter, Spontaneous Emission Coefficient, = E,/RSp = - 
and Population Inversion  Parameter VO 

AT, 

The  saturated gain G - S(n), appearing  in  (9)-(1 l), is ex- The  spontaneous emission coefficient /.3 has  the  same  form as 
pressed by using (1 9) and (20) as the  saturation  parameter dS(n)/dn except  for  the  normalizing 

factor 1 /2rp. 
The  spontaneous  emission  coefficient as well as the  popula- 

tion  inversion  parameter nsp plays  a  key  role  in  the  quantum 
noise properties  of  semiconductor lasers as will be seen in  the 

(22)  subsequent  sections. 

where Ne is the  saturated carrier density.  The  unsaturated car- 
rier density N," is,  on the  other  hand,  independent  of  the  pho- 
ton  number n. This  density is determined  by  the  pumping  rate A .  Derivation O f  the Equation 
P and  the  spontaneous  lifetime r, to  be  The  generalized  van  der Pol equation (12) for  the  photon 

amplitude, B+(t), can  be  transformed  into  its classical form  by 

IV. CLASSICAL  TREATMENT OF VAN DER POL 
EQUATION WITH NOISE DRIVING  SOURCE 

N," = PrJ V, . 
(23) introducing  the classical electric  field 

The  unsaturated gain G is  given by using (23)  in  (22) as 
follows: E(t) = 7 [B exp (jat) + B* exp (-jat)l. (3 1) 

L. 

(24)  The van der  Pol  equation  for E(t) is  given  by 

The  oscillation  threshold condition is  given by d 2 E  dE 
dt2 dt 

- + ( r - a + y I E I 2 ) - + + 2 E = N ( t ) ,  

2Gth rAr -- - N o  =L ( p:rs ) rp (25) where 

where rp is a  photon  lifetime  and Pth is the  threshold  pumping = 2K = ' l r P  ' 
rate. By using (25)  in  (24),  it  is  possible to  obtain a = 2G = [(R + A R )  nsp + 11 / rp ,  

1 
G =- (Rn,  + 1). 

27P 

Here, R = P/P,h - 1 is the relative  pumping  level, and nsp - 
1 + A r r p N O  is the  population  inversion  parameter.  This  latter 
parameter is near  unity in  gaseous  and  solid-state  lasers. 
most  striking feature  of  semiconductor laser noise is attributed 

- Here, AR represents  the effective  pumping level shift  intro- 
duced to  describe  the  finite  photon  number  at  the lasing 
threshold.  This value is given in  terms of the  pumping level R 

The in the  following  manner: 

to  the  fact  that nsp is larger than  unity. AR = (fi K)-' exp ( - K ~ R ~ )  [ 1 + erf ( K R ) ] - ' ,  (36) 

constant K at  above  the lasing threshold  by 
The  saturated gain G - S(n) is clamped to the  cavity  loss 

K = f i .  (37) 

G - -. ds(n) n K .  
dn (27) The  term AR is introduced so that  the van der  Pol  equation 



38 IEEE  JOURNAL OF QUANTUM  ELECTRONICS, VOL. QE-19, NO. 1, JANUARY 1983 

can  be  applied  near the threshold.  Validity is confirmed by 
means  of  the Fokker-Planck equation,  which will be  discussed 
in  Section V. The value AR is d- at  the lasing thresh- 
old,  and  rapidly decreases to zero  in the region  well above the 
threshold.  Therefore,  the  unsaturated  gain  (34) is consistent 
with (26) for well above the  threshold region. 

The noise driving source N(t )  is given by 

N(t) =jQ@i)'12 @(t) + C.C. (3 8) 

where C.C. denotes  the  complex  conjugate,  and @(t) is given by 
(1 2'). The spectral  density function  of  the noise  driving 
source is 

termined  by  the  output coupling  from the laser facet, L is 
cavity length,  and Rm is the  facet reflectivity.  dc photocur- 
rent, (i), generated  in  a  photodetector is 

(i) = D P ~  = D(E: t C,')/2rpM (46) 

where D = eq/4iS2 is the  photodetector conversion factor,  and 
17 is the  photodetector  quantum  efficiency. 

The  term  proportional to  EoC,(t) does  not  contribute to the 
dc photocurrent, since C,(t) is the  zero  mean Gaussian  ran- 
dom variable.  However this  term  does  contribute to  the noise 
power,  that is, the  beat noise  between signal and noise waves. 
The spectral  density of  the noise current (i,") is 

0 2  
(39) (i,") = 2 E: W,(O) 

TPM 
(47) 

Here, the three  terms  in  the  bracket respectively  indicate the where W,,(o) is  the spectral  density  of C,(t). The  Fourier 
thermal  photon,  the cavity loss constant  (photon  lifetime),  transform  of (43) gives 
and the  spontaneous emission photon  contributions  to N(t). 
gN(Q) is the gain envelope function  normalized as gN(Qo) = 1. W,,(o) = 

The  solution  of  the van der Pol equation (32) is assumed to 4Q2 w 2  t (R + AR) 
be expressed  as the sum of  the  completely  coherent signal [ t T )  [I 
wave, and  the in-phase and  out-of-phase  narrow  band Gaussian 
random  noise waves in  this  manner: - - 2AfinspgN(fio + a) 

(48) 
E = E o  cos a t  t Cn(t) cos a t  t S,(t) sin at. (40) m P  [w2 + { (R + a X ) p ]  

T P  
The  noise driving source N(t)  is  also expressed  as the sum  of 
the in-phase  and  out-of-phase  Gaussian  random  noise  compo- where the following  spectral  density of Ns(t)  is used. 

N(t)  = N,(t) cos a t  + Ns(t)  sin f i t .  (41) 

By using (40) and  (41)  with  (32)  and  equating cosine and sine 
terms  separately,  the  equation below  can be obtained.  Here,  the small contribution of the  thermal  photon  isneglected. 

The value of C,(t) is calculated  by using the spectral  density 
-- dsn - N,/2fi, 
d t  (42) ~,,(w> as  follows: 

- t - (E: t C,") C, = NJ2f i .  dCn Y 
d t  2 

- . r T  r -  

Here, - the assumptions  for C,, S:, << aC,, QS, and E,  =+iQ/(R t AR). (50) 
5'; << E: are used. Steady-state  solutions  of (32) give 

The value of E: can  be derived  using (50) in  (44)  such that 

- (E: + E )  = (R t AR)AQ. 1 
2 P (44) 

E: =fiQ [? (R t AR)  - 
R + A R  

This value corresponds to  the  total optical  energy  stored in a 
laser mode. Using (48) and (5  1) with  (47), one  obtains 

The simple equations (42) and  (43),  together  with  (39)  and e2V2TpgN(fio +a> 

r r $ ~ n , ~ ( R  + AR)2 (44), are  the basic formulations  for  the analysis to be  followed ci,") = 
in  this  section. 

B. AM Noise Spectrum R + A R  

is given by where w, is the  cutoff  frequency  of  the AM noise, and  is given 
The  output  power P(t) emitted  from  one of the laser facets 

by 
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This is the  unsaturated gain CY - r which  indicates  that  the  un- 
saturated gain is still  effective for suppressing AM noise. The 
relative intensity  noise  RIN is defined  as 

*gN(Ro + w>/[nn?,,(R + w 4  (1 + ( ~ / % ) 2 H ~  (54) 

This  RIN originates  in the  beat noise  between Eo and C,(t). 
The  additional shot noise due to  the signal wave Eo and  the 
noise wave Cn(t) are also generated  in  the  photodetector. 
Therefore,  total RIN  is 

RIN = eq.  (54) t 27p~p/[1)n ,~(R t AR)] . (5 5) 

The small contribution  of  beat noise  between  the noise waves 
is ignored here,  although  it is important  for laser amplifiers 
operating  below  the lasing threshold [26],   [27].  

At well above the  threshold region, AR = 0 and  the  beat 
noise is dominant.  The  RIN in this region is approximated  by 

RIN = 2 ~ ~ p g ~ ( R ,  t o) /[nn&R3 { 1 t (o/o,)'}]. (56) 

This  RIN is proportional to T ~ ,  0, ni;, and R-3.  At  far  above 
the  threshold region, the signal wave induced  shot  noise is 
dominant, as  shown  by 

RIN = 2L37PM/(WspR). (5 7) 

The  RIN  in  this region is proportional to rpM, p, n i j ,  and R-' . 
It is noticeable  that  the  RIN  depends  on  photodetector  quan- 
tum efficiency. 

C. Photon  Number Probability Density and 
Variance in  Intensity Fluctuations 

The  probability  distribution  for  the  photon  number was cal- 
culated  for  the  superposition  of  the  constant  amplitude  coher- 
ent wave and  the Gaussian  noise waves [29],  [30] .  The  pho- 
ton  number  probability  density is of  the  form 

where (n,) is the signal photon  number, ( n T )  is the noise pho- 
ton  number,  and L,(x) is the Laguerre  polynomial. 

This  result  can be  directly  applied to  the  photon  number 
probability  density  of  semiconductor  lasers  through  introduc- 
ing the equivalent signal photon  number  and noise photon 
number  in  the following  manner: 

E,2 - nsp (R t L R )  - 1 (n,) = - - - 
2 4 R  p 2(R + AR)  

c," - 1 (n*) = - - 
2&R 2(R + AR)  . 

The first and second moments of the  photon  number are 
given by  [29] 

(n)  E n Prob(n) = (n,) t ( n T )  (61) 

( n 2 )  E En' Prob(n) = (n, t nT)' t 2(n, )  (nT) 

t (nTY +- (n,  t nT).  (62) 

The variance 5' is  defined  by 

5' (n') - (n)' = 2(n,) ( n T )  t (nT,)' t (n ,  + nT)  (63) 

where the  first  term is beat  noise between  the signal and 
noise  waves, the second  term  is  beat  noise  between the noise 
waves, and  the  third  term is signal wave- and noise waves- 
induced  shot  noise.  The  relative  variance  in  the  intensity  fluc- 
tuation p E 5'/(n)' is  given by 

1 
t nsp (R + AR)] ,/[ (R t LIR)~] 

(64) 
The relative  variance p is alternatively  obtained  by  integrating 
(55) over o = 0 to w = m, which  brings the same  result  as (68). 

D. FM Noise Spectrum 
In this  section,  the FM noise spectrum,  that is, the spectral 

density  function  of  the  instantaneous  frequency  deviation 
6 R  = R - Q, will be  derived. 

The laser field (40) is written as 

E = [E, t Cn(t)]  cos (Rt t 6) (65) 

where 

The  second  equality of (66) is  valid only  when  the phase  dif- 
fusion  is not large, that is when  the measuring time interval is 
much  shorter  than  the  coherence  time  for  the laser field.  The 
same  assumption  was  used  when deriving (42) and (43). The 
instantaneous  frequency  deviation Sa is given by 

Consequently,  the  spectral  density  function  of €iR can be cal- 
culated  using  (44)  and  (49)  such  that 

= ClgN(R0 + o ) / [ n g R  w 1  . (68) 

The FM noise spectrum (68) shows  a  flat frequency response 
up  to  the  cutoff  frequency  for  the gain envelope function 
gN(Ro t w) which is typically 10'2-1013 Hz for  GaAs lasers. 
This is the  most striking  difference  between  the FM noise  spec- 
trum  and  the AM noise  spectrum (55), which  has  a  much 
lower  and  bias  level-dependent  cutoff  frequency 0,. 

E. Power Spectrum and Spectral Linewidth 
The  power  spectrum  of the laser output is mainly due to  the 

FM noise. The  contribution  of  the AM noise  spreads over a 
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broad  frequency  range,  and  the  integrated  power  spectrum is The  distribution  function of the  photon  amplitude W(B, t)  
smaller than  that  for FM noise [2] , [3] . Therefore,  the power  obeys the following equation: 
spectrum  determined  by  the FM noise will be  derived in  this 
section. a w  - 2 a 1 2 a2  x G ( d i W ) + -  x ~ (Dii W )  (76) 

The laser  field  is  expressed  as at i = l  2 i , i = l  aBiaBi 

E = [Eo t C,(t)] . Re [ u ( t )  exp (jnt)] , (69) where the  drift  constant di and  the diffusion constant Dii are 

where defined  as 

u(t)  = exp [ jf?(t)] . (70) 

The  phase f? is a  random Gaussian  process,  although it is not 
stationary.  The  autocorrelation  function  of v(t) is  given by 

c,(T) = (U(t) V(t t T)*) 

Since W,, is constant  in  the  integration, (71)  is written as 

The  power  spectrum Wo(a - no) can  be  represented  using 
the spectral  density function  of C,(T) as  follows. 

1 -  
C,(r) exp (-jar) dr 

(77) 

1 
Dii = lim ([Bi( t  t T )  - B,(t)]  [Bi(t t T )  - Bi(t)] ). (78) 

T + o  

From  the generalized van der  Pol  equation  (12), one  obtains 

Bi(t + T) - Bi(t) 

Using (79) and Cfi(t)) = 0 in  (77) and (78),  it  is  possible to get 

1 
(Rnsp - PB*B) Bi 

The  Fokker-Plank  equation for  semiconductor  lasers  is,  from 
(76), (80), and @ I ) ,  of the  form 

(73) t C1 div [(C, - lB12) BW] = C3AW a t  (82) 
The  oscillation  power  spectrum has  a  Lorentzian  shape,  with  a  where the  operator,  div,  and  the  Laplacian A act on B.  The 
full  linewidth  at  half-maximum  of  coefficients C1 , C2,  and C3 are given by 

(74) 

By comparing (68) and (74), it is possible to obtain 

null2 = $ W,,(a x 0). (75) 

The FM noise  spectrum  and  spectral  linewidth  are  propor- 
tional to  P,  rpl, and R- ' ,  but are  independent  of n S p .  

The  instantaneous  frequency  probability  density,  Prob(Q), 
can be given as  a function of the spectral  linewidth Av1I2. 
This  last identity is calculated in the  Appendix. 

V.  FOKKER-PLANCK EQUATION 

A. Derivation of the Equation 
Since the noise  driving  source F(t) in the generalized van der 

Pol  equation  (12) is of a Marcovian type,  the  distribution 
function  of  the  photon  amplitude W(B, t)  can be described  by 
the Fokker-Planck  equation [6] , [7] . Here the  photon ampli- 
tude B = B1 + jB2,  is treated as  a classical random  variable. 
The  noise  driving  source is similarly treated as  a classical vari- 
able fi= F1 + jF2. 

c1 = P P r p  

c2 =RnsplP 

C3 = nsp/4rp. 

I t  is convenient to use polar  coordinates B = rei@. 
Fokker-Planck  equation is then transformed into 

A theoretical  analysis  of  the  Fokker-Planck  equation (86) was 
performed  by  Risken in this  form [6] , [7] . All results  which 
were found by  Risken  can  immediately be used  for  semicon- 
ductor  lasers. 

B. Probability Density and Joint Distribution Functions 
The  stationary  distribution  function  for  the  photon  ampli- 

tude W(r) in (86)  reads 
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w(r) = wo exp [- - rz(r2 - 2c2 )] C1 Equation (96) shows that variance and  bandwidth  of  intensity 
4c3 

2 nsp shot  noise,  is given by 

fluctuation are given by u2 = n,/P and a, = Risp/Tp. This is 
in  agreement  with the results at well above the  threshold  re- 
gion given in (64) and (53). The  relative  variance,  including = wo exp [- - P r2 (r2 - 7---)] 2Rnsp . (87) 

The  photon  number  probability  density, Prob(n = 1’) can then 
be  given by (9 7 )  = (r2)2 K(o) + (r22 = p(R t Po t I)/ [nsp(R t ~ ~ 1 2  3 . 

The  spectrum  of  intensity  fluctuation is provided by 
Prob(n) =Po . exp (88) 

RIN = ~ T ~ P /  [7rn&(R t { 1 t ( ~ / w , ) ~ ] ) l  
where the  normalization  constant is  calculated from 

f shot  noise term, (98) lm Prob(n) dn = 1 where the  cutoff  frequency o, is calculated  through taking 
the first value of Po into  account, which  is 

as 

PO1 = f i ~ .  [ I  4- erf (KR)] exp ( K ~ R ’ )  

The  mean photon  number (n)  is calculated by using (88) in the 
following manner: 

(n )  f n Prob(n) = - (R + P o ) .  nsP 
P 

(9 1) 

In  order to  calculate the  correlation  function (B(t  t T)* B(t)) 
the  joint  distribution  probability  that B(t) lies  in the interval 
B‘ < B(t) < B’ t dB’ and  that B(t t T )  lies in the interval B < 
B(t + T )  < B + dB has to be dealt  with  first.  At well above the 
threshold  region,  this  joint  distribution  can be broken  down 
into 

~ ( r ,  $; r’, $‘, 7) = F~ (r, r‘, 7 )  . FZ(6, $’, 71, (92) 

(99) 

D.  Spectral Linewidth 
The  correlation  function  for  the phase is calculated  by (94) 

such that 

The spectral  linewidth  at  half-maximum  of  the  Lorentzian 
power  spectrum  is,  taking  into  account  the  finite  value  of P o ,  

P 
= 4n7,(R +Po) . 

This  result is in  agreement  with (74), which  was obtained by 
assuming that  the laser  field  is expanded  to  the  coherent signal 
wave Eo and noise waves C,, S,. 

where VI. RATE EQUATIONS WITH A 

Fl(r, r’, 7 )  = n-l [I - exp ( - ~ c , c ~ T ) ] - ” ~  
FLUCTUATING OPERATOR 

A. Derivation of the Rate Equation 
y z  t y r 2  - 2yy’ exp (- 2C, C27) 

exp [- I. The Statz-deMars type  rate  equation, i.e., the  photon  num- 
1 - exp (-4C1C27) ber  representation  of  the Langevin equation, is obtained  from 

(93)  (13), (16), (19), and (20) for  semiconductor.lasers  as 

Here, f i 3  is the  third  Jacobian  theta  function.  The  abbreviation The equati?n for the number N c  reads 

y = rn (r - W) 
is used  for  convenience. 

C. Vuriance  and Spectrum for Intensity Fluctuation 
. I  

The  correlation  function  for  the  photon  and carrier fluctua- 
The  correlation  function  for  the  intensity  fluctuation K(T) is tion operators have already bein by 5 ) ,  7), and (1 8). 

The carrier and  photon  numbers  are expressed  as the sum of calculated from (93) as 

K(7) = ( [T2 (t  4- 7 )  - (r2 )] [ P 2  (t)  - (r2 )] ) the  mean value and  flwtuation  around  them such that 

n r i i t A n  
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Using these  equations  with (102) and  (103),  and  neglecting  the  as well as  in  the  resonant  relaxation  frequency range,  are  af- 
products  of  the  small'fluctuation  terms,  one  obtains  fected  by  the  existence  of  spurious  longitudinal  modes  and 

the  lateral carrier  diffusion  effect,  which will be  discussed 
d later.  Multimode  rate  equations  with  fluctuation  operators 
- A N c = A I A N c t A z A n t F c ( t )  
dt  ('04) were treated  by  Jackel et aZ. (321 and  by  Mukai et aZ. [27] . 

d 
dt 
- An = A3ANc t A 4 A n  t Fn(t) 

B. Photon Noise and  Carrier Noise Spectra 
('05) The relative  intensity noise spectrum is calculated from 

(1 11)  as 

RIN = ( A n ( o ) 2 )  
n2 

where  Here, the  mean  photon  number E and  the  mean carrier number 

1 1 dr fl, 
7, 7; dNc  v, ' 

NC 

f l c  are  calculated from  the following  transcendental  equation 
A l  =- - (1  t P E ) t - - L -  (106) 

= -p  - t m ~ , ,  (1 07) 
- 

7, X P x ! / r ,  
1/rp - ( P ( ~ c / 4  - ATNO) 

= O  

P 
A3 = -  (1 t Z), (l Ox) where 

7, 

The  Fourier  transform of (104)  and (105) gives The relative  carrier  noise  spectrum  is  similarly obtained as 

Here the  spectral  density  of  the  photon  and carrier fluctuation 
terms  are given by 

- 

(Fn(o )2 )  = - t __ (1 t E )  +ArN,E, (1 12) 
T p  7s 

(F,(o) F,(w)) = - - (1 t E )  - ArNo E.  
7, 

m e  
(1 14) 

Equations (1 10) and (1 1 l), together  with (1 12)- (1 14),  are 
basic equations  for  the  quantum noise  analysis  presented in 
this  section.  This  set  of  equations  automatically  includes the 
carrier  noise (1 13), photon noise (1 12), and  competition be- 
tween the  two noises (1 14).  Therefore,  it  can  describe the 
laser noise properties over the whole range of  the  pumping 
level,  including  below and  just  at  the  threshold,  and also  over 
the range of  the relaxation  oscillation  frequencies.  However, 
the actual noise properties  below  and  just above the  threshold, 

C. Spectrum of FMNoise Due to Spontaneous Emission 
The phase  diffusion  constant D(A0) caused by  spontaneous 

emission  is determined  by  the  ratio  of  the  out-of-phase noise 
photon nsn coupled to the lasing mode,  to  the total signal pho- 
ton inside  a laser cavity.  The  total noise photon  coupled to 
the lasing mode is given by the second  term on  the right in 
(102). The  probabilities  that these  noise photons are  in-phase 
and  out-of-phase  with  respect to the signal photon are  equal. 
The phase  diffusion  constant is given by 

The  spectral  linewidth AvllZ and 
given by 

the FM noise spectrum  are 

( 1  20) 

The value  of l/rp - (/3(fic/rs) - A r N o )  indicates  how  the 
actual  saturated gain (P(flc/r,) - ATNO)  approaches  the cavity 
loss constant l/rp. It can  be  concluded  that  the spectral  line- 
width is determined  by the difference  between  the  theoretical 
threshold  gain  and the actual  saturated  gain. 
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D. Spectrum of FM Noise Due to Currier 
Modulation Noise‘ 

The  difference  between  the FM noise spectrum  in  semicon- 
ductor lasers  from  spectra  in other lasers is that in  semiconduc- 
tor lasers both  the carrier modulation noise and  current  modu- 
lation  noise  due to  the  quantum effect  cause  additional FM 
noise. The  additional line  broadening  due to  the refractive- 
index  dispersion  effect is treated  by Haug and  Haken [8] , and 
very  recently  by  Henry [34] . The  two  treatments  employ  the 
adiabatic  elimination  of  the  equation  describing  a  carrier  den- 
sity fluctuation  and use only  the  equation  for  photon  field 
variables. Therefore,  it  seems  that  they  cannot  describe  the 
effects  of the carrier  and photon noise competition  on FM 
noise spectrum  and line  shape. 

The  frequency  modulation A n  due to  the carrier  modula- 
tion AN,(t) is given by 

Here, no is the oscillation center  frequency,  and CBB and CFc 
are the  coefficients  representing  the  contribution  of  the  carrier 
density  change to  the refractive-index  change  caused,  respec- 
tively, by  the  band-to-band  transition effect  and  free  carrier 
plasma  dispersion  effect [33] . The  estimation  of values CBB 
and CFC will be discussed in an  accompanying  paper. neff is 
the  refractive-index of  the GaAs  active  layer.  The FM noise 
spectrum W,C, due to  the carrier modulation noise is  given by 

where (AN,(o)’) is calculated  from (1 18). 

E. Spectrum of FM Noise Due to Current 
Modulation Noise 

The  junction  current is modulated  by  the  quantum noise 
fluctuation  of  the carrier.  In the  low  frequency  range,  this 
current  noise  induces  diode  temperature  fluctuation,  and  con- 
sequently,  causes  frequency  modulation. 

The  junction  current noise is introduced  in (103) by  the 
form 

Using (1 23) in (1 04) gives 

d - A N , = -  + Al  AN, + A 2 A n  + F,(t). 
dt e 

(1 04’) 

The  Fourier  transform  of (104) gives 

AI(w) = e [(iw - A 1 )AN,(w) - A2An(w)  - F,(o)] . 
(1 24) 

The  relative current  noise  spectrum is calculated to be 

4 3  

where  the small contribution of the  current  noise directly in- 
duced by  the  photon noise and  the  usual  shot  noise F,(t) are 
ignored. 

Frequency  modulation As2 due to  temperature  modulation 
AT( t )  as  induced  by  the  junction  current  modulation AI( t )  
is of  the  form 

A n  = -SZO(CYL + an) AT(t). (1 26) 

Here, aL is the linear  thermal  expansion  coefficient,  and or, is 
the  thermal  refractive-index  change  coefficient.  Temperature 
modulation is  calculated  by  the  Fourier  and  Laplace  transform 
method  for  the  time-dependent  thermal  equation [35] . The 
theoretical  and  experimental  determination  of  the values 
As2/AI will be  discussed  in  an  accompanying  paper [ 191 . The 
FM noise spectrum Win due to the  current  modulation noise 
is then given by 

W i n  (0) = (A!il/AZ)’ <AZ(w)’ >. (127) 

VII. PHOTON DENSITY MATRIX EQUATION 
A. Derivation of the Equation 

The  equation  of  motion  for  the  photon  density  matrix diag- 
onal  element  takes  the  form 

-- d p n -  - (n + l )A nA 
dt 1 +(n+ l ) s P n + I + n s P n - l  

(n t 1)  B nB + 
1 + ( n +  1)s  P n + l  - G P n  

A = - (R t 1) nsP 

TP 

1 
B = - ( n  

TP 
sp  - 1) 

Value A-B corresponds to the  unsaturated gain CY in the van 
der  Pol  equation (32). The  saturation  parameter s is  equal to 
the  spontaneous emission coefficient p, as was discussed in 
Section 111, that is represented  by 

s = p. (1 32) 

The  equation  of  motion  for  the  mean  photon  number (n) = 
Znp,, the  second  moment (n’)= Z n ’ p , ,  and  the  rth  mo- 
ment (n‘) = En$,  are given by 

dt  ( 1 +(n+ n + l  1 ) s   ) A -  ( L ) B - ( n ) C ,  1 +ns (133) 
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(135) 

For gaseous and solid-state  lasers  with nsp = 1, teims  propor- 
tional to  B are dropped  from  (128),  (133)-(135). This  special 
case corresponds to  the results  derived by Scully and  Lamb 
U O I  . 

B. Photon Number Probability Density 
The  master  equation  (128) is reduced to two equivalent sys- 

tems  of  first  order  difference  equations 

nA nB 
1 t n s  Pn-1  - p n  - nCp, = 0 

(137) 

These equations  can be solved by using (1 36)  and  (137)  itera- 
tively, that is 

Here, 

The  normalization  factor No is determined  by  the  condition 
2 p n  = 1. 

C. Mean Value and  Variance of Photon  Number 
The  mean  photon  number (n)  is calculated  by 

The result is in  agreement  with (91), obtained  from  the 
Fokker-Planck equation.  The relative variance of the  photon 
number is given by 

This  result is again in  agreement  with (97), as obtained  from 
the Fokker-Planck  equation. 

D. Spectral Linewidth 
Even when  the diagonal elements p n  of the density  matrix 

are  in  a  steady  state,  as  shown  by  (138), the off-diagonal  ele- 
ments  in  the  density  matrix have exponential  decay  functions 

The  expected value of  the electric  field for  this  element is 
given by 

E(t) = Eo exp (- Dt)  cos Qat. (144) 

The spectral  profile for  this field is Lorentzian,  and  its line- 
width is given by 

P 
Av1/2 = 4nrp(R + p o )  ' 

This  result is in  agreement  with (101), as obtained  from  the 
Fokker-Planck equation. 

VIII. CONCLUSION 
Quantum noise  properties  for  semiconductor lasers were 

studied  through  the use of  four  different  theoretical  formula- 
tions:  the van der  Pol equation;  the Fokker-Planck equation; 
the  rate  equation;  and  the  photon  density  matrix  master 
equation. 

AM quantum noise  properties were characterized  by:  1)  the 
AM noise spectrum at low  frequency RIN(a = 0); 2)  the reso- 
nance  enhancement  of AM noise near the  relaxation  oscillation 
frequency  RIN(w = a,); 3) the  bandwidth  of AM noise  spec- 
trum w,; 4)  the variance of  intensity  fluctuation p ;  and 5) the 
photon  number  probability  density Prob(n). FM quantum 
noise properties were  characterized  by the FM noise spectrum 
caused by: 1) the  spontaneous emission  coupled to a lasing 
mode W,"%(w); 2)  the carrier modulation noise W,Cn(a); 3) 
the  current  modulation noise W i n ( a ) ;  4)  the  instantaneous 
frequency  probability  density Prob(S2); and 5) the power spec- 
trum  or  the  spectral  linewidth Av,12. Theoretical  formula- 
tions  for  these  quantum  noise  properties,  derived  from  the 
just-mentioned  four  different  approaches  are  summarized  in 
Table I. Numerical  comparisons  between  these  different  for- 
mulations  are  described  in  an  accompanying  paper,  as also are 
experimental  results  with AlGaAs lasers. 

Theoretical  formulations  for  the AM and FM noise  spectra 
presented  in  this  paper  enable  calculation  of  the  signal-to  noise 
ratio  and  carrier-to-noise  ratio  degradation  due to quantum 
noise. The C/N degradation  in  optical  heterodyne  detection 
caused by  local  oscillator AM noise, and S/N degradation  in 
FSK and PSK systems  caused  by FM noise in  both  the  trans- 
mitter  and  local oscillator  are specially important. 

Error  rate  calculations  for  coherent  optical  transmission sys- 
tems  that have been  based on completely  coherent waves and 
Gaussian  probability  densities  [36]  should  be  modified to in- 
corporate  the  effects described  here.  This will be treated  in 
more  detail  in  a  future  work,  together  with  the  effects of con- 
volution  with  detector  dark  current  induced  shot noise of 
Poisson  process, and  the receiver amplifier  thermal  noise of 
Gaussian  process, and also photon  number  probability  density 
deformation  due to optical  attenuation  and  the  detection  band 
limit. 
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TABLE I 
THEORETICAL  FORMULATIONS FOR AM AND FM NOISE  PROPERTIES 

IN SEMICONDUCTOR  LASERS. -: NOT  DERIVED IN THIS  WORK 

Theoretical  Methods  van  der  Pol eq. Fokker-Planck eq. Rate eq. Density  Matrix eq. 

AM noise 
..I____ .. .. . . . - __. . ___ ..- 

APPENDIX where tY3(~,y) is the  third  Jacobian  theta  function.  The  out- 
INSTANTANEOUS  FREQUENCY  PROBABILITY  DENSITY put  intensity  deviation A I  corresponds to  the  optical fre- 

The  probability  distribution  of  the  output  intensity  Prob(l), quency dedation Aa from  the  center  frequency a0 asfollows: 
after passing through an optical  frequency  discriminator  corre- = . an2. 
sponds  to  the  instantaneous  frequency  probability  density 

quency  can  be  assumed  to be linear.  This  ideal  optical  fre- is from (A-3) and (A-4) as 
quency  discriminator is, for  instance, realized by  a  Michelson  prob(Af) exp [ - ~ f 2 / ( ~ ~ , ~ , / ~ ~ ) 2 ]  

interferometer  operating  around  its  center  frequency Q0.r = 
2Nn t n/2,  where il0 is the  optical  frequency  and T is the de- .tY3 [-=,exp (- n2 )] . 
ferometer.  Normalized  optical  power  from  the  Michelson  in- Equation (A-5) indicates that the instantaneous frequency 
terferometer is written as probability  density  has  a Gaussian profile  near the  central re- 

I ( t )  = 1 t sin [Ae(r)]. (A-1) gion,  but  that  it  has  a  much  broader tail  due to the  additional 
rn order  to  determine  the  probability  density  functionProb(I),  theta  function.  The  bandwidth of the Michelson interferom- 
the  probability  P7(A6)  that  the phase has  changed  by A6 in eter  with  a  decay  time 7 is 1/2nr. Equation  (A-5)  can  then be 
the  time  interval r should be calculated.  The phase change  has  written in a  general  form  as  a  function Of the spectral  line- 
a Gaussian probability  density  [27]  width  of AuliZ and  detection  bandwidth Bo. 

(‘4-4) 

when  the  relation  of  the  output  power versus the  optical  fre-  The  instantaneous  frequency  probability  density,  prob(Af), 

A h ,  ~ ~ A u , / , T  lay  time  introduced  by  the  arm  length  difference in the  inter- (A-5) 

PT(A6) = 
1 A6 

(A-2) Prob(Af) = A  exp 

where  D = 2nAu1/, is the  phase  diffusion  constant.  The  out- 
put  intensity I is a  multivalued  function of A6 as indicated 
by (A-1). Therefore,  the  probability  density  Prob(I) dl  is the 
sum of all probabilities  that A6 is an interval d(A6) around  ACKNOWLEDGMENT 
sin-‘ (I - 1). This is shown  by The  author wishes to  thank  T. Kimura  and A. Kawana  for 

their  useful suggestions. He also wishes to  thank P. Meissner 
for his  critical comments  concerning  the  photon  number  prob- 
ability density calculation. 
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AM and FM Quantum Noise in Semiconductor 
Lasers-Part 11: Comparison of Theoretical 

and Experimental  Results  for  AIGaAs  Lasers 

Abstract-Four  different  theoretical  formulations  for AM and FM 
quantum  noise  properties  in  semiconductor lasers  are  compared with 
each  other  for AlGaAs  lasers. These  formulations are based on van 
der Pol, Fokker-Planck, rate,  and photon  density matrix equations. 
Experimental  results  with AM noise  spectra, FM noise  spectra,  and 
spectral  linewidths  for  four  different  types of AlGaAs lasers  are also 
delineated  and  compared  with  the  theoretical  predictions.  The  spon- 
taneous  emission  coefficient p and population  inversion parameter 
nsp, which are basic parameters for  determining  the  quantum  noise 
properties of semiconductor lasers,  were calculated by the  density of 
states  with Kane function  interpolated to Halperin-Lax bandtail and 
the Stern’s improved matrix element. Experimental AM and FM 
quantum  noise  properties  show  good agreement with  the  theoretical 
predictions  derived through  use of estimated p and nsp values. 

T 
I. INTRODUCTION 

HE AM and FM quantum noise properties  for  semicon- 
ductor lasers were formulated in the preceding paper [ I ]  

through  implementation of the  four  different  theoretical 
approaches: a classical van der Pol equation; a  Fokker-Planck 
equation, a rate  equation,  and a photon  density  matrix  master 
equation. These formulations are  numerically compared in 
this paper  with AlGaAs laser parameters being taken  into 
account.  Experimental  studies  of AM and FM quantum noise 
properties  for AlCaAs semiconductor lasers and a comparison 
between  experimental  and  theoretical results are also described 
in detail. 

Variance in  intensity  fluctuation  for  semiconductor lasers 
was originally  measured  by Armstrong  and  Smith,  through a 
Hanbury Brawn-Twiss experiment [2].  AM noise spectra  for 
an AlGaAs laser have been measured  by a single detector  tech- 
nique,  [3],  [4]  and  the results compared  with a rate  equation 
analysis  based on  an  approximate  parabolic  band  model  [4]. 
AM noise spectra  for an AlGaAs semiconductor laser amplifier 
biased below  the lasing threshold were also measured  under 
external signal injection,  and  the results compared  with  multi- 
mode  rate  equations based on  an  approximate  exponential 
bandtail  model [ 5 ] .  A photon  counting  experiment was per- 
formed  for  an AlGaAs laser just above the lasing threshold 
[12]. The  obtained  photon  number  probability  density  has 
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also been compared  with a  Fokker-Planck equation analysis 

Several experimental  studies  concerning  the  power  spectrum 
and  spectral  linewidth  for  semiconductor lasers have been 
reported.  The  Lorentzian  line  shape was directly observed by 
means  of  optical  heterodyne  detection  for a 10.6 pm PbSnTe 
laser [6]  and a 0.85 ,urn AlGaAs laser [7] . The  spectral line- 
width was also mentioned  by  coherent  length  measurement 
using 4.15 km fiber [8] , delayed self-heterodyne  detection 
[9] , Fabry-Perot  interferometry [ 101 , visibility measurement 
with a Michelson interferometer [ 121 , and FM-AM noise con- 
version [ 1 I ]  . FM noise spectra,  however,  have  not  yet  been 
studied, to the  authors’  knowledge. 

The  purpose  of  this  paper is to provide  systematic  com- 
parisons between  theoretical  and  experimental  results  for AM 
noise, FM noise,  and  power  spectrum for AlGaAs lasers. Four 
different  types of AlGaAs lasers were used  in  the  experiment. 
The  experimental  dependences  of  the above three  quantum 
noise properties  mentioned above on laser structure, bias level, 
and  output power are  compared with the  four  different  theo- 
retical formulations derived in the preceding paper [ I ]  . The 
material parameters, describing stimulated emission, spon- 
taneous emission, and  anomalous dispersion,  used  in the 
theoretical noise  analyses  are obtained  by  the  calculation using 
the  Stern  band  model  and several independent  experiments. 

1131. 

11. SPONTANEOUS  EMISSION  COEFFICIENT,  POPULATION 
INVERSION  PARAMETER, EFFECTIVE CARRIER 

LIFETIME, AND REFRACTIVE  INDEX DISPERSION 

A. Evaluation of Structural and Material Parameters 
The  spontaneous emission coefficient p and  population  in- 

version parameter ylSp are  two basic parameters  for  determining 
the AM and FM quantum noise properties  of  semiconductor 
lasers. The effective  carrier lifetime is shortened  from  the 
spontaneous  lifetime  due  to  its  dependence  on carrier density. 
The refractive index is also dependent  on carrier density 
through  the  anomalous dispersion and  the  free carrier  plasma 
dispersion.  These two processes are also deeply  related to  the 
quantum noise properties.  In  this  section, these parameters 
illustrated  in Fig. 1 will be determined for four  different  types 
of AlGaAs lasers which  are used in  the noise measurement. 

The  spontaneous emission coefficient p, which is alterna- 
tively called the  saturation  parameter s, is of  the  form [ 11 

0018-9197/83/0100-0047$01.00 0 1983  IEEE 



48 IEEE  JOURNAL OF QUANTUM ELECTRONICS, VOL. QE-19, NO. 1, JANUARY 1983 

MATERIAL  PARAMETERS OF GaAs L A K R S  

[. " Population Inversion Parameter 

th nsp' Nc,th'(Nc,th-NO) 

Spontaneous Emssion COef. 

% Nc,th 
= A%/ Vo 

\: Effectwe Carrler Lifetlme 
__  .. .. . . ... . .. ... r e f f = W - F s $ . N c , t h )  I d  

k , th  

Nc.th,k 

NC 

r .  Dispersion Coefficient 

Fig. 1. Definitions of five material parameters A ,  No, T,, dT,/dNe, and 
dnldN,. 

P = A ~ s / V ,  (1) 

where A = dG/dNe is the differential gain constant in m3/s, r, 
is the  spontaneous  lifetime,  and V, is the  optical  mode volume. 
The  population inversion parameter nsp =Ne/(Ne - No) is 
given by 

Fig. 2. Theoretical  and  experimental peak gain coefficient gmax versus 
the  minority carrier density Ne for GaAs lasers. : P-tYPe, 

: n-type, 0 : experimental results for GaAs lasers with  non- 
doped active  layer. 
-____ 

between  the  two axial mode frequencies. The  output signal 
power ratio u leads to  the gain coefficient as follows: 

where L is cavity length,  RM is facet  reflectivity,  and aft is 
free  carrier absorption loss. The  optical  mode  confinement 
factor l7 and  facet reflectivity RM are  calculated  through  the 
use of the laser waveguide structure  parameters [ 161 . The free 
carrier absorption loss aft is  given as  a function  of  the  majority 
carrier density in an active  layer [17].  The carrier density Ne 
is, on  the  other  hand,  estimated  from  the  nominal  current 

asp = 1 t Arr,N, ( 2 )  density J,,, (A/cm2 * pm),  like Ne = rs X J,,, X 101'/e. 
Here, e is the  electron charge. The leak current  estimated  by 

will be mentioned  later,  the  spontaneous  lifetime r, is depen- 
dent on the carrier  density Ne. Therefore,  the  procedure  to 
determine Ne needs to  be solved in  a manner  consistent  with 
the  relation  between r ,  and Ne. Experimental results for g 

for above the lasing Here> is the Optical mode the  measured maximum quantum efficiency is extracted. As 
confinement  factor  for  the active layer, No is the carrier 
density where stimulated emission rate  exceeds  absorption 
rate,  and rp is the  photon  lifetime.  The effective  carrier 
lifetime Teff is given by 

The refractive index dispersion is given by the  sum of the 
band-to-band  anomalous dispersion and  the  free carrier  plasma 
dispersion  as  follows: 

dn - d(An) e* 

dNe dNe 2 m w 2 ~ o ? i  

The five material  parameters A ,  No, r,, dr,/dN,, and dn/dNe, 
and  the  three  structural  parameters V,, r, and rp are necessary 
to calculate  these  parameters. 

Material parameters A and No are  determined  by  the  relation 
of  the peak gain coefficient g,,, to  the carrier density Ne as 
shown  in Fig. 1. Peak gain coefficient versus carrier density 
for GaAs, is calculated by using the  density of states  with 
Kane function  interpolated to  Halperin-Lax bandtail  and  the 
Stern's improved  matrix  element [ 141 . The numerical  results 
are  shown  in Fig. 2 as  a function  of  the  background  doping 
level. 

versus Ne, thus  obtained,  are  plotted in Fig. 2 for a 900 pm 
cavity length  channeled  substrate planar (CSP) AlGaAs laser 
and a 300 pm CSP laser. The active layers  of all these lasers 
are undoped. 

Agreement between  the  theoretical  and  experimental  results 
for g versus Ne is fairly good.  Parameters A and No can  be 
estimated  from  these results as shown  in Table I for  the  four 
AlGaAs lasers used in the noise measurement. 

The  spontaneous  lifetime r, versus the carrier density Ne is 
shown  in Fig. 2 as a function  of  background  doping level. The 
values of r, and dr,/dN, at  the clamped threshold carrier 
density are  shown  in Table I. 

Fig. 3 shows the calculated  gain spectra  and  the  related 
refractive index  anomalous dispersion as a function of minor- 
ity carrier density.  The  anomalous dispersion is calculated by 
the following  Kramers-Kronig  integral of theoretical gain 
spectra. 

The gain coefficient was experimentally  measured  with The  theoretical results of An versus Ne are  shown in Fig. 4 as a 
external signal injection  into  the  semiconductor laser,  biased function  of  background doping. The  total refractive index 
at  below  the lasing threshold [ 151 , [ 161 . The  transmitted dispersion  including  free  carrier  plasma  dispersion coefficient 
signal power was maximum when the signal frequency was at  the clamped threshold carrier  density is shown in  Table I. 
matched  to  the Fabry-Perot resonant  frequency  and was The  optical  mode volume V, is given by  the  product of the 
minimum  when  the signal frequency was detuned  to fit cavity length L and  the cross-sectional  area of  the lasing mode, 
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TABLE I 
THE STRUCTURAL AND MATERIAL PARAMETERS AND THE SPONTANEOUS 

EMISSION COEFFICIENTS AND POPULATION INVERSION PARAMETERS 
FOR AlGaAs LASERS 

~ . . __ ~ ~ . .~ .... . . . . . . . . . .~ 

9 0 0 , p  CSP 

~. 

3 0 0 , ~  CSP 100pm BH 2floprn TJS 

A (m3/srcj 2 . 8 1 ~ 1 0 - ' ~   2 . 8 2 ~ 1 0 - ' ~  2 . 8 2 ~ 1 0 - ~ ~  3 . 3 ~ 1 0 - ~ ~  

N o  (m-3 )  1 . 3 6 ~ 1 0 ~ ~   1 . 3 6 ~ 1 0 ~ ~   1 . 3 6 ~ 1 0 ~ ~   i . 0 5 ~ 1 0 ~ ~  

T~ (nspc) 2 . 4  2 . 2  2 . 2  2 . 0  

drS/dN,(serm3) - 0 . 8  -0 .5  -0 .5  - o . ~ x I o - ~ ~  

dn/dNe(m3) -6 .5  -3 .0  -3 .0  - 8 . 5 ~ 1 0 - ~ '  

? t h e o r e t l c d l  5 ' 2 x 1 0 - 6  

nsp t h e a r e t l c a l  4 ' 1  

1 . 6 ~ 1 0 - ~  3 . 0 ~ 1 0 - ~  4 . 4 ~ 1 0 - ~  

2 .5  2 . 5  3.7 

\ \ \  

- 0.d 
Fig. 3. Calculated gain spectra and refractive  index  dispersion due  to  anomalous dispersion. 

which is estimated by the  far field pattern divergent angles in 
the  lateral  and vertical directions.  Photon  lifetime is defined 
as rP = [c{ l /L  In ~ / R M  + qC}]-'. 

Material and  structural  parameters  that were thus  deter- 
mined, as well as calculated P and n,P values using  these 
parameters,  are  summarized in  Table I for  the  four AlGaAs 
lasers. 
B. Mean Photon  Number and Saturation Output Power 

Output  optical  power  at well above the lasing threshold is 
determined by the  photon  number  in a single lasing mode  in 
the  following  manner: 

Po =4iQ(n)/rpM (7) 

where r p ~  = [ (c /2L)  In (I/Rm)] -' is  the  photon  lifetime  due 
to  the  output  coupling  from  the  facet.  The  mean  photon 
number at  well above  the  threshold  can  be derived from [ 11 

where R = I/Ith - 1 is the  pumping  parameter. Fig. 5 shows the 
theoretical  photon  number, which is calculated using the esti- 
mated P and nSP values in (8), as A function of the bias level R. 
Experimental results for a 900 pm CSP laser, 300 pm CSP 
laser, and 300 pm  buried  heterostructure (BH) laser are also 
presented. 

The  spontaneous emission coefficients  estimated  from  the 
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-002 

c 
4 

-0.01 - 

C.H. Henry et al. G, = exp [ {rgo/(l + I/fs) - q - c )  LI (10) 
M. I t 0  et al. 
K. Kobayashl et al. G, = (1 - RM)?G,/( 1 - R M  G,)? . (1 1) 

( 8 : 7 ~ 1 6 ~ ~ c r n ~ )  
6 ~ 1 6 ~ '  crn3 

Here, go is the  unsaturated gain coefficient, which is measured 
with  the small injection signal derived  above. The  mode  power 
density I inside  a laser cavity is given as a function of the  pho- 
ton  number in this manner: 

c+i C2 (n) I =  ___ ( 1  2) 
Vo . 

Using (9) and (12) with  (lo),  it is possible to obtain  the  satu- 

CARRIER DENSITY N, (cm-3 

Fig. 4. Calculated  refractive  index  change An versus minority  carrier 
density. 
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Fig. 5 .  Total  photon  number n in a laser mode versus bias level R 
for  three  different  types of GaAs lasers. : rate  equation; 
_ _ _ _ _  : van der  Pol equation  and Fokker-Planck equation; 
- - - - - - - - - - , ' photon  density  matrix  equation; o 0 X :  experimental 
results. 

measured  photon  number,  are  summarized  in Table I for  the 
four AlGaAs lasers. Here theoretical nSp values are used to 
derive 0 from (8). The discrepancy between  the  theoretical 
and  the  experimental 0 values is within a factor of two  for all 
the lasers. 

The  saturation  output  power I, at which the gain coefficient 
is decreased  by 3 dB  from  the  unsaturated value is given by 
(29) of [ I 1  

This value was experimentally  determined by gain saturation 
measurement of semiconductor laser amplifiers through vary- 
ing the  external  injection signal level [16] . The  saturated 
single pass gain G, and  the  saturated overall gain G, of a 
Fabry-Perot  type amplifier are given by 

rated single pass gain 

Fig. 6 presents  experimental  results  comparing overall signal 
gain normalized  by  the  unsaturated overall signal gain G,/G;, 
with  photon  number (n)  for a 300 pm CSP laser, 300pm BH 
laser, and a 200 pm TJS laser. The bias levels for the laser 
amplifiers  were adjusted  to give an  unsaturated overall signal 
gain of 20 dB. The  mode  photon  number (n)  is estimated 
from  the amplified signal output  power using (7). 

The  spontaneous emission coefficients 0 estimated  from  the 
gain saturation  experiment  shown  in Fig. 6, are  summarized in 
Table 1. The  spontaneous emission coefficients 0 thus  deter- 
mined, are again in  agreement with  the  theoretical 0 values 
to within a factor  of  two. 

111. AM QUANTUM NOISE 
AM quantum noise properties of semiconductor lasers are 

characterized by AM noise spectra, variance in intensity  fluc- 
tuation,  and  photon  number  probability  density.  In  this 
section,  theoretical  and  experimental  comparisons of these 
values are discussed. 

A .  AM Noise Spectrum 
The  experimental  setup  for measuring AM noise spectra is 

shown in [ S ,  Fig. 21.  The noise power P(wj, displayed on a 
spectral analyzer, is given by 

P(w) = [&(ii)AM(g)2 + 2eqD(iih,)(g2)] RLB,G(U) 

+ Pthermal(W) + Pdark current(W). (14) 

Here, vD is the  quantum efficiency of Si-APD, including  the 
coupling loss between  semiconductor lasers and Si-APD; (g)  is 
the avalanche multiplication  factor  of Si-APD; (igh) = e(n)/TpM 
is the assumed initial  photocurrent  at vD = 1;  R L  is the  load 
resistance; Bo is the  resolution  frequency  width  of a spectrum 
analyzer; G ( o )  is the  frequency response of the electronic 
amplifier, including the  frequency response of Si-APD; 
Pthermal(w) is the  electronic amplifier thermal  noise;  and 
P d x k  cument (a) is the Si-APD dark  current  shot noise. The 
mean  square value of g is  given by [ 181 

where k is the  ionization  coefficient  ratio  between  electron 
and  hole.  The value of k in the Si-APD used  in the  experiment 
is 0.02 [ 191 . 
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Pig. 6. Experimental results with  normalized signal gain Cc/CF versus 
photon  number n inside a laser cavity for  three  different  types of 
GaAs laser amplifiers. Unsaturated signal gain was 20 dB. 

The  normalized AM noise  spectrum,  defined  by  the  noise 
power  generated in a unit of load  resistance  per  unit  band- 
width  normalized  by  the  dc  electric  power [l] , is given by 

The  spectrum  for G(o) was measured  by using AlGaAs  LED 
light to  illuminate  the Si-APD,  which induced  shot  noise  with 
a  white  spectrum.  The  quantum  efficiency  of Si-APD was 0.7 
at  an 825 nm  wavelength.  Coupling loss between  the  semicon- 
ductor lasers and Si-APD was -4.5 dB. 

Fig. 7 shows  experimental results for  RIN  at  low  frequency, 
versus the bias level R for  the 300 pm CSP laser.  Theoretical 
results calculated  with  the  rate  equation (1 15), van der Pol 
equation ( 5 9 ,  and  the  Fokker-Planck  equation (98), as de- 
rived in the  preceding  paper [ l ] ,  are  also  plotted  with  the 
theoretical 0 and nSp values in Fig. 7. 

The RIN decreases by Rm3 with  the bias level between 
<R < 1 ,  where  the  beat  noise  between signal and  noise 

photons is the  dominant  noise  source.  Experimental results 
are in good  agreement  with  the  rate  equation  analysis.  The 
van der Pol  and  Fokker-Planck  equations give slightly  lower 
RIN's  than  the  rate  equation  analysis  because  the carrier 
modulation  noise  induced AM noise  and  the  coupling  effect 
of the carrier noise and  photon  noise  were  not  taken  into 
account.  This is not  the  inherent  drawback  of  the  Fokker- 
Planck  equation.  The  quantum  mechanical  Fokker-Planck 
equation  for field and carrier operators,  of  course, is the  exact 
expression  for  quantum  noise.  The  above  discrepancy  stems 
from  the  adiabatic  elimination of carrier  variables  introduced 
to derive simple  Fokker-Planck  equation  (98)  of [ l ]  . The 
RIN in this bias region is proportional to  .pP/n:p. 

The  RIN  at  the high bias level R > 1, on  the  other  hand, 
decreases  more  slowly  with bias level and  the  dependence  on 
bias level approaches R-'. At  this bias level, signal photon 
induced  shot  noise is the  main  noise  source.  The  RIN is 
proportional  to PrpMln,,. 

Although  experimental results  are in  good  agreement  with 
singe-mode  rate  equation  analysis  for  the  bias level R > lo-', 

1 
R 

Fig. 7. RIN spectrum at low frequency versus bias level R for 300 pm 
CSP laser. : rate  equation; ----- : van der  Pol  equa- 
tion  and Fokker-Planck equation; - - - - - - - - - - : photon  density  matrix 
equation; 0 :  experimental  results in this work;  and 0 :  experimental 
results from Jackel ef al. [4]. 

experimental results at bias level R < differ from  those 
with  the  single-mode  rate  equation.  The  multimode  rate  equa- 
tion  analysis [5] is, on  the  other  hand,  satisfactory  at  this bias 
level, as can  be seen in Fig. 7. Similar  results  were obtained 
for  the  900 pm CSP and 200 pm TJS lasers. 

Fig. 8 shows  experimental  and  theoretical results concerning 
the  excess  noise  factor x defined  by 

x = (I'i)AM/(2e(I'gh)), (1 7) 
for  the 300 pm CSP laser.  The  excess  noise factor x indicates 
how  the  actual laser field approaches  the  completely  coherent 
wave with  Poisson  distribution  and  a  theoretical  shot  noise 
limit. Fig. 8(a)  and  (b)  employs  the  normalized bias level R 
and  the  output  optical  power as an abscissa,  respectively. 
The AM noise level of the  semiconductor laser is about  one 
order  of  magnitude larger than  the  theoretical  shot  noise  limit 
even at a high bias level. The  dependences  of AM excess  noise 
factor  on  background  doping level and  threshold gain are 
shown  in Fig. 9.  To  decrease AM excess  noise,  heavily  n-doped 
active  layer  and  large  threshold  gain,  which,  for  instance, is 
realized  by  decreasing  the  mode  confinement  factor,  are 
preferable.  This is mainly  because  the  population  inversion 
parameter nsp is small in  n-doped GaAs and  decreased  with 
threshold gain  as shown  in Fig. 2. 

Experimental  and  theoretical results Concerning RIN fre- 
quency  characteristics  for  the 300 pm CSP laser  are  shown in 
Fig. 10. The  experimental results with  flat  response  at  low 
frequency, as well as the  cutoff  characteristics  at  high  fre- 
quency  are well described  by  the  rate  equation analysis.  The 
discrepancy  between  the  experimental  results  and  single-mode 
rate  equation  analysis  near  the  relaxation oscillation fre- 
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The  multimode  rate  equation analysis [5] shown by the 

Fig. 11 shows the 3 dB  down  cutoff  frequency  for RIN 
against the bias level R for  the 300 pm CSP laser. Calculations 
were performed using the  rate  equation, van der  Pol equation, 
and  the Fokker-Planck equation.  The  three  theoretical 

tional t o  H,,R/T, and is from several tens to  several hundred 
GHz, even at  the R < 1  bias level. 

I 

~ dotted line agrees better  with  the  experimental results. 

x methods gave similar results. The  cutoff  frequency is propor- 

1 , , , , , , , , ,  '\\;\, , , , , _ 1  , I B. Variance of Intensity  Fluctuation 
\, Variance  in intensity  fluctuation p for  the 300 pm CSP laser 

I 10 is presented in Fig. 12 as a function of the bias level R. Three 1 '. 
102 IO' 

01 I 

'nom' Jnom.th - I 
P,,! (mW) theoretical curves,  based on the van der Pol equation (64), 

(a) (b) Fokker-Planck equation (97), and  photon density matrix 
Fig. 8. (a) AM excess noise factor x Versus normalized bias level R for equation  (141) of [1 J , show similar results.  The  theoretical 

300 pm CSP laser. (b) AM excess noise factor x versus optical  output 
power  for 300 pm CSP laser. : rate equation analysis, .: shot noise limit is also plotted  in Fig. 12.  The Fokker-Planck 
experimental results. equation analysis  differs from  the  other  two in the R 2 1  bias 

level, since the signal wave induced  shot noise is not  included 
in the Fokker-Planck method. 

The  photon  distribution changes at  threshold  from a Bose- 
Einstein distribution below threshold to a Poisson distribution 
at well above the  threshold. This smooth  transition is seen  by 
the value H z  defined as 

( nz> - (n)' = (n> (1 f Hz(n>). (1 8) 

The value of H z  is unity  for  the Bose-Einstein distribution, 
and  zero  for  the Poisson distribution.  The value of H z  is 
calculated in terms of the variance p and  the mean photon 
number (n)  as 

Fig. 9. AM excess noise factor x versus optical output power as func- 
tions of background  doping level and  threshold gain. 

I M  10M IOOM IG 10G XT)G 
FREQUENCY ( H z )  

Fig. 10. AM noise  spectrum €or 300 pm CSP laser biased at R = 0.02. 
: single-mode rate equation; -----: multimode  rate 

equation; 0 :  experimental results in this  work;  and 0 :  experimental 
results from  Jackel et al. [ 41 . 

quency  stems  from  spurious  longitudinal  modes  and  lateral 
carrier  diffusion effects,  both of which are neglected in  the 
single-mode rate  equation analysis shown by  a  solid line. 

Hz = p - l / (n ) .  (1 9) 

Fig. 13 shows the  experimental  and  theoretical values for H z  
in relation to  the bias level R for  the 300 pm CSP laser. 

C Photon  Number  Probability  Density 
The  probability  density  for  the  photon  number  Prob(n) in 

the 300 p.m CSP laser is shown in Fig. 14  as a function of the 
bias level R.  The  probability densities for  the  photon  number, 
calculated  by  the Fokker-Planck and  density  matrix  equations, 
give similar results. The Poisson distribution with the same 
mean  photon  number is plotted  by  dotted lines for reference. 
The  probability  density,  on  the  other  hand,  approaches  the 
Bose-Einstein distribution  with decreasing bias level. 

IV. FM QUANTUM NOISE 
FM quantum noise properties  for  semiconductor lasers are 

characterized by FM noise, power spectra,  spectral  linewidth, 
and  instantaneous  frequency  probability  density. In this 
section,  theoretical  and  experimental  comparisons  of these 
values are  presented. 

A.  FM Noise  Spectrum 
The  experimental  setup  for measuring FM noise spectra 

is shown in [ l   1 ,  Fig. 1 ] . The FM noise from  the AlGaAs 
semiconductor laser field is converted to  AM noise by the 
optical  frequency  discriminator, which  consists of a Michelson 
interferometer.  The  output of the  optical  frequency dis- 
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Fig. 11. Theoretical 3 dB down  cutoff  frequency  for AM noise spectrum 
with 300 pm CSP laser, versus bias level R. : rate  equation; _____  : van der Pol equation  and Fokker-Planck equation. 

I 

I 

1 
I 

Fig. 12. Theoretical variance in intensity  fluctuation P VerSUS bias 
level R for 300 pm CSP laser. : van der  Pol equation; 

density  matrix  equation; --.--.--.-: theoretical  shot noise level. 
_ _ _ _ _  : Fokker-Planck equation analysis; - - - - - - - - - - : photon 

criminator  contains  both  the original AM noise and FM-AM 
conversion  noise.  The  noise  power P(w), displayed on a 
spectrum  analyzer, is defined  by 

P(O) = [rl&((i:)AM + (i:)FM) W 2  + 2erlD (i:h) (g')] 

. RL B,G(w) + P thermal (0) Pdark current (a). (20) 

Here, the excess  noise ( i i )FM due to  FM-AM conversion  is 
given as a  function  of  the FM noise  spectrum Wsn(w), 

Fig. 13. Parameter H z  versus bias level R for 300 pm GaAs CSP laser. 
: van der  Pol equation; ----- : Fokker-Planck equa- 

tion; - - - - - - - - - - : photon density matrix  equation analysis. 

Fig. 14. Photon  number  probability  density  Prob(n)  for 300 pm CSP 
laser as a function of the bias level R. : photon  density 
matrix  equation; ----- 
Poisson distribution. 

: Fokker-Planck equation; - - - - - - - - - - :  

Here, Kd is the Michelson interferometer  constant  and 7 is the 
delay  time  due to  the arm  length  difference. 

The  frequency  discriminator  constant Kd is estimated  by  the 
measured  delay  time 7. The value of Kd is directly  measured 
by  the  demodulation  experiment  with  the  sinusoidally  fre- 
quency  modulated AlGaAs  laser.  The  oscillation frequency 
for  the AlGaAs laser is directly  modulated  by  the  injection 
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current  modulation [20] .  The  maximum  frequency shift 
Af, at  modulation  frequency f ,  was determined  by  the side- 
band to carrier intensity  ratio  of  the  optical  spectrum  observed 
by the  Fabry-Perot  interferometer; as is  shown in Fig. lS(aj. 
The FM-AM converted  optical signal was detected  by Si-APD 
and displayed on  the  spectrum  analyzer. This is shown in 
Fig. 15(bj.  Demodulated  output, divided  by Af,, gives the 
spectrum  of  the  frequency  discriminator  constant.  The dis- 
criminator  constant Kd thus  determined is in  good  agreement 
with  the  estimated Kd value using the  measured T value. Fig. 
15 (cj  shows  the  output signal obtained  by  direct  detection of 
frequency  modulated  semiconductor laser output. A spurious 
AM signal due to injection  current  modulation  and  the AM 
noise spectrum can  be  seen.  These are smaller than  the FM 
signal and FM noise  by 25 and  10 dB, respectively. 

Fig. 16 contains  experimental results concerning  the FM 
noise spectrum  for  the  900 p CSP laser. Theoretical FM 
noise spectra,  calculated  by  the  rate  equation, are  seen in  this 
figure. They  are results of the  spontaneous emission coupled 
to  the lasing mode,  the carrier modulation noise induced 
refractive index  fluctuation,  and  the  current  modulation noise 
induced  temperature  fluctuation.  The FM noise spectrum  at 
low  frequency is mainly determined  by  the  current  modula- 
tion noise. Resonant  enhancement of the FM noise spectrum 
at  the  relaxation oscillation frequency  stems  from  the carrier 
modulation  effect. To the  authors'  knowledge,  the  existence 
of these  two noises has  not been mentioned  thus  far.  The FM 
noises spectrum in the  other  frequency range is determined by 
spontaneous emission noise and carrier modulation noise. 

A theoretical  and  experimental  comparison of the FM noise 
spectra  for  the  900  pm CSP laser is  shown in Fig. 17. Fig. 18 
shows  a theoretical  and  experimental  comparison  of  the 
resonant peak frequency of the FM noise spectrum versus the 
bias level R for  the  900  pm CSP laser. The  resonant  peak  fre- 
quency  for  the AM noise spectrum is also plotted in Fig. 18. 
Similar results  are obtained  for  the 300 pm CSP and 200 /dm 
TJS lasers. 

B. Power Spectrum and Spectral Linewidth 
The  experimental  setup  for measuring the power spectrum 

through  optical  heterodyne  detection  is  shown  in  [21, Fig. 11 . 
Two identical  AlCaAs  lasers, which oscillate  in  a single longi- 
tudinal  mode  with  almost  identical wavelengths, are installed 
in  a temperature  controlled  chamber,  and biased at  almost  the 
same bias level R .  The oscillation frequencies  for  the  two 
lasers were  detuned in relation to  each other  by  about 1 GHz. 
Rough frequency  tuning was performed  by  adjusting  the  diode 
temperature,  and  fine  tuning was done  by changing the bias 
current.  Two  additional  optical  isolators were inserted to 
eliminate  undesired reflection feedback  from  the  optical ele- 
ments  into  the lasers. The same optical  isolators were also 
used in  the FM noise spectrum  measurement, since FM noise 
properties  are sensitive to  the  external  feedback [7],  [22],  

The observed beat  spectrum was shown in Fig. 19  as a 
function of the bias level for  the 300 p CSP laser. The  ex- 
perimental results are in good agreement with the  theoretical 
Lorentzian line shape  shown by  a  solid  line. The  power spec- 

~ 3 1 .  

a - 5 d ~ ~ : ~ ~ ~  FM Signal 

AM Signal 

FM Nolse AM Nose 

I d  -5533 
lOOMHz rrc WJMHz '% 500 W z  

(a) (b) (C) 
Fig. 15. (a) Optical  spectrum  of  directly frequency  modulated GaAs 

laser output as observed by scanning Fabry-Perot  interferometer. 
Modulation frequency was 100 MHz. (b) Demodulated FM signal, 
and FM noise determined  by means of Michelson interferometer fre- 
quency discriminator. (c) Residual AM signal, and AM noise. 
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(b) 
Fig. 16. FM noise spectra  for 900 pm CSP laser. ----- : sponta- 

neous emission induced FM noise; ---.-.-: current noise induced 
FM noise; ........... carrier noise  induced FM noise; 
total E." noise; 0 :  experimental results. (a) R = 0.1. (b) R = 0.8. 
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Fig. 17. FM noise spectra of 900  pm GaAs CSP laser for  different  bias 
levels. : theoretical results using rate  equation analysis. 
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Pig. 18. Resonant peak frequency of FM noise and AM noise versus 
bias level R for 900 Nm CSP laser. : theoretical result from 
rate  equation. 
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Fig. 19. Observed beat spectra between  two 300 pm CSP lasers biased at same pumping level. : Lorentzian  line 
shape. (a) R = 0.245. (b) R = 0.36. (c) R = 0.49. 
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trum is, to be exact,  not  the  Lorentzian  line  shape, because 
the  current  modulation noise and  carrier  modulation noise 
introduce  nonuniform FM noise spectra as shown  in Fig. 16. 
The  solid lines  in Fig. 19 are  drawn  by  choosing  the  linewidth 
to give the best fit to  the  experimental results. The noise 
floor at  about -67 dBm stems  from  electronic amplifier 
thermal noise. 

The  spectral  linewidth  obtained  from  the oscillation power 
spectrum is shown in Fig. 20 as  a function  of  the bias level R 
for  the 300 prn CSP laser.  Here the  spectral  linewidth  for  one 
laser is assumed to be half the  spectral  linewidth of the  beat 
spectrum, since the  two lasers are biased at  almost  the  same 
pumping level and have almost  equal  spectral  linewidths.  The 
spectral  linewidth was alternatively measured by the FM noise 
spectrum using the  relation [ 11 

Av,, ,  = $ W,,(O e 0). (22) 

The  spectral  linewidth,  determined by the  flat  portion  of FM 
noise spectra is also presented in Fig. 20. The  theoretical 
linewidths calculated  with the  four  different  theoretical 
models  are also shown in Fig. 20. Here the  theoretical /'3 and 
nSp values from  Table I are used. Experimental  results  are in 
good  agreement  with  the  rate  equation analysis. The van der 
Pol,  Fokker-Planck,  and  photon  density  matrix  equation 
analyses give slightly  lower  results than  the  rate  equation 
analysis,  since  carrier modulation noise induced line broaden- 
ing is not  included in them.  It is noticeable  that  both  line 
broadening  due  to  spontaneous emission noise and carrier 
modulation noise decrease in proportion  to R-' . 

The  theoretical  and  experimental  spectral  linewidth  for  the 
900 pm CSP laser, 300 pm CSP laser, and  the  200  pm TJS 
laser are  shown in Fig. 21. The  difference between three lasers 
stems  from  the difference  in spontaneous emission coefficients. 
Spectral  linewidth is proportional to /'3/rpR and is as narrow as 
250  kHz  at R = 1 for  the 900 pm CSP laser. 

Fig. 22(a)  and  (b)  compares  the  experimental spectral 
linewidths versus optical  output power reported so far for 
CSP laser and  TJS laser. It is uncertain why the  linewidth 
measured by  Mooradian et aZ. is broader  than  other results. 
Recently, Henry  claimed that  linewidth  broadening  due  to 
carrier modulation noise is about  thirty  times larger than  the 
spontaneous emission noise contribution, which is successful 
to explain  Mooradian's experimental results 1251. The dis- 
crepancy  between  the  present  theoretical result and Henry's 
result is mainly  due to his  omission of mode  confinement 
factor. Henry used the  parabolic  band model to estimate 
carrier  density and refractive index  anomalous dispersion 
coefficient [26],  which  results  in the  overestimation of 
anomalous dispersion effect.  This seems to be partly re- 
sponsible for  the above  discrepancy. 

The  linewidth  due to spontaneous emission noise and 
carrier modulation noise are  plotted in Fig. 23 as functions 
of  background doping level and  threshold gain. To decrease 
the  linewidth,  n-doped active  layer and small optical  mode 
confinement  factor  are preferable. 

C Instantaneous  Frequency  Probability  Density 
The  probability  density  for  the  instantaneous  frequency, 

Prob(Q), is shown in Fig. 24 as  a function of the  spectral 
linewidth AvI,, /B,,  as normalized by the  detection  band- 

Fig. 20. Spectral  linewidth A u l ! ~  versus bias level R for 300 ,urn 
CSP laser. : total F M  noise  calculated by rate  equation; 
- - - - _ _ _ _ _ _  : spontaneous emission noise induced FM noise (rate 
equation, Fokker-Planck equation,  and  density  matrix  equation. - -___ : carrier modulation noise induced FM noise. 
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Fig. 21. Spectral  linewidth Bull, versus bias level R for three  different 
types of GaAs lasers. F-"- :,'..,zz: rate  equation; A 0 0 :  experimental 
results from FM noise  spectrum  measurement. 

width.  The  instantaneous  frequency  probability  density has 
a Gaussian probability density  with W,,B, variance near the 
central region, but  it  has a much  broader  tail  than  the Gaussian 
distribution as shown by  (A5) of [ 11. 

V. CONCLUSION 
AM and FM quantum noise properties  for  four  different 

types of AlGaAs lasers were studied  experimentally.  The 
experimental results  were compared  with  the  theoretical 
predictions using four  different  formulations derived in the 
preceding paper [ 1 3 . 

Two basic parameters of the  spontaneous emission coeffi- 
cient /'3 and  population inversion parameter nSp,  as well as the 
effective lifetime re f f ,  and  the refractive index dispersion 
coefficient dn/dNe, which determine  the AM and FM quantum 
noise properties, were estimated using the  Stern  band  model 
and  the  structural  parameters V,, r, and rp  for  the  four 
AlGaAs lasers. The  accuracy of  the  estimated /'3 and nSp values 
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Fig. 22. Spectral  linewidth Av1I2 versus optical  output power for 
(a)  300 pm CSP laser and  (b)  200 pm TJS laser. 

Carrier Noise 

P d l  mW I 

9th (cm-’ 

Fig. 23. Linewidths  due to spontaneous emission noise and carrier 
modulation noise versus threshold gain for  300 Mm CSP laser. 
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Fig.  24. Instantaneous  frequency  probability Prob(n)  as a function of 
normalized FM noise  power 4 K d A ~ l p .  

was confirmed  with  the  independent  experimental results 
concerning  mean  photon  number  and  saturation  output 
power.  Experimental results  regarding AM noise  spectra, FM 
noise  spectra,  and  spectral  linewidth  were  in  good  agreement 
with  the  theoretical  predictions  that  used  the  estimated 0 and 
nsp values. 

The  dependences  of  the AM noise  spectrum, AM noise  band- 
width,  variance  in  intensity  fluctuation,  photon  number  proba- 
bility density,  and  spectral  linewidth  on  material,  structural, 
and  pumping  parameters  are  discussed. An  active  layer  with 
heavily n-doping  and  small  optical  mode  confinement  factor 
are  favorable to decrease  both AM and FM quantum  noise 
at  a  fixed  output  power. A higher  bias level and  output power 
level are, of course,  favorable  for  decreasing  quantum  noise. 
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