
Chapter 9

Master Equation Approach to
Matter-Wave Lasers

In the previous chapter we have presented the quantum theory of matter-wave lasers in the
Heisenberg picture. We started with the classical equations of motion, Gross-Pitaevskii
equation for the (c-number) condensate order parameter and the rate equation for the (real
number) pump reservoir population. In order to conserve the proper commutator bracket
for the corresponding operators (q-numbers) against dissipation processes, we introduced
the noise operators. The resulting equations are the Heisenberg-Langevin equations. In
spite of the transparency in their physical interpretation in terms of the corresponding
classical equations, it is generally impossible to solve the Heisenberg-Langevin equations
in a nonlinear regime. We introduced the linearization approximation to circumvent this
difficulty and calculated the noise spectra. In this chapter we will present an alternative
approach based on the master equations in the Schödinger picture. Even though we lose
the classical-quantum correspondence in this second approach, we can solve the master
equations exactly. Therefore, it is useful to study this alternative approach to gain more
quantitative results.

9.1 Four fundamental assumptions in the quantum theory
of an open-dissipative system

When we study a small quantum system which dissipatively couples to a large external
world and in return receives a fluctuating force from the external world, we can usually
introduce the following assumptions [1].

9.1.1 Born approximation

In spite of the mutual coupling between a small quantum system A and large reservoir
(external world) B, the reservoir has a very fast internal relaxation process so that a
quantum correlation between the two systems is quickly lost. Therefore, we can write the
total density operator in a product state:

ρ̂AB(t) = ρ̂A(t)⊗ ρ̂B(t), (9.1)
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where ρ̂A and ρ̂B are the density operators for the system and reservoir, respectively.

9.1.2 Markov approximation

A reservoir consists of many (or infinite) degrees of freedom, so that it has a very short
memory (correlation) time. During such a short memory time τ of the reservoir, the
change in the system state can be neglected. Therefore, the system density operator in
(9.1) satisfies

ρ̂A(t + τ) ' ρ̂A(t). (9.2)

9.1.3 Reservoir approximation

The reservoir is so large that the reservoir state is not affected by its coupling to the
system. Therefore, the reservoir density operator is independent of time and often at
thermal equilibrium condition:

ρ̂B(t) ' ρ̂B(0). (9.3)

9.1.4 Rotating wave approximation

The coupling KAB between the system and the reservoir is orders of magnitude smaller
than the transition frequencies ωn − ωm of both systems:

KAB ¿ ωn − ωm, (9.4)

where ωn and ωm are the adjacent discrete energy levels of the system or reservoir. There-
fore, only energy conserving (or nearly energy conserving) transitions are taken into ac-
count in the analysis.

9.2 Master equation

9.2.1 Basic modeling

We start with the Liouville-von Neumann equation for the total density operator [2]:

d

dt
ρ̂AB =

1
i~

[
Ĥint, ρ̂AB

]
, (9.5)

where Ĥint is the total Hamiltonian of the coupled system and reservoir in the interaction
picture. The iterative solution for the reduced density operator for the system is written
as

ρ̂A(t+τ) ≡ TrB [ρ̂AB(t + τ)] = TrB

{
ρ̂A(t)⊗ ρ̂B(t) +

1
i~

∫ t+τ

t
dt1

[
Ĥint (t1) , ρ̂A(t)⊗ ρ̂B(t)

]

+
(

1
i~

)2 ∫ t+τ

t
dt1

∫ t+τ

t
dt2

[
Ĥint (t1) ,

[
Ĥint (t2) , ρ̂A(t)⊗ ρ̂B(t)

]]}
, (9.6)

where we truncate the interaction at the second order.
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Let us study first the particular interaction Hamiltonian Ĥint of the form

Ĥint = ~g
(
âb̂+ + â+b̂

)
, (9.7)

where â (â+) and b̂
(
b̂+

)
are the annihilation (creation) operator of the condensate particle

(quantum system) and the pump reservoir particle (reservoir), respectively. The pump
reservoir density operator is given by the statistical mixture of the one particle state and
the vacuum state:

ρ̂res =
(

ρ11 0
0 ρ00

) |1〉
|0〉

= ρ11|1〉〈1|+ ρ00|0〉〈0|. (9.8)

The pump reservoir state does not have passes a quantum coherence (off-diagonal term)
and is independent of time due to the reservoir approximation. The initial state for a
combined system-reservoir density operator at a time t = 0 is given in the matrix form of
the reservoir coordinate {|0〉, |1〉} [3]:

ρ̂AB(0) =
(

ρ11ρ̂A(0) 0
0 ρ00ρ̂A(0)

)
. (9.9)

If we recall the reservoir creation and annihilation operators are identical to the projectors:
b̂+ = |1〉〈0| and b̂ = |0〉〈1|, the interaction Hamiltonian (9.7) is rewritten in the same
matrix form as

Ĥint = ~g
(

0 â
â+ 0

)
. (9.10)

Because of the Born-Markov approximation, the commutator
[
Ĥint, ρ̂A(t)⊗ ρB(t)

]

does not change during a reservoir relaxation time (or rather interaction time in this
case) τ . Also because of the reservoir approximation, ρ̂B(t) is time-independent. Based
on these considerations, we can rewrite (9.6)

ρ̂A(t + τ) = TrB

{
ρ̂A(t)⊗ ρ̂B(t) +

τ

i~

[
Ĥint, ρ̂A(t)⊗ ρ̂B(t)

]

+
τ2

2(i~)2
[
Ĥint,

[
Ĥint, ρ̂A(t)⊗ ρ̂B(t)

]]}
. (9.11)

The first-order interation term (second term of R.H.S) of (9.11) is evaluated as

[
Ĥint, ρ̂A(t)⊗ ρ̂B(t)

]
= ~g

(
0 â

â+ 0

)(
ρ11ρ̂A 0

0 ρ00ρ̂A

)
− ~g

(
ρ11ρ̂A 0

0 ρ00ρ̂A

)(
0 â

â+ 0

)

= ~g
(

0 âρ00ρ̂A − ρ11ρ̂Aâ
â+ρ11ρ̂A − ρ00ρ̂Aâ+ 0

)
, (9.12)

so that this term vanishes after taking the trace over the reservoir coordinate

TrB

{[
Ĥint, ρ̂A ⊗ ρ̂B

]}
= 0. (9.13)
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Similarly we can evaluate the second-order interation term (third term of R.H.S) of (9.11)
as [

Ĥint,
[
Ĥint, ρ̂A(t)⊗ ρ̂B(t)

]]

= (~g)2
(

ââ+ρ11ρ̂A − 2âρ00ρ̂Aâ+ + ρ11ρ̂Aââ+ 0
0 â+âρ00ρ̂A − 2â+ρ11ρ̂Aâ + ρ00ρ̂Aâ+â

)
,

(9.14)
so that this term has a non-zero contribution to (9.11):

TrB

{[
Ĥint,

[
Ĥint, ρ̂A(t)⊗ ρ̂B(t)

]]}

= (~g)2
{
ρ11

[
ââ+ρ̂A + ρ̂Aââ+ − 2â+ρ̂Aâ

]
+ ρ00

[
â+âρ̂A + ρ̂Aâ+â− 2âρ̂Aâ+

]}
(9.15)

Using (9.15) in (9.11), we obtain the system operator evolution to the second order

ρ̂A(t + τ) = ρ̂A(t)− 1
2
(gτ)2

{
ρ11

[
ââ+ρ̂A + ρ̂Aââ+ − 2â+ρ̂Aâ

]

+ρ00

[
â+âρ̂A + ρ̂Aâ+â− 2âρ̂Aâ+

]}
. (9.16)

We can model the system-pump reservoir interaction in a matter wave laser by the
following picture. We inject a particle into the pump reservoir state at a rate r per second
with a finite probability ρ11. With the probability of ρ00 = 1 − ρ11, we do not inject
a particle. The injected particles interact with the condensate for a time interval τ , so
that a total number of r × τ particles interact with the condensate for every second. The
coarse-grained time rate of change of the system density operator is then given by

d

dt
ρ̂A =

rτ [ρ̂A(t + τ)− ρ̂A(t)]
τ

= −1
2
R1

[
ââ+ρ̂A + ρ̂Aââ+ − 2â+ρ̂Aâ

]

−1
2
R0

[
â+âρ̂A + ρ̂Aâ+â− 2âρ̂Aâ+

]
, (9.17)

where R1 = rρ11(gτ)2 is the cooling rate of pump reservoir particles into the condensate
per second and R0 = rρ00(gτ)2 is the reverse process, i.e. the excitation rate into the pump
reservoir from the condensate per second. This deterministic linear differential equation
(9.17) is called a master equation and fully equivalent to the Lionville-von Neumann
equation (9.5) for the total system.

9.2.2 Master equation in Linblad form

The dynamical condensate in matter wave lasers has a net gain R1 − R0, which must be
compensated for a net loss rate due to the output coupling of the condensate particles.
The mutual coupling between the condensate and external particle field reservoir, which is
responsible for a net loss, can be incorporated into (9.17) by replacing R0 with γc (1 + NR)
and R1 with γcNR, where γc is the condensate particle decay rate and NR is the average
particle number of the external particle field reservoir. The master equation of matter-
wave lasers has thus a general form of

d

dt
ρ̂A = −1

2
{
(R1 + γcNR)

(
ââ+ρA + ρAââ+ − 2â+ρ̂Aâ

)
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+ [R0 + γc(1 + NR)]
(
â+âρ̂A + ρ̂Aâ+â− 2âρAâ+

)}
. (9.18)

This equation is called a master equation of Linblad form and independent of specific
system-reservoir coupling models. All we need to know are the rate-in and rate-out of
the condensate particles as shown in Fig. 9.1 in order to write the master equation. As
discussed already in Chapter 8, this is also true to write the Heisenberg-Langevin equation.

condensate

pump

reservoir

external field

reservoir

(excitation)

(cooling)

(in-coupling)

(out-coupling)

condensate

pump

reservoir

external field

reservoir

(excitation)

(cooling)

(in-coupling)

(out-coupling)

Figure 9.1: The coupling of the condensate field with the pump and external field reser-
voirs.

9.3 Particle statistics

The matrix element ρnm = 〈n|ρ̂A|m〉 of the condensate density operator in terms of particle
number eigenstates satisfies the following equation [4]:

d

dt
ρnm = −1

2
{(R1 + γcNR) (n + m + 2) + [R0 + γc (1 + NR)] (n + m)} ρnm

+(R1 + γcNR)
√

nmρn−1,m−1 + [R0 + γc (1 + NR)]
√

(n + 1)(m + 1)ρn+1,m+1. (9.19)

If the loss rate γc is set to zero (no output coupling), the diagonal element ρnn satisfies

d

dt
ρnn = [−R1(n + 1)−R0n] ρnn + R1nρn−1,n−1 + R0(n + 1)ρn+1,n+1. (9.20)

ρnn couples to only neighboring diagonal elements ρn−1,n−1 and ρn+1,n+1 as indicated in
Fig. 9.2. The physical interpretation of each flow should be obvious from the figure. In
order to have a steady state solution in (9.20), the cooling rate should not exceed the
excitation rate, i.e. R1 < R0. Under this constraint, the particle flow from the pump
reservoir to the condensate (up-ward transition in Fig. 9.2) and that from the condensate
to the pump-reservoir (down-ward transition in Fig. 9.2) should balance between any pair
of neighboring states, so that we obtain the detailed balance:

R0nρnn = R1nρn−1,n−1. (9.21)

Using (9.21) iteratively, we can relate ρnn to ρ00,

ρnn =
R1

R0
ρn−1,n−1 = · · · · · · =

(
R1

R0

)n

ρ00, (9.22)
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Figure 9.2: The coupling of the diagonal elements of the condensate density operator.

where the normalization condition,
∑

n ρnn = 1, must be satisfied and thus ρ00 is uniquely
determined as

ρ00 = 1−
(

R1

R0

)
. (9.23)

The average particle number N̄ is thus calculated by

N̄ =
∞∑

n=0

nρnn = ρnn =
∞∑

n=0

n

[
1−

(
R1

R0

)](
R1

R0

)n

=
R1

R0 −R1
. (9.24)

Substituting (9.23) and (9.24) into (9.22), we obtain

ρnn =
1

1 + N̄

(
N̄

1 + N̄

)n

. (9.25)

This is the famous particle statistics for a single-mode thermal state. The experimental
signatures for a single-mode thermal state are the so-called bunching in the particle cor-
relation measurement and super-Poisson distribution in the particle number distribution
measurement:

g(n)(0) = n! (bunching), (9.26)
〈
∆N̂2

〉
= N̄

(
N̄ + 1

)
(super-Poisson), (9.27)

where g(n)(0) is the n-th order coherence function and
〈
∆N̂2

〉
=

〈
N̂2

〉
−

〈
N̂

〉2
is the

variance of the particle number.
If the condensate has a net gain, R1 > R0, there should be a finite output coupling

loss γc 6= 0 in order to have a steady state solution in (9.20). In this case, the net gain
R1 > R0 should balance the loss rate γc if the particle population in the external field
reservoir is negligible. It is convenient to write down the net gain R1 − R0 in terms of
a linear gain A, which is proportional to the pump rate, and nonlinear gain saturation
B, which depletes the linear gain and make the net gain R1 − R0 pinned at the loss rate
γc. Using these linear and nonlinear gain coefficients, the master equation (9.20) can be
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rewritten as

d

dt
ρnn = − (n + 1)A

1 + (n + 1)A
B

ρnn +
nA

1 + nB
A

ρn−1,n−1 − γcnρnn + γc(n + 1)ρn+1,n+1

' − [A−B(n + 1)] (n + 1)ρnn + (A−Bn)nρn−1,n−1

−γcnρnn + γc(n + 1)ρn+1,n+1 (9.28)

The physical interpretation for each term in R.H.S, of (9.28) should be clear from the
probability flow diagram Fig. 9.3.

nonlinear

excitation

stimulated 

cooling spontaneous 

cooling

linear

coupling

nonlinear

excitation

stimulated 

cooling spontaneous 

cooling

linear

coupling

Figure 9.3: The flow of the diagonal elements due to linear gain, nonlinear gain saturation
and output coupling.

The new detailed balance is given by

− (n + 1)A
1 + (n + 1)B

A

ρnn + γc(n + 1)ρn+1,n+1 = 0. (9.29)

From this relation, ρnn is related to ρ00 by

ρnn =

(
A2

γcB

)n

(
n + A

B

)
!
ρ00. (9.30)

At well above threshold, the average particle number in the condensate is much larger
than one,

〈
N̂

〉
À 1 and thus ρnn ' ρn−1,n−1. The saturated gain should be equal to the

loss, γc = A
1+n B

A

. From this relation, the average particle number is approximately given

by 〈
N̂

〉
=

A

γc

A− γc

B
' A2

γcB
, (9.31)

in the limit of high pump rates (A À γc). Using (9.31), the diagonal element ρnn is reduced
to

ρnn =

〈
N̂

〉n

n!
ρ00 = e−〈N̂〉

〈
N̂

〉n

n!
. (9.32)

This is a Poisson distribution, for which the variance is equal to the average particle
number,

〈
∆N̂2

〉
=

〈
N̂

〉
.
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9.4 Quantum mechanical Fokker-Planck equation

The master equation (9.18) is a key working equation to calculate the quantum statistics
of the matter-wave lasers. However, the particle number representation of the master
equation such as (9.19) is poorly suited for analyzing the condensate statistics with a huge
average number of particles N̄ À 1, since the matrix size is practically intractable. The
Glauber-Sudarshan p(α) representation [5, 6] of the density operator does a much better
job in such a case.

Let us assume the density operator of the condensate field is expanded by the diagonal
elements in terms of the coherent state [5, 6]:

ρ̂A(t) =
∫

d2αp(α, t)|α〉〈α|, (9.33)

where p(α, t) is a real number probability of finding a particular coherent state |α〉 in the
condensate field. If we substitute (9.33) into (9.18), we obtain

∫
d2α

d

dt
p(α, t)|α〉〈α| = −1

2

∫
d2αp(α, t)

{
(R1 + γcNR)

[
ââ+|α〉〈α| − â+|α〉〈α|â]

+ [R0 + γc (NR + 1)]
[
â+â|α〉〈α| − â|α〉〈α|â+

]}
+ h.c. (9.34)

The coherent state is generated by projecting a displacement operator on a vacuum state [5,
6]

|α〉 = eαâ+−α+â|0〉 = e−
|α|2
2 eαâ+ |0〉, (9.35)

where the Baker-Hausdorf relation for a non-commuting pair of observables Â and B̂ [7]

eαÂ+βB̂ = e
1
2
αβ[Â,B̂]eαÂeβB̂, (9.36)

and the relation e−α∗â|0〉 = |0〉 are used in the second equality of (9.35). From (9.35) and

its adjoint, 〈α| = e−
|α|2
2 〈0|eα∗â, we can rewrite the projector |α〉〈α| as

|α〉〈α| = e−|α|
2
eαâ+ |0〉〈0|eα∗â. (9.37)

By differentiating (9.37) with respect to α and α∗, we obtain

â+|α〉〈α| =
(

∂

∂α
+ α∗

)
|α〉〈α|, (9.38)

|α〉〈α|â =
(

∂

∂α∗
+ α

)
|α〉〈α|. (9.39)

Using these relations, the two terms in R.H.S. of (9.34) are simplified to

ââ+|α〉〈α| − â+|α〉〈α|â =
[

∂

∂α
· α + α∗α−

(
∂

∂α
+ α∗

)(
∂

∂α+
+ α

)]
|α〉〈α|

=
(
−α∗

∂

∂α∗
− ∂2

∂α∂α∗

)
|α〉〈α|, (9.40)
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â+â|α〉〈α| − â|α〉〈α|â+ =
[
α

∂

∂α
+ αα∗ − αα∗

]
|α〉〈α|

= α
∂

∂α
|α〉〈α|. (9.41)

Substituting (9.40) and (9.41) into (9.34), we finally obtain
∫

d2α
d

dt
p(α, t)|α〉〈α| = −

∫
d2α

{
1
2

(R1 −R0 − γc)
[

∂

∂α
(αp(α, t)) + C.C.

]

− (R1 + γcNR)
∂2

∂α∂α∗
p(α, t)

}
|α〉〈α|. (9.42)

By comparing the expansion coefficients for |α〉〈α| in both sides of (9.42), we can obtain
the quantum mechanical Fokker-Planck equation:

d

dt
p(α, t) = −1

2
(R1 −R0 − γc)

[
∂

∂α
(αp(α) + C.C.

]
+ (R1 + γcNR)

∂2

∂α∂α∗
p(α, t) (9.43)

Instead of solving the time evolution for the matrix elements ρnn in the large-size matrix,
we can solve the linear differential equation for p (α, t). This is a much easier task in both
analytical and numerical approaches.

The first term M1 = −1
2 (R1 −R0 − γc)

[
∂

∂α(αp(α)) + C.C.
]
of R.H.S. of (9.43) is called

a drift term. If R1 − R0 − γc > 0, the net gain R1 − R0 exceeds the loss rate γc. In such
a case, p(α, t) distribution drifts to a higher excitation amplitude α as shown in Fig. 9.4.
On the contrary, if R1 −R0 − γc < 0, p(α, t) distribution drifts forward a lower excitation
amplitude α. The second term M2 = (R1 + γcNR) ∂2

∂α∂α∗ p(α, t) of R.H.S. of (9.43) is called
a diffusion term. Since R1+γcNR is always positive, the central part of p(α, t) distribution
decreases its amplitude and the trailing part increases its amplitude as shown in Fig. 9.5.
Because of this behavior, the p(α, t) distribution always broadens as a time elapses. An
analogy of the above interpretation for the quantum mechanical Fokker-Planck equation
to the classical problem of the random walk diffusion of a Brownian particle under a drift
field is discussed in ref. [4].

Figure 9.4: The drift of p(α, t) distribution due to positive and negative M1 values when
R1 −R0 − γc > 0.

9.5 Amplitude and phase noise

In order to calculate the amplitude and phase noise of the condensate, let us introduce the
polar coordinate to express a c-number α = reiθ. The quantum mechanical Fokker-Planck
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Figure 9.5: The diffusion of p(α, t) distribution due to positive and begative M2 values.

equation (9.43) is rewritten in the polar coordinate:

d

dt
p(r, θ, t) = − 1

2r
(R1 −R0 − γc)

∂

∂r

[
r2p(r, θ, t)

]
+

1
4r2

(R1 + γcNth)

×
[
r

∂

∂r
r

∂

∂r
+

∂2

∂θ2

]
p(r, θ, t). (9.44)

At well above threshold, the net gain is approximated by R1−R0 ' A−B|α|2 = A−Br2

and the thermal population term γcNR of the external reservoir can be neglected. Thus
(9.44) is reduced to

d

dt
p(r, θ, t) = − 1

2r

∂

∂r

[
r2

(
A−Br2 − γc

)
p(r, θ, t)

]
+

1
4r2

A

(
r

∂

∂r
r

∂

∂r
+

∂2

∂θ2

)
p(α, θ, t)

(9.45)
In a steady state condition, the drift term for the average amplitude r̄ must vanish, so

that A−Br̄2− γc = 0 and thus the average particle number in the condensate is given by
〈
N̂

〉
≡ r̄2 =

A− γc

B
. (9.46)

If we substitute r = r̄+∆r into the first term of R.H.S. of (9.45), we obtain r2
(
A−Br2 − γc

) '
−2rBr̄2 (r − r̄). We introduce the ansatz p(r, θ) = R(r)Φ(θ) as a steady state solution of
(9.45). Then the amplitude wave function R(r) satisfies

1
r

∂

∂r

[
rBr̄2 (r − r̄) R(r)

]
+

A

4r

∂

∂r

[
r

∂

∂r
R(r)

]
= 0, (9.47)

or
∂

∂r
R(r) = −4Br̄2

A
(r − r̄) R(r). (9.48)

The steady state solution for the amplitude wave function can be immediately obtained
from (9.48)

R(r) =
1√

2πσ2
exp

[
−(r − r̄)2

2σ2

]
, (9.49)

where the variance is given by

σ2 =
A

4Br̄2
=

1
4
· A

A− γc
. (9.50)
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At well above threshold, the linear gain exceeds the loss, A À γc, so that the variance
approaches to 1/4, which is the variance of the coherent state.

The steady state solution for the phase wave function satisfies d
dθΦ(θ) = 0, which

means the phase is completely random. This is the universal characteristic of a system
under random walk phase diffusion and seemingly in contradiction to our earlier discussion
on the off-diagonal long range order and the superfluidity associated with Bose-Einstein
condensation. In order to study the dynamics of this phase diffusion process, let us consider
a transient solution of Φ(θ) governed by

d

dt
Φ(θ) =

A

4r̄2

∂2

∂θ2
Φ(θ). (9.51)

Equation (9.51) indicates the phase exerts a Brownian motion,
〈
∆[θ(t)− θ(0)]2

〉
=

2D(θ)t, with a phase diffusion constant given by

2D(θ) =
A

2r̄2
=

γcnsp

2
〈
N̂

〉 , (9.52)

where A
γc

= A
A−Br̄2 ≡ nsp is called the population inversion parameter and (9.46) is used.

If we introduce the output particle flux per second by nout = γc

〈
N̂

〉
, the phase diffusion

constant is rewritten as

2D(θ) =
γ2

c nsp

2nout
. (9.53)

This is the famous Schawlow-Toweres linewidth of a laser oscillator [4]. The phase diffusion
constant (or FWHM spectral linewidth of the Lorentzian spectral profile) 2D(θ) decreases
abruptly at threshold by Bnsp

γc
and continuously decreases in inversely proportioned to the

pump rate,
(

A
γc
− 1

)−1
, at above threshold as shown in Fig. 9.6.

(threshold)

above thresholdbelow threshold

Figure 9.6: The spectral linewidth (FWHM) of the condensate 2D(θ) vs. the normalized
pump rate A/γc.
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9.6 Superfluidity in an open dissipative condensate

In Chapter 5 we have described the quantized vortex and the bound pair of vortex-
antivortex as an experimented evidence of superfluidity. Let us consider the following
situation: a bound pair of quantized vortex and antivortex with opposite winding num-
bers (2π and −2π phase rotation) is produced at the center of a condensate, which is
trapped in a circular potential. How does a vortex-pair move as a time elapses in such a
system? This problem can be solved by the numerical simulation of the open dissipative
Gross-Pitaevskii equation for the condensate and the rate equation for the pump reservoir.
As shown in Fig. 9.7(a), the vortex-pair moves in parallel to the perpendicular direction
due to the local velocity field (phase gradient induced by the vortex-pair). When the
vortex-pair approach the trap potential, the vortex and antivortex move apart and make
separate curved trajectories along the two side boundaries and form a bound pair again at
the opposite trap boundary. This cyclic motion of the vortex-pair is an inherent property
of an equilibrium condensate in a closed system.

If we introduce a finite gain and loss rate into the system, the completely different
dynamics is expected as shown in Fig. 9.7(b). The vortex-pair continuously loses its
potential energy and the vortex-antivortex separation decreases while it propagate along
the perpendicular direction. Eventually the vortex-pair recombines and ends up as a
simple density dip. Eventually, a simple condensate without any disturbances (steady
state condensate) is recovered. As demonstrated in this example, an open dissipative
condensate system has a function to eliminate any defect introduced into the system and
restore the steady state condensate at a cost of stationary amplitude and phase noise.

Figure 9.7: The time evolution of a bound pair of vortex and antivortex in a closed
condensate (a) and open dissipative condensate (b). [8]

In Chapter 4, we derived the Bogoliubov excitation spectrum which is linear in a low
momentum regime (sound mode). The critical velocity for superfluidity is given by the

slope of the linear dispersion, sound velocity c =
√

gn
m , according to the Landau’s criterion.
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This conserved BEC behavior is also modified by the addition of loss and gain terms. The
open dissipative Gross-Pitaevskii equation for the condensate order parameter is given by

i
d

dt
ψ0(r, t) =

{
− ~

2m
∇2 − i

2
[γc −G (nR)] + g|ψ0(r, t)|2 + gRnR

}
ψ0(r, t), (9.54)

while the rate equation for the pump reservoir population is

d

dt
nR(r, t) = p− γRnR(r, t)−G(nR)|ψ0(r, t)|2. (9.55)

We neglect the spacial diffusion of the pump reservoir particles, D∇2nR(r, t) = 0, where
D is a diffusion constant. The linearized solutions of (9.54) and (9.55) can be expressed
as

ψ0(r, t) = e−iµtψ0

[
1 +

∑

k

{
uke

i(kr−ωt) + v∗ke
−i(kr−ωt)

}]
, (9.56)

nR(r, t) = n0
R

(
1 +

∑

k

{
wke

i(kr−ωt) + w∗ke
−i(kr−ωt)

})
. (9.57)

Here we allow the amplitude and phase fluctuations for the condensate order parame-
ter, corresponding to the two degrees of freedom uk and v∗k, but assume only amplitude
fluctuation for the pump reservoir population.

Below the condensate threshold (G (nR) < γc) , ψ0 = 0 and n0
R = p/γR. This solution is

dynamically stable. When the pump rate p is increased above the condensation threshold,
the solution ψ0 = 0 becomes dynamically unstable and a condensate order parameter
appears with the steady state population |ψ0|2 = (p− pth) /γc where pth is defined by
G

(
nth

R = pth/γR

)
= γc. The oscillation frequency of the condensate is µT = µ + gRn0

R,
where µ = g|ψ0|2 and gR = 2g according to the standard Hartree-Fock argument.

Substituting (9.56) and (9.57) into (9.54) and (9.55) and using the above steady state
solutions above the threshold, we can obtain the eigenvalue equation for the elementary
excitations: 


µ + ~k2

2m µ iβγc

2 + 2γc

αγR
µ

−µ −µ− ~k2

2m
iβγc

2 − 2γc

αγR
µ

−iαγR −iαγR −iηγR







uk

vk

wk


 = ω




uk

vk

wk


 (9.58)

Here α = p/pth − 1 is the relative pump rate, β = n0
R

∂
∂n0

R
G

(
n0

R

)
/G

(
n0

R

)
characterizes

the dependence of the gain term on n0
R and η = 1 + αβ. For a phonon assisted gain

process
(
G

(
n0

R

)
= An0

R

)
, β = 1, while for a two particle collision induced gain process(

G
(
n0

R

)
= βn02

R

)
, β = 2. The elementary excitation spectrum, ω vs. k, can be obtained

by solving the above equation and the examples are shown in Fig. 9.8(a) and (b) [9]. When
γR À γc, the pump reservoir is able to adiabatically follow the evolution of the condensate
due to the slaving principle. The dispersion of elementary excitations shown in Fig. 9.8(a)
is dramatically different from the Bogoliubov sound mode, indicated by the dashed line in
Fig. 9.8(a), in equilibrium BEC. The Nambu-Goldstone modes (indicated by + and - in
Fig. 9.8(a)) shows a diffusive and nonpropagating behavior at low k.
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(a) (b)

Figure 9.8: Real part of the excitation spectrum of an exciton-polariton condensate with
γR/γc = 5 (a) and γR/γc = 1 (b) [9].

An analytical explanation of this behavior is obtained by eliminating the pump reser-
voir mode adiabatically, which leads to the following dispersion of the two branches of
elementary excitations:

ω±(k) = −i
Γ
2
±

√
ωB(k)2 − Γ2/4, (9.59)

where ωB(k) =
√

ωk (ωk + 2µ), ωk = ~k2/2m and Γ = αβγc/ (1 + αβ) whose value tends
to 0 near the threshold (α ' 0) and approaches to γc at well above the threshold (α À 1).
The + branch of (9.59) is the Nambu-Goldstone mode which corresponds to a slow rotation
of the condensate phase for small k values. Indeed, the vector (1,−1, 0)T of the gobal phase
rotation is an eigenvector of the matrix, LHS of (9.58), with a vanishing eigenvalue ω. The
- branch of (9.59) corresponds to modulations of the condensate density. The width ∆k
of the k-space region where the Nambu-Goldstone mode is flat is given by Re (ω±) = 0
or ωB(k) = Γ/2. On the other hand, for k À ∆k, the + modes recover the standard
Bogoliubov dispersion.

If γR and γc are comparable, the pump reservoir mode takes full part in the condensate
dynamics through the so-called relaxation oscillation and dynamical instability. The for-
mer (relaxation oscillation) is caused by the cross-saturation of the condensate and pump
reservoir populations through the gain term G (nR). The local depletion of the pump
reservoir density nR(r, t) results in the smaller gain and leads to the decreased condensate
density |ψ0(r, t)|2. This results in the local increase of the pump reservoir density and the
larger gain, which leads to the increased condensate density. In this way, the condensate
and pump reservoir densities modulate with each other with π/2 phase delay. The latter
(dynamical instability) is caused by the repulsive interaction gR between the condensate
and pump reservoir densities. A local depletion of the pump reservoir density creates a
potential well which attracts the condensate particles. This in turn leads to a further
drop of the pump reservoir density by the increased stimulated scattering rate. Fig. 9.8(b)
shows the dispersion of the elementary excitations for the case of γR = γc [9].
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